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Comparisons of the New to the previous edition of the Book

Minor and major changes as well as corrections have been made throughout the new 
edition of the book. Here are the major changes:

 1. Chapter 5 on the Method of Stochastic Gradient Descent is new.
 2. In Chapter 6 (old Chapter 5) on the Least-Mean-Square (LMS)  algorithm, major 

changes have been made to the statistical learning theory of LMS in light of the 
Langevin equation and the related Brownian motion.

 3. Chapter 11 on Robustness is new.
 4. The second half of Chapter 13 on Adaptation in Nonstationary Environments 

is completely new, being devoted to the Incremental-Delta-Bar-Delta (IDBD) 
Algorithm and the Autostep Method.

 5. Appendices B and F on the Wirtinger Calculus and the Langevin Equation, respec-
tively, are new.

 6. The Bibliography is new.
 7. The chapters on Adaptive IIR and Complex Neural Networks in the old edition 

have been deleted.

introductory remarks on the New edition 

The subject of adaptive filters constitutes an important part of statistical signal process-
ing. Whenever there is a requirement to process signals that result from operation in an 
environment of unknown statistics or one that is inherently nonstationary, the use of 
an adaptive filter offers a highly attractive solution to the problem as it provides a sig-
nificant improvement in performance over the use of a fixed filter designed by conven-
tional methods. Furthermore, the use of adaptive filters provides new signal-processing 
capabilities that would not be possible otherwise. We thus find that adaptive filters have 
been successfully applied in such diverse fields as communications, control, radar, sonar, 
seismology, and biomedical engineering, among others.

10

preface
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Preface   11

Aims of the Book

The primary aim of this book is to develop the mathematical theory of various 
 realizations of linear adaptive filters. Adaptation is accomplished by adjusting the free 
para meters (coefficients) of a filter in accordance with the input data, which, in reality, 
makes the adaptive filter nonlinear. When we speak of an adaptive filter being “linear,” 
we mean the following:

The input-output map of the filter obeys the principle of superposition whenever, 
at any particular instant of time, the filter’s parameters are all fixed.

There is no unique solution to the linear adaptive filtering problem. Rather, we have 
a “kit of tools” represented by a variety of recursive algorithms, each of which offers 
desirable features of its own. This book provides such a kit.

In terms of background, it is assumed that the reader has taken introductory under-
graduate courses on probability theory and digital signal processing; undergraduate 
courses on communication and control systems would also be an advantage.

organization of the Book

The book begins with an introductory chapter, where the operations and different forms 
of adaptive filters are discussed in general terms. The chapter ends with historical notes, 
which are included to provide a source of motivation for the interested reader to plough 
through the rich history of the subject.

The main chapters of the book, 17 in number, are organized as follows:

 1. Stochastic processes and models, which are covered in Chapter 1. This chapter 
emphasizes partial characterization (i.e., second-order statistical description) of 
stationary stochastic processes. As such, it is basic to much of what is presented in 
the rest of the book.

 2. Wiener filter theory and its application to linear prediction, which are discussed in 
Chapters 2 and 3. The Wiener filter, presented in Chapter 2, defines the optimum 
linear filter for a stationary environment and therefore provides a framework for 
the study of linear adaptive filters. Linear prediction theory, encompassing both 
of its forward and backward forms and variants thereof, is discussed in Chapter 3; 
the chapter finishes with the application of linear prediction to speech coding.

 3. Gradient-descent methods, which are covered in Chapters 4 and 5. Chapter 4 pres-
ents the fundamentals of an old optimization technique known as the method 
of steepest descent, which is of a deterministic kind; this method provides the 
framework for an iterative evaluation of the Wiener filter. In direct contrast, 
the follow-up chapter, Chapter 5, presents the fundamentals of the method of 
stochastic gradient descent, which is well-suited for dealing with nonstationary 
matters; the applicability of this second method is illustrated by deriving the 
least-mean-square (LMS) and gradient adaptive lattice (GAL) algorithms.
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 4. Family of LMS algorithms, which occupies Chapters 6, 7, and 8:
 • Chapter 6 begins with a discussion of different applications of the LMS algo-

rithm, followed by a detailed account of the small step-size statistical theory. 
This new theory, rooted in the Langevin equation of nonequilibrium thermo-
dynamics, provides a fairly accurate assessment of the transient behavior of 
the LMS algorithm; computer simulations are presented to justify the practi-
cal validity of the theory.

 • Chapters 7 and 8 expand on the traditional LMS algorithm by presenting 
detailed treatments of the normalized LMS algorithm, affine projection 
adaptive filtering algorithms, and frequency-domain and subband adaptive 
LMS filtering algorithms. The affine projection algorithm may be viewed as 
an intermediate between the LMS and recursive least-squares (RLS) algo-
rithms; the latter algorithm is discussed next.

 5. Method of least squares and the RLS algorithm, which occupy Chapters 9 and 
10. Chapter 9 discusses the method of least squares, which may be viewed as the 
deterministic counterpart of the Wiener filter rooted in stochastic processes. In the 
method of least squares, the input data are processed on a block-by-block basis; 
block methods, disregarded in the past because of their numerical complexity, are 
becoming increasingly attractive, thanks to continuing improvements in computer 
technology. Chapter 10 builds on the method of least squares to desire the RLS 
algorithm, followed by a detailed statistical theory of its transient  behavior.

 6. Fundamental issues, addressing robustness in Chapter 11, finite-precision effects in 
Chapter 12, and adaptation in nonstationary environments in Chapter 13:

 • Chapter 11 begins by introducing the H∞-theory, which provides the math-
ematical basis of robustness. With this theory at hand, it is shown that the 
LMS algorithm is indeed robust in the H∞-sense provided the chosen step-
size parameter is small, whereas the RLS algorithm is less robust, when both 
algorithms operate in a nonstationary environment in the face of internal 
as well as external disturbances. This chapter also discusses the trade-off 
between deterministic robustness and statistical efficiency.

 • The theory of linear adaptive filtering algorithms presented in Chapters 5 
through 10, is based on continuous mathematics (i.e., infinite precision). When, 
however, any adaptive filtering algorithm is implemented in digital form, 
 effects due to the use of finite-precision arithmetic arise. Chapter 12 discusses 
these effects in the digital implementation of LMS and RLS algorithms.

 • Chapter 13 expands on the theory of LMS and RLS algorithms by evalu-
ating and comparing their performances when they operate in a nonsta-
tionary environment, assuming a Markov model. The second part of this 
chapter is devoted to two new algorithms: first, the incremental delta-bar-
delta (IDBD) algorithm, which expands on the traditional LMS algorithm 
by vectorizing the step-size parameter, and second, the Autostep method, 
which builds on the IDBD algorithm to experimentally formulate an adap-
tive procedure that bypasses the need for manual tuning of the step-size 
parameter.

12   Preface
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 7. Kalman filter theory and related adaptive filtering algorithms, which occupy 
 Chapters 14, 15, and 16:

 • In reality, the RLS algorithm is a special case of the celebrated Kalman 
filter, which is covered in Chapter 14. A distinct feature of the Kalman filter 
is its emphasis on the notion of a state. As mentioned, it turns out that the 
RLS algorithm is a special case of the Kalman filter; moreover, when the 
environment is stationary, it also includes the Wiener filter as special case. It 
is therefore important that we have a good understanding of Kalman filter 
theory, especially given that covariance filtering and information filtering 
algorithms are variants of the Kalman filter.

 • Chapter 15 builds on the covariance and information filtering algorithms to 
derive their respective square-root versions. To be more specific, the ideas of 
prearray and postarray are introduced, which facilitate the formulation of a 
new class of adaptive filtering algorithms structured around systolic arrays 
whose implementations involve the use of Givens rotations.

 • Chapter 16 is devoted to yet another new class of order-recursive least-
squares lattice (LSL) filtering algorithms, which again build on the covari-
ance and information algorithmic variants of the Kalman filter. For their 
implementation, they exploit a numerically robust method known as QR-
decomposition. Another attractive feature of the order-recursive LSL fil-
tering algorithms is the fact that their computational complexity follows a 
linear law. However, all the nice features of these algorithms are attained 
at the expense of a highly elaborate framework in mathematical as well as 
coding terms.

 8. Unsupervised (self-organized) adaptation, which is featured in the last chapter of 
the book—namely, Chapter 17 on blind deconvolution. The term “blind” is used 
herein to express the fact that the adaptive filtering procedure is performed with-
out the assistance of a desired response. This hard task is achieved by exploiting 
the use of a model that appeals to the following notions:

 • Subspace decomposition, covered in the first part of the chapter, provides a clev-
er but mathematically demanding approach for solving the blind equalization 
problem. To address the solution, use is made of  cyclostationarity—an inherent 
characteristic of communication systems—for finding the second-order statistics 
of the channel input so as to equalize the channel in an  unsupervised manner.

 • High-order statistics, covered in the second part of the chapter, can be of an 
explicit or implicit kind. It is the latter approach that this part of the chapter 
addresses in deriving a class of blind equalization algorithms, collectively 
called Bussgang algorithms. This second part of this chapter also includes 
a new blind equalization algorithm based on an information-theoretic 
 approach that is rooted in the maximum entropy method.

The main part of the book concludes with an Epilogue that has two parts:

 • The first part looks back on the material covered in previous chapters, with some 
final summarizing remarks on robustness, efficiency, and complexity, and how the 

Preface   13
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LMS and RLS algorithms feature in the context of these three fundamentally 
important issues of engineering.

 • The second part of the Epilogue looks forward by presenting a new class of non-
linear adaptive filtering algorithms based on the use of kernels (playing the role 
of a hidden layer of computational units). These kernels are rooted in the re-
producing kernel Hilbert space (RKHS), and the motivation here is to build on 
material that is well developed in the machine literature. In particular, attention 
is focused on kernel LMS filtering, in which the traditional LMS algorithm plays a 
key role; the attributes and limitations of this relatively new way of thinking about 
adaptive filtering are briefly discussed.

The book also includes appendices on the following topics:

 • Complex variable theory
 • Wirtinger Calculus
 • Method of Lagrange multipliers
 • Estimation theory
 • Eigenanalysis
 • The Langevin equation
 • Rotations and reflections
 • Complex Wishart distribution

In different parts of the book, use is made of the fundamental ideas presented in these 
appendices.

Ancillary Material

 • A Glossary is included, consisting of a list of definitions, notations and conven-
tions, a list of abbreviations, and a list of principal symbols used in the book.

 • All publications referred to in the text are compiled in the Bibliography. Each 
reference is identified in the text by the name(s) of the author(s) and the year of 
publication. A Suggested Readings section is also included with many other refer-
ences that have been added for further reading.

examples, Computer experiments, and problems

Many examples are included in different chapters of the book to illustrate concepts and 
theories under discussion.

The book also includes many computer experiments that have been developed to 
illustrate the underlying theory and applications of the LMS and RLS algorithms. These 
experiments help the reader to compare the performances of different members of these 
two families of linear adaptive filtering algorithms.

Each chapter of the book, except for the introductory chapter, ends with problems 
that are designed to do two things:

14   Preface
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 • Help the reader to develop a deeper understanding of the material covered in the 
chapter.

 • Challenge the reader to extend some aspects of the theory discussed in the 
chapter.

Solutions Manual

The book has a companion solutions manual that presents detailed solutions to all the 
problems at the end of Chapters 1 through 17 of the book. A copy of the manual can 
be obtained by instructors who have adopted the book for classroom use by writing 
directly to the publisher.

The MATLAB codes for all the computer experiments can be accessed by going 
to the web site http://www.pearsoninternationaleditions.com/haykin/.

two Noteworthy Symbols

Typically, the square-root of minus one is denoted by the italic symbol j, and the dif-
ferential operator (used in differentiation as well as integration) is denoted by the italic 
symbol d. In reality, however, both of these terms are operators, each in its own way; it 
is therefore incorrect to use italic symbols for their notations. Furthermore, the italic 
symbol j and the italic symbol d are also frequently used as indices to represent other 
matters, thereby raising the potential for confusion. Accordingly, throughout the book, 
the roman symbol j and the roman symbol d are used to denote the square root of minus 
one and the differential operator, respectively.

Use of the Book

The book is written at a level suitable for use in graduate courses on adaptive signal 
processing. In this context, it is noteworthy that the organization of the material covered 
in the book offers a great deal of flexibility in the selection of a suitable list of topics for 
such a graduate course.

It is hoped that the book will also be useful to researchers and engineers in indus-
try as well as government establishments, working on problems relating to the theory 
and applications of adaptive filters.

Simon Haykin
Ancaster, Ontario,

Canada
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Background and Preview

1. The FilTering ProBlem

The term estimator or filter is commonly used to refer to a system that is designed to 
extract information about a prescribed quantity of interest from noisy data. With such a 
broad aim, estimation (filtering) theory finds applications in many diverse fields: com-
munications, radar, sonar, navigation, seismology, biomedical engineering, and financial 
engineering, among others. Consider, for example, a digital communication system, the 
basic form of which consists of a transmitter, channel, and receiver connected together as 
shown in Fig. 1. The function of the transmitter is to convert a message signal (consisting 
of a sequence of symbols, 1’s and 0’s) generated by a digital source (e.g., a computer) 
into a waveform suitable for transmission over the channel. Typically, the channel suffers 
from two major kinds of impairments:

	 •	 Intersymbol interference. Ideally, the impulse response of a linear transmission 
medium is defined by

 h1 t2 = Ad1 t - t2, (1)

Message
signal

Estimated
message signal

Received
signal

Digital
source of

information

Channel

Transmitter Receiver

User
of 

information

Transmitted
signal

Communication system

Figure 1 Block diagram of a communication system.
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20   Background and Preview

where t denotes continuous time, h(t) designates the impulse response, A is an ampli-
tude-scaling factor, d(t) is the Dirac delta function (or unit impulse function), and t 
denotes the propagation delay incurred in the course of transmitting the signal over 
the channel. Equation (1) is the time-domain description of an ideal transmission 
medium. Equivalently, we may characterize it in the frequency domain by writing

 H1jv2 = A exp 1- jvt2,  (2)

where j is the square root of –1, v denotes angular frequency, H(jv) is the fre-
quency response of the transmission medium, and exp (·) stands for the exponen-
tial function. In practice, it is impossible for any physical channel to satisfy the 
stringent requirements embodied in the idealized time-domain description given 
by Eq. (1) or the equivalent frequency-domain description set forth in Eq. (2): 
The best that we can do is to approximate Eq. (2) over a band of frequencies 
representing the essential spectral content of the transmitted signal, which makes 
the physical channel dispersive. In a digital communication system, this channel 
impairment gives rise to intersymbol interference—a smearing of the successive 
pulses (representing the transmitted sequence of 1’s and 0’s) into one another with 
the result that they are no longer distinguishable.

	 •	 Noise. Some form of noise is present at the output of every communication chan-
nel. The noise can be internal to the system, as in the case of thermal noise gener-
ated by an amplifier at the front end of the receiver, or external to the system due 
to interfering signals originating from other sources.

The net result of the two impairments is that the signal received at the channel output 
is a noisy and distorted version of the signal that is transmitted. The function of the 
receiver is to operate on the received signal and deliver a reliable estimate of the original 
message signal to a user at the output of the system.

As another example involving the use of filter theory, consider the situation 
depicted in Fig. 2, which shows a continuous-time dynamic system whose state at time t 
is denoted by the multidimensional vector x(t). The equation describing evolution of the 
state x(t) is usually subject to system errors. The filtering problem is complicated by the 
fact that x(t) is hidden and the only way it can be observed is through indirect measure-
ments whose equation is a function of the state x(t) itself. Moreover, the measurement 
equation is subject to unavoidable noise of its own. The dynamic system depicted in 
Fig. 2 may be an aircraft in flight, in which case the position and velocity of the aircraft 
constitute the elements of the state x(t), and the measurement system may be a tracking 
radar. In any event, given the observable vector y(t) produced by the measuring system 

Dynamic
system

Measuring
system

Estimator

State
x(t)

Observation
y(t) Estimate

of the state
x(t)

System
errors

Measurement
errors

Prior
information

ˆ

Figure 2 Block diagram depicting the components involved in state estimation, namely xn1t2. 
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Section 1 The Filtering Problem   21

over the interval [0, T], and given prior information, the requirement is to estimate the 
state x(t) of the dynamic system.

Estimation theory, illustrated by the two examples just described, is statistical in 
nature because of the unavoidable presence of noise or system errors contaminating the 
operation of the system being studied.

Three Basic Kinds of estimation

The three basic kinds of information-processing operations are filtering, smoothing, and 
prediction, each of which may be performed by an estimator. The differences between 
these operations are illustrated in Fig. 3:

	 •	 Filtering is an operation that involves the extraction of information about a quan-
tity of interest at time t by using data measured up to and including t.

	 •	 Smoothing is an a posteriori (i.e., after the fact) form of estimation, in that data 
measured after the time of interest are used in the estimation. Specifically, the 
smoothed estimate at time t′ is obtained by using data measured over the interval 
[0, t′], where t′ < t. There is therefore a delay of t − t′ involved in computing the 
smoothed estimate. The benefit gained by waiting for more data to accumulate is 
that smoothing can yield a more accurate estimate than filtering.

	 •	 Prediction is the forecasting side of estimation. Its aim is to derive information 
about what the quantity of interest will be like at some time t + t in the future (for 
some t > 0) by using data measured up to and including time t.

From the figure, it is apparent that both filtering and prediction are real-time operations, 
whereas smoothing is not. By a real-time operation, we mean an operation in which the 
estimate of interest is computed on the basis of data available now.

Span of available data used
in �ltering at time t

tOrigin
Time

(a)

Span of available data used
in smoothing at time t�

Span of available data used
in prediction at time t + t

tt�Origin
Time

(b)

t t + tOrigin
Time

(c)

Figure 3 Illustrating the three basic forms of estimation: (a) filtering; (b) smoothing;  
(c) prediction.
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2. linear oPTimum FilTers

We may classify filters as linear or nonlinear. A filter is said to be linear if the filtered, 
smoothed, or predicted quantity at the output of the filter is a linear function of the 
observations applied to the filter input. Otherwise, the filter is nonlinear.

In the statistical approach to the solution of the linear filtering problem, we assume 
the availability of certain statistical parameters (i.e., mean and correlation functions) of 
the useful signal and unwanted additive noise, and the requirement is to design a linear 
filter with the noisy data as input so as to minimize the effects of noise at the filter output 
according to some statistical criterion. A useful approach to this filter-optimization prob-
lem is to minimize the mean-square value of the error signal defined as the difference 
between some desired response and the actual filter output. For stationary inputs, the 
resulting solution is commonly known as the Wiener filter, which is said to be optimum 
in the mean-square-error sense. A plot of the mean-square value of the error signal ver-
sus the adjustable parameters of a linear filter is referred to as the error-performance 
surface. The minimum point of this surface represents the Wiener solution.

The Wiener filter is inadequate for dealing with situations in which nonstationarity 
of the signal and/or noise is intrinsic to the problem. In such situations, the optimum fil-
ter has to assume a time-varying form. A highly successful solution to this more difficult 
problem is found in the Kalman filter, which is a powerful system with a wide variety of 
engineering applications.

Linear filter theory, encompassing both Wiener and Kalman filters, is well devel-
oped in the literature for continuous-time as well as discrete-time signals. However, for 
technical reasons influenced by the wide availability of computers and the ever increas-
ing use of digital signal-processing devices, we find in practice that the discrete-time 
representation is often the preferred method. Accordingly, in subsequent chapters, we 
only consider the discrete-time version of Wiener and Kalman filters. In this method of 
representation, the input and output signals, as well as the characteristics of the filters 
themselves, are all defined at discrete instants of time. In any case, a continuous-time 
signal may always be represented by a sequence of samples that are derived by observing 
the signal at uniformly spaced instants of time. No loss of information is incurred during 
this conversion process provided, of course, we satisfy the well-known sampling theorem, 
according to which the sampling rate has to be greater than twice the highest frequency 
component of the continuous-time signal. We may thus represent a continuous-time 
signal u(t) by the sequence u(n), n = 0, ;1, ;2, . . . , where for convenience we have nor-
malized the sampling period to unity, a practice that we follow throughout the book.

3. adaPTive FilTers

The design of a Wiener filter requires a priori information about the statistics of the 
data to be processed. The filter is optimum only when the statistical characteristics of 
the input data match the a priori information on which the design of the filter is based. 
When this information is not known completely, however, it may not be possible to 
design the Wiener filter or else the design may no longer be optimum. A straightforward 
approach that we may use in such situations is the “estimate and plug” procedure. This 
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Section 3 Adaptive Filters   23

is a two-stage process whereby the filter first “estimates” the statistical parameters of 
the relevant signals and then “plugs” the results so obtained into a nonrecursive for-
mula for computing the filter parameters. For real-time operation, this procedure has 
the disadvantage of requiring excessively elaborate and costly hardware. To mitigate 
this limitation, we may use an adaptive filter. By such a system we mean one that is 
self-designing in that the adaptive filter relies for its operation on a recursive algorithm, 
which makes it possible for the filter to perform satisfactorily in an environment where 
complete knowledge of the relevant signal characteristics is not available. The algorithm 
starts from some predetermined set of initial conditions, representing whatever we know 
about the environment. Yet, in a stationary environment, we find that after successive 
adaptation cycles of the algorithm it converges to the optimum Wiener solution in some 
statistical sense. In a nonstationary environment, the algorithm offers a tracking capabil-
ity, in that it can track time variations in the statistics of the input data, provided that 
the variations are sufficiently slow.

As a direct consequence of the application of a recursive algorithm whereby the 
parameters of an adaptive filter are updated from one adaptation cycle to the next, the 
parameters become data dependent. This, therefore, means that an adaptive filter is in 
reality a nonlinear system, in the sense that it does not obey the principle of superposition. 
Notwithstanding this property, adaptive filters are commonly classified as linear or non-
linear. An adaptive filter is said to be linear if its input–output map obeys the principle 
of superposition whenever its parameters are held fixed. Otherwise, the adaptive filter 
is said to be nonlinear.

A wide variety of recursive algorithms have been developed in the literature for 
the operation of linear adaptive filters. In the final analysis, the choice of one algorithm 
over another is determined by one or more of the following factors:

	 •	 Rate of convergence. This is defined as the number of adaptation cycles required 
for the algorithm, in response to stationary inputs, to converge “close enough” 
to the optimum Wiener solution in the mean-square-error sense. A fast rate of 
convergence allows the algorithm to adapt rapidly to a stationary environment of 
unknown statistics.

	 •	 Misadjustment. For an algorithm of interest, this parameter provides a quantitative 
measure of the amount by which the final value of the mean-square error, aver-
aged over an ensemble of adaptive filters, deviates from the Wiener solution.

	 •	 Tracking. When an adaptive filtering algorithm operates in a nonstationary envi-
ronment, the algorithm is required to track statistical variations in the environ-
ment. The tracking performance of the algorithm, however, is influenced by two 
contradictory features: (1) rate of convergence and (2) steady-state fluctuation due 
to algorithm noise.

	 •	 Robustness. For an adaptive filter to be robust, small disturbances (i.e., disturbances 
with small energy) can only result in small estimation errors. The  disturbances may 
arise from a variety of factors, internal or external to the filter.

	 •	 Computational requirements. Here the issues of concern include (a) the number 
of operations (i.e., multiplications, divisions, and additions/subtractions) required 
to make one complete adaptation cycle of the algorithm, (b) the size of memory 
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locations required to store the data and the program, and (c) the investment 
required to program the algorithm on a computer.

	 •	 Structure. This refers to the structure of information flow in the algorithm, deter-
mining the manner in which it is implemented in hardware form. For example, an 
algorithm whose structure exhibits high modularity, parallelism, or concurrency is 
well suited for implementation using very large-scale integration (VLSI).

	 •	 Numerical properties. When an algorithm is implemented numerically, inaccuracies 
are produced due to quantization errors, which in turn are due to analog-to-digital 
conversion of the input data and digital representation of internal calculations. 
Ordinarily, it is the latter source of quantization errors that poses a serious design 
problem. In particular, there are two basic issues of concern: numerical stabil-
ity and numerical accuracy. Numerical stability is an inherent characteristic of an 
adaptive filtering algorithm. Numerical accuracy, on the other hand, is determined 
by the number of bits (i.e., binary digits) used in the numerical representation of 
data samples and filter coefficients. An adaptive filtering algorithm is said to be 
numerically robust when it is insensitive to variations in the wordlength used in its 
digital implementation.

These factors, in their own ways, also enter into the design of nonlinear adaptive 
filters, except for the fact that we now no longer have a well-defined frame of refer-
ence in the form of a Wiener filter. Rather, we speak of a nonlinear filtering algorithm 
that may converge to a local minimum or, hopefully, a global minimum on the error-
performance surface.

4. linear FilTer sTrucTures

The operation of a linear adaptive filtering algorithm involves two basic processes: (1) a 
filtering process designed to produce an output in response to a sequence of input data 
and (2) an adaptive process, the purpose of which is to provide a mechanism for the 
adaptive control of an adjustable set of parameters used in the filtering process. These 
two processes work interactively with each other. Naturally, the choice of a structure for 
the filtering process has a profound effect on the operation of the algorithm as a whole.

The impulse response of a linear filter determines the filter’s memory. On this 
basis, we may classify linear filters into finite-duration impulse response (FIR) and 
 infinite-duration impulse response (IIR) filters, which are respectively characterized by 
finite memory and infinitely long, but fading, memory.

linear Filters with Finite memory

Three types of filter structures distinguish themselves in the context of an adaptive filter 
with finite memory:

1. FIR filter. Also referred to as a tapped-delay line filter or transversal filter, the 
FIR filter consists of three basic elements, as depicted in Fig. 4: (a) a unit-delay ele-
ment, (b) a multiplier, and (c) an adder. The number of delay elements used in the filter 
determines the finite duration of its impulse response. The number of delay elements, 
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Section 4 Linear Filter Structures   25

shown as M in the figure, is commonly referred to as the filter order. In this figure, the 
delay elements are each identified by the unit-delay operator z−1. In particular, when z−1 
operates on the input u(n), the resulting output is u(n − 1). The role of each multiplier 
in the filter is to multiply the tap input (to which it is connected) by a filter coefficient 
referred to as a tap weight. Thus, a multiplier connected to the kth tap input u(n – k) 
produces w*

k u(n – k), where wk is the respective tap weight and k = 0, 1, . . . , M. The 
asterisk denotes complex conjugation, which assumes that the tap inputs and therefore 
the tap weights are all complex valued. The combined role of the adders in the filter is 
to sum the individual multiplier outputs and produce an overall response of the filter. 
For the FIR filter shown, the output is given by

 y(n) = a
M

k = 0

w*
k u (n - k). (3)

Equation (3) is called a finite convolution sum in the sense that it convolves the finite-
duration impulse response of the filter, w*

n, with the filter input u(n) to produce the 
filter output y(n).

2. Lattice predictor. A lattice predictor has a modular structure, in that it consists 
of a number of individual stages, each of which has the appearance of a lattice—hence 
the name “lattice” as a structural descriptor. Figure 5 depicts a lattice predictor consist-
ing of M stages; the number M is referred to as the predictor order. The mth stage of the 
lattice predictor shown is described by the pair of input–output relations (assuming the 
use of complex-valued, wide-sense stationary input data)

 fm 1n2 = fm - 1 1n2 + k*mbm - 1 1n - 12  (4)

and

 bm 1n2 = bm - 1 1n - 12 + km fm - 1 1n2,  (5)

Figure 4 FIR filter.
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Section 4 Linear Filter Structures   27

where m = 1, 2, . . . , M, and M is the final predictor order. The variable fm(n) is the mth 
forward prediction error, and bm(n) is the mth backward prediction error. The coefficient 
km is called the mth reflection coefficient. The forward prediction error fm(n) is defined 
as the difference between the input u(n) and its one-step predicted value; the latter is 
based on the set of m past inputs u(n – 1), . . . , u(n – m). Correspondingly, the backward 
prediction error bm(n) is defined as the difference between the input u(n – m) and its 
“backward” prediction based on the set of m “future” inputs u(n), . . . , u(n – m + 1). 
Considering the conditions at the input of stage 1 in the figure, we have

 f01n2 = b01n2 = u1n2,  (6)

where u(n) is the lattice predictor input at time n. Thus, starting with the initial conditions of 
Eq. (6) and given the set of reflection coefficients k1, k2, . . . , kM, we may determine the final 
pair of outputs fM(n) and bM(n) by moving through the lattice predictor, stage by stage.

For a correlated input sequence u(n), u(n – 1), . . . , u(n – M) drawn from a station-
ary process, the backward prediction errors b0(n), b1(n), . . . , bM(n) form a sequence 
of uncorrelated random variables. Moreover, there is a one-to-one correspondence 
between these two sequences of random variables in the sense that if we are given one 
of them, we may uniquely determine the other, and vice versa. Accordingly, a linear 
combination of the backward prediction errors b0(n), b1(n), . . . , bM(n) may be used 
to provide an estimate of some desired response d(n), as depicted in the lower half of  
Fig. 5. The difference between d(n) and the estimate so produced represents the estima-
tion error e(n). The process described herein is referred to as a joint-process estimation. 
Naturally, we may use the original input sequence u(n), u(n – 1), . . . , u(n – M) to produce 
an estimate of the desired response d(n) directly. The indirect method depicted in the 
figure, however, has the advantage of simplifying the computation of the tap weights h0, 
h1, . . . , hM by exploiting the uncorrelated nature of the corresponding backward predic-
tion errors used in the estimation.

3. Systolic array. A systolic array represents a parallel computing network ideally 
suited for mapping a number of important linear algebra computations, such as matrix 
multiplication, triangularization, and back substitution. Two basic types of processing 
elements may be distinguished in a systolic array: boundary cells and internal cells. Their 
functions are depicted in Figs. 6(a) and 6(b), respectively. In each case, the parameter r 
represents a value stored within the cell. The function of the boundary cell is to produce 
an output equal to the input u divided by the number r stored in the cell. The function 
of the internal cell is twofold: (a) to multiply the input s (coming in from the top) by 
the number r stored in the cell, subtract the product rs from the second input (coming 
in from the left), and thereby produce the difference u – rs as an output from the right-
hand side of the cell and (b) to transmit the first input s downward without alteration.

Consider, for example, the 3-by-3 triangular array shown in Fig. 7. This systolic 
array involves a combination of boundary and internal cells. In this case, the triangular 
array computes an output vector y related to the input vector u by

 y = R- Tu, (7)

where R−T is the inverse of the transposed matrix RT. The elements of RT are the con-
tents of the respective cells of the triangular array. The zeros added to the inputs of 
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Figure 6 Two basic cells of a systolic array: (a) boundary cell; (b) internal cell.
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Figure 7 Triangular systolic array as example.

the array in the figure are intended to provide the delays necessary for pipelining the 
computation given by Eq. (7).

A systolic array architecture, as described herein, offers the desirable features of 
modularity, local interconnections, and highly pipelined and synchronized parallel pro-
cessing; the synchronization is achieved by means of a global clock.
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linear Filters with infinite memory

We note that the structure of Fig. 4, the joint-process estimator of Fig. 5 based on a lattice 
predictor, and the triangular systolic array of Fig. 7 share a common property: All three 
of them are characterized by an impulse response of finite duration. In other words, 
they are examples of FIR filters whose structures contain feedforward paths only. On 
the other hand, the structure shown in Fig. 8 is an example of an IIR filter. The feature 
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b2
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Figure 8 IIR filter, assuming real-valued data.
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that distinguishes an IIR filter from an FIR filter is the inclusion of feedback paths. 
Indeed, it is the presence of feedback that makes the duration of the impulse response 
of an IIR filter infinitely long. Furthermore, the presence of feedback introduces a new 
problem: potential instability. In particular, it is possible for an IIR filter to become 
unstable (i.e., break into oscillation), unless special precaution is taken in the choice of 
feedback coefficients. By contrast, an FIR filter is inherently stable. This explains the 
popular use of FIR filters, in one form or another, as the structural basis for the design 
of linear adaptive filters.

5. aPProaches To The develoPmenT oF linear adaPTive FilTers

There is no unique solution to the linear adaptive filtering problem. Rather, we have 
a “kit of tools” represented by a variety of recursive algorithms, each of which offers 
desirable features of its own. The challenge facing the user of adaptive filtering is, first, 
to understand the capabilities and limitations of various adaptive filtering algorithms 
and, second, to use this understanding in the selection of the appropriate algorithm for 
the application at hand.

Basically, we may identify two distinct approaches for deriving recursive algo-
rithms for the operation of linear adaptive filters.

method of stochastic gradient descent

The stochastic gradient approach uses a tapped-delay line, or FIR filter, as the structural 
basis for implementing the linear adaptive filter. For the case of stationary inputs, the 
cost function, also referred to as the index of performance, is defined as the mean-square 
error (i.e., the mean-square value of the difference between the desired response and 
the FIR filter output). This cost function is precisely a second-order function of the tap 
weights in the FIR filter. The dependence of the mean-square error on the unknown tap 
weights may be viewed to be in the form of a multidimensional paraboloid (i.e., a “punch 
bowl”) with a uniquely defined bottom, or minimum point. As mentioned previously, we 
refer to this paraboloid as the error-performance surface; the tap weights corresponding 
to the minimum point of the surface define the optimum Wiener solution.

To develop a recursive algorithm for updating the tap weights of the adaptive FIR fil-
ter using the stochastic gradient approach, as the name would imply it, we need to start with 
a stochastic cost function. For such a function, for example, we may use the instantaneous 
squared value of the error signal, defined as the difference between the externally supplied 
desired response and the actual response of the FIR filter to the input signal. Then, differ-
entiating this stochastic cost function with respect to the tap-weight vector of the filter, we 
obtain a gradient vector that is naturally stochastic. With the desire to move towards optimal-
ity, adaptation is performed along the “negative” direction of the gradient vector. The adap-
tive filtering algorithm resulting from this approach may be expressed in words as follows:

 £ updated
tap@weight

vector
≥ = £ old

tap@weight
vector

≥ + £ learning@
rate

parameter
≥ * £ tap@

input
vector

≥ * a error
signal

b . 
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The learning-rate parameter determines the rate at which the adaptation is performed. 
The recursive algorithm so described is called the least-mean-square (LMS) algorithm, 
which is simple in computational terms yet effective in performance. However, its con-
vergence behavior is slow and difficult to study mathematically.

method of least squares

The second approach to the development of linear adaptive filtering algorithms is based 
on the method of least squares. According to this method, we minimize a cost function that 
is defined as the sum of weighted error squares, where the error or residual is itself defined 
as the difference between some desired response and the actual filter output. Unlike 
the method of stochastic gradient, this minimization is achieved using algebraic matrix 
manipulations, resulting in an update rule that may be expressed, in words, as follows:

 °
updated

tap@weight
vector

¢ = °
old

tap@weight
vector

¢ + a gain
vector

b * 1 innovation2,  

where innovation is “new” information put into the filtering process at the updating 
time. The adaptive filtering algorithm so described is called the recursive least-squares 
(RLS) algorithm. A distinctive property of this second algorithm is its rapid rate of 
convergence, which is attained at the expense of increased computational complexity.

Two Families of linear adaptive Filtering algorithms

The LMS and RLS algorithms constitute two basic algorithms, around each of which a 
family of algorithms is formulated. Within each family, the adaptive filtering algorithms 
differ from each other in the way in which the filtering structure is configured. However, 
regardless of the filtering structure used around which the adaptation of parameters is 
performed, the algorithms within each family inherit certain properties rooted in the 
LMS and RLS algorithms. Specifically:

	 •	 LMS-based algorithms are model independent, in the sense that there are no sta-
tistical assumptions made in deriving them.

	 •	 On the other hand, RLS-based algorithms are model dependent, in that their deriv-
atives assume the use of a multivariate Gaussian model.

The differentiation we have made here has a profound impact on the rate of conver-
gence, tracking, and robustness of the algorithm.

6. adaPTive BeamForming

The adaptive filtering methods and structures discussed thus far are all of a temporal 
kind, in that the filtering operation is performed in the time domain. Naturally, adaptive 
filtering may also be of a spatial kind, wherein an array of independent sensors is placed 
at different points in space to “listen” to a signal originating from a distant source. In 
effect, the sensors provide a means of sampling the received signal in space. The set of 
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sensor outputs collected at a particular instant of time constitutes a snapshot of the 
source. When the sensors lie uniformly on a straight line, the data snapshot in a spatial 
filter plays a role analogous to that of a set of consecutive tap inputs that exist in an FIR 
filter at a particular instant of time.

Important applications that involve the use of array signal processing include the 
following:

	 •	 Radar, in which the sensors consist of antenna elements (e.g., dipoles, horns, or slot-
ted waveguides) that respond to incident electromagnetic waves. The requirement 
here is to detect the source responsible for radiating the electromagnetic waves, 
estimate the angle of arrival of the waves, and extract information about the source.

	 •	 Sonar, wherein the sensors consist of hydrophones designed to respond to incident 
acoustic waves and the signal-processing requirements are of a nature similar to 
those in radar.

	 •	 Speech enhancement, in which the sensors consist of microphones and the require-
ment is, for example, to listen to the voice of a desired speaker in the presence of 
background noise.

In these applications, we speak of beamforming, the purpose of which is to distinguish 
between the spatial properties of signal and noise. The system used to do the beamform-
ing is called a beamformer. The term “beamformer” is derived from the fact that early 
antennas were designed to form pencil beams so as to receive a source signal radiating 
from a specific direction and to attenuate signals originating from other directions that 
were of no interest. Note that beamforming applies to the radiation (i.e., transmission) 
as well as reception of energy.

Figure 9 shows the block diagram of an adaptive beamformer that uses a linear 
array of identical sensors. The sensor outputs, assumed to be in baseband form, are 
individually weighted and then summed to produce the overall beamformer output.
The term “baseband” refers to the original band of frequencies within which the source 
operates. The beamformer has to satisfy two requirements:

	 •	 Steering capability, whereby the target (source) signal is always protected.
	 •	 Cancellation of interference, so that the output signal-to-noise ratio is maximized.

One method of satisfying these requirements is to minimize the variance (i.e., average 
power) of the beamformer output, subject to the constraint that, during the process of 
adaptation, the M-by-1 weight vector w(n) satisfies the condition

 wH1n2 s1u2 = 1 for all n and u = ut, (8)

where s(u) is an M-by-1 steering vector. The superscript H denotes Hermitian transpo-
sition (i.e., transposition combined with complex conjugation). It is assumed that the 
baseband data are complex valued—hence the need for complex conjugation. The value 
of the electrical angle u = ut is determined by the direction of the target. The angle u is 
itself measured with, say, sensor 0 treated as the point of reference.

The dependence of the steering vector on u is defined with the use of the relationship

 s1u2 = 31,e - ju, c, e-j1M - 12u4T. (9)
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Let f denote the actual angle of incidence of a plane wave, measured with respect to the 
normal to the linear array. Then, from Fig. 10, we readily see that

 u =
2pd
l

 sinf,   -p >  2 … f … p >  2, (10)

where d is the spacing between adjacent sensors of the array and l is the wavelength of 
the incident wave. With f restricted to lie inside the range [-π/2, π/2] and the permis-
sible values of u lying inside range [-π, π], we find, from Eq. (10), that d must be less 
than l/2, so that there is one-to-one correspondence between the values of u and f 
without ambiguity. The requirement d 6 l/2 may thus be viewed as the spatial analog of 
the sampling theorem. If this requirement is not satisfied, then the radiation (antenna) 
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Figure 9 Adaptive beamformer for an array of five sensors. The sensor outputs (in 
baseband form) are complex valued; hence, the weights are complex valued.
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pattern of the beamformer will exhibit grating lobes. The radiation pattern is a plot of 
the output power of the beamformer versus the direction along which it is measured.

The imposition of the signal-protection constraint in Eq. (8) ensures that, for 
the prescribed look direction u = ut, the response of the array is maintained constant 
(equal to unity), no matter what values are assigned to the elements of the weight vec-
tor w. An algorithm that minimizes the variance of the beamformer output, subject to 

Incident
plane
wave

Normal to
the array

f

f

Sensor 0

Sensor 1

d

Spatial delay
d  sin f

Line of
the array

Figure 10 Spatial delay incurred when a plane wave impinges on a linear array.
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this constraint, is referred to as the minimum-variance distortionless response (MVDR) 
beamforming algorithm. Note that the imposition of the signal-protection constraint 
reduces the available number of degrees of freedom to M - 2, where M is the number 
of sensors in the array. Consequently, the number of independent nulls produced 
by the MVDR algorithm (i.e., the number of independent interferences that can be 
cancelled) is M - 2.

7. Four classes oF aPPlicaTions

The ability of an adaptive filter to operate satisfactorily in an unknown environment and 
track time variations of input statistics makes the adaptive filter a powerful device for 
signal-processing and control applications. Indeed, adaptive filters have been success-
fully applied in such diverse fields as communications, control, radar, sonar, seismology, 
and biomedical engineering. Although these applications are quite different in nature, 
nevertheless, they have one basic feature in common: An input vector and a desired 
response are used to compute an estimation error, which is in turn used to control the 
values of a set of adjustable filter coefficients. The adjustable coefficients may take 
the form of tap weights, reflection coefficients, or rotation parameters, depending on 
the filter structure employed. However, the essential difference between the various 
applications of adaptive filtering arises in the manner in which the desired response 
is extracted. In this context, we may distinguish four basic classes of adaptive filtering 
applications, as depicted in Fig. 11. For convenience of presentation, the following nota-
tion is used in the figure:

 u = input applied to the adaptive filter;
 y = output of the adaptive filter;
 d = desired response;
 e = d – y = estimation error.

The functions of the four basic classes of adaptive filtering applications depicted are as 
follows:

 I. Identification [Fig. 11(a)]. The notion of a mathematical model is fundamental to 
science and engineering. In the class of applications dealing with identification, 
an adaptive filter is used to provide a linear model that represents the best fit (in 
some sense) to an unknown plant. The plant and the adaptive filter are driven by 
the same input. The plant output supplies the desired response for the adaptive 
filter. If the plant is dynamic in nature, the model will be time varying.

 II. Inverse modeling [Fig. 11(b)]. In this second class of applications, the function 
of the adaptive filter is to provide an inverse model that represents the best fit 
(in some sense) to an unknown noisy plant. Ideally, in the case of a linear system, 
the inverse model has a transfer function equal to the reciprocal (inverse) of the 
plant’s transfer function, such that the combination of the two constitutes an ideal 
transmission medium. A delayed version of the plant (system) input constitutes 
the desired response for the adaptive filter. In some applications, the plant input 
is used without delay as the desired response.
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 III. Prediction [Fig. 11(c)]. Here, the function of the adaptive filter is to provide 
the best prediction (in some sense) of the present value of a random signal. 
The present value of the signal thus serves the purpose of a desired response 
for the adaptive filter. Past values of the signal supply the input applied to the 
filter. Depending on the application of interest, the adaptive filter output or the 
estimation (prediction) error may serve as the system output. In the first case, 
the system operates as a predictor; in the latter case, it operates as a prediction-
error filter.

 IV. Interference cancellation [Fig. 11(d)]. In this final class of applications, the 
 adaptive filter is used to cancel unknown interference contained (alongside an 
information-bearing signal component) in a primary signal, with the cancellation 
being optimized in some sense. The primary signal serves as the desired response 
for the adaptive filter. A reference (auxiliary) signal is employed as the input to 
the filter. The reference signal is derived from a sensor or a set of sensors located 
such that it or they supply the primary signal in such a way that the information-
bearing signal component is weak or essentially undetectable.

Table 1 lists specific applications that are illustrative of the four basic classes of adap-
tive filtering applications. The applications listed are drawn from the fields of control 
systems, seismology, electrocardiography, communications, and radar. Their purposes 
are briefly described in the last column of the table.

TABLe 1 Applications of Adaptive Filters

Class of adaptive filtering Application Purpose

I. Identification System identification Given an unknown dynamic system, the purpose of system 
identification is to design an adaptive filter that provides 
an approximation to the system.

  Layered earth modeling In exploration seismology, a layered model of the earth 
is developed to unravel the complexities of the earth’s 
surface.

II. Inverse modeling Equalization Given a channel of unknown impulse response, the 
purpose of an adaptive equalizer is to operate on the 
channel output such that the cascade connection of the 
channel and the equalizer provides an approximation to an 
ideal transmission medium.

III. Prediction Predictive coding The adaptive prediction is used to develop a model of 
a signal of interest (e.g., a speech signal); rather than 
encode the signal directly, in predictive coding the 
prediction error is encoded for transmission or storage. 
Typically, the prediction error has a smaller variance 
than the original signal—hence the basis for improved 
encoding.

  Spectrum analysis In this application, predictive modeling is used to estimate 
the power spectrum of a signal of interest.

(continued)
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8. hisTorical noTes

To understand a science it is necessary to know its history.
—Auguste Comte (1798–1857)

We complete this introductory chapter by presenting a brief historical review of devel-
opments in three areas that are closely related insofar as the subject matter of this 
book is concerned: linear estimation theory, linear adaptive filters, and adaptive signal-
processing applications.

linear estimation Theory

The earliest stimulus for the development of linear estimation (filter) theory1 was appar-
ently provided by astronomical studies in which the motions of planets and comets were 
studied with the use of telescopic measurement data. The beginnings of a “theory” of 
estimation in which attempts are made to minimize various functions of errors can 
be attributed to Galileo Galilei in 1632. However, the origination of linear estimation 
theory is credited to Gauss, who, at the age of 18 in 1795, invented the method of least 
squares to study the motion of heavenly bodies (Gauss, 1809). Nevertheless, in the early 
19th century, there was considerable controversy regarding the actual inventor of the 
method of least squares. The controversy arose because Gauss did not publish his 1795 
discovery that year; rather, it was first published by Legendre in 1805, who indepen-
dently invented the method (Legendre, 1810).

The first studies of minimum mean-square estimation in stochastic processes 
were made by Kolmogorov, Krein, and Wiener during the late 1930s and early 1940s 

TABLe 1 Applications of Adaptive Filters (Continued)

Class of adaptive filtering Application Purpose

IV.  Interference  
cancellation

Noise cancellation The purpose of an adaptive noise canceller is to subtract 
noise from a received signal in an adaptively controlled 
manner so as to improve the signal-to-noise ratio. Echo 
cancellation, experienced on telephone circuits, is a special 
form of noise cancellation. Noise cancellation is also used 
in electrocardiography.

  Beamforming A beamformer is a spatial filter that consists of an array of 
antenna elements with adjustable weights (coefficients). 
The twin purposes of an adaptive beamformer are to 
adaptively control the weights so as to cancel interfering 
signals impinging on the array from unknown directions 
and, at the same time, provide protection to a target  
signal of interest.

1The notes presented on linear estimation are influenced by the following review papers: Sorenson 
(1970), Kailath (1974), and Makhoul (1975).
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(Kolmogorov, 1939; Krein, 1945; Wiener, 1949). The works of Kolmogorov and Krein 
were independent of Wiener’s, and while there was some overlap in the results, their aims 
were rather different. There were many conceptual differences (as one would expect 
after 140 years) between the Gauss problem and the problems treated by Kolmogorov, 
Krein, and Wiener.

Kolmogorov, inspired by some early work of Wold on discrete-time stationary 
processes (Wold, 1938), developed a comprehensive treatment of the linear predic-
tion problem for discrete-time stochastic processes. Krein noted the relationship of 
Kolmogorov’s results to some early work by Szegö on orthogonal polynomials (Szegö, 
1939; Grenander & Szegö, 1958) and extended the results to continuous time by the 
clever use of a bilinear transformation.

Independently, Wiener formulated the continuous-time linear prediction problem 
and derived an explicit formula for the optimum predictor. Wiener also considered the 
“filtering” problem of estimating a process corrupted by additive “noise.” The explicit 
formula for the optimum estimate required the solution of an integral equation known 
as the Wiener–Hopf equation (Wiener & Hopf, 1931).

In 1947, Levinson formulated the Wiener filtering problem in discrete time. In 
the case of discrete-time signals, the Wiener–Hopf equation takes on a matrix form 
described by2

 Rwo = p, (11)

where wo is the tap-weight vector of the optimum Wiener filter structured in the form of 
an FIR filter, R is the correlation matrix of the tap inputs, and p is the cross-correlation 
vector between the tap inputs and the desired response. For stationary inputs, the cor-
relation matrix R assumes a special structure known as Toeplitz, so named after the 
mathematician O. Toeplitz. By exploiting the properties of a Toeplitz matrix, Levinson 
derived an elegant recursive procedure for solving the matrix form of the Wiener–Hopf 
equation (Levinson, 1947). In 1960, Durbin rediscovered Levinson’s recursive procedure 
as a scheme for the recursive fitting of autoregressive models to scalar time-series data. 
The problem considered by Durbin is a special case of Eq. (11) in which the column 
vector p comprises the same elements found in the correlation matrix R. In 1963, Whittle 
showed that there is a close relationship between the Levinson–Durbin recursion and 
that for Szegö’s orthogonal polynomials and also derived a multivariate generalization 
of the Levinson–Durbin recursion.

Wiener and Kolmogorov assumed an infinite amount of data and assumed the 
stochastic processes to be stationary. During the 1950s, some generalizations of Wiener–
Kolmogorov filter theory were made by various authors to cover the estimation of sta-
tionary processes given only for a finite observation interval and to cover the estimation 
of nonstationary processes. However, some researchers were dissatisfied with the most 
significant of the results of this period because they were rather complicated, difficult 
to update with increases in the observation interval, and difficult to modify for the 

2The Wiener–Hopf equation, originally formulated as an integral equation, specifies the optimum solu-
tion of a continuous-time linear filter subject to the contraint of causality. The equation is difficult to solve and 
has resulted in the development of a considerable amount of theory, including spectral factorization. (For a 
tutorial treatment of the subject, see Gardner, 1990.)
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vector case. The last two difficulties became particularly evident in the late 1950s in the 
problem of determining satellite orbits. In this application, there were generally vector 
observations of some combinations of position and velocity, and large amounts of data 
were also sequentially accumulated with each pass of the satellite over a tracking station. 
Swerling was one of the first to tackle the problem by presenting some useful recursive 
algorithms (Swerling, 1958). For different reasons, Kalman independently developed 
a somewhat more restricted algorithm than Swerling’s, but it was an algorithm that 
seemed particularly matched to the dynamic estimation problems that were brought 
by the advent of the space age (Kalman, 1960). After Kalman had published his paper 
and it had attained considerable fame, Swerling wrote a letter claiming priority for the 
Kalman filter equations (Swerling, 1963). However, Swerling’s plea fell on deaf ears. It is 
ironic that orbit determination problems provided the stimulus for both Gauss’ method 
of least squares and the Kalman filter and, in each case, there were squabbles concern-
ing their inventors. Kalman’s original formulation of the linear filtering problem was 
derived for discrete-time processes. The continuous-time filter was derived by Kalman 
in his subsequent collaboration with Bucy; this latter solution is sometimes referred to 
as the Kalman–Bucy filter (Kalman & Bucy, 1961).

In a series of stimulating papers, Kailath reformulated the solution to the linear 
filtering problem by using the innovations approach (Kailath, 1968, 1970; Kailath & 
Frost, 1968; Kailath & Geesey, 1973). In this approach, a stochastic process u(n) is rep-
resented as the output of a causal and causally invertible filter driven by a white-noise 
process n(n), which is called the innovations process, with the term “innovation” denot-
ing newness. The reason for this terminology is that each sample of the process n(n) 
provides entirely new information, in the sense that it is statistically independent of all 
past samples of the original process u(n), assuming Gaussianity; otherwise, each sample 
is uncorrelated with all past samples of u(n). The idea behind the innovations approach 
was actually introduced by Kolmogorov (1939).

linear adaptive Filters

Stochastic Gradient Algorithms. The earliest work on adaptive filters may be 
traced back to the late 1950s, during which time a number of researchers were work-
ing independently on different applications of such filters. From this early work, the 
least-mean-square (LMS) algorithm emerged as a simple, yet effective, algorithm for 
the operation of adaptive FIR filters. The LMS algorithm was devised by Widrow and 
Hoff in 1959 in their study of a pattern-recognition scheme known as the adaptive 
linear (threshold logic) element, commonly referred to in the literature as the Adaline 
(Widrow & Hoff, 1960; Widrow, 1970). The LMS algorithm is a stochastic gradient 
algorithm in that it iterates each tap weight of an FIR filter in the direction of the 
gradient of the squared magnitude of an error signal with respect to the tap weight. 
Accordingly, the LMS algorithm is closely related to the concept of stochastic approxi-
mation developed by Robbins and Monro (1951) in statistics for solving certain sequen-
tial parameter estimation problems. The primary difference between them is that the 
LMS algorithm uses a fixed step-size parameter to control the correction applied to 
each tap weight from one adaptation cycle to the next, whereas in stochastic approxi-
mation methods the step-size parameter is made inversely proportional to time n or to 
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a power of n. Another stochastic gradient algorithm, closely related to the LMS algo-
rithm, is the gradient adaptive lattice (GAL) algorithm (Griffiths, 1977, 1978); the dif-
ference between them is structural in that the GAL algorithm is lattice based, whereas 
the LMS algorithm uses an FIR filter.

Recursive Least-Squares Algorithms. Turning next to the recursive least-squares 
(RLS) family of adaptive filtering algorithms, we find that the original paper on the 
traditional RLS algorithm appears to be that of Plackett (1950), although it must be said  
that many other investigators have derived and rederived various versions of the RLS 
algorithm. In 1974, Godard used Kalman filter theory to derive one variant of the algo-
rithm that is sometimes referred to in the literature as the Godard algorithm. Although 
prior to that date several investigators had applied Kalman filter theory to solve the 
adaptive filtering problem, Godard’s approach was widely accepted as the most suc-
cessful application of Kalman filter theory for a span of two decades. Then, Sayed and 
Kailath (1994) published an expository paper in which the exact relationship between 
the RLS algorithm and Kalman filter theory was delineated for the first time, thereby 
laying the groundwork for how to exploit the vast literature on Kalman filters for solving 
linear adaptive filtering problems.

In 1981, Gentleman and Kung introduced a numerically robust method based on 
the QR-decomposition of matrix algebra for solving the RLS problem. The resulting 
adaptive filter structure, sometimes referred to as the Gentleman–Kung (systolic) array, 
was subsequently refined and extended in various ways by many other investigators.

In the 1970s and subsequently, a great deal of research effort was expended on the 
development of numerically stable fast RLS algorithms, with the aim of reducing the 
computational complexity of RLS algorithms to a level comparable to that of the LMS 
algorithm. In one form or another, the development of the fast RLS algorithms can be 
traced back to results derived by Morf in 1974 for solving the deterministic counterpart 
of the stochastic filtering problem solved efficiently by the Levinson–Durbin algorithm 
for stationary inputs.

robustness in the H∞-sense

Robustness, particularly in control systems, had occupied the attention of control theo-
rists for many years in the 20th century; see Zames (1996) for a historical account of 
the literature on intput–output feedback stability and robustness for the period from 
1959 to 1985.

A breakthrough happened in the late 1970s, when it was recognized that minimiza-
tion of the sensitivity problem could admit explicit and even closed-form solutions. That 
idea opened the door for the formulation of a practical theory of optimizing robustness, 
with Zames (1979) presenting a paper at the Allerton Conference,which was followed up 
by a journal paper in the IEEE Tranasctions on Automatic Control (1981) and another in 
the same journal coauthored by Francis and Zames (1984). And, with these papers, what 
we now know as the H∞-robustness theory, separated from stability theory, was born.

However, it took the signal-processing community well over a decade to come to 
grips with this new theory of robustness. That awareness happened with publication of 
a journal paper coauthored by Hassibi, Sayed, and Kailath in the IEEE Transactions on 
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Signal Processing (1996); in that paper, robustness of the LMS algorithm was described 
for the first time, confirming theoretically what had been known in practical applica-
tions of the LMS algorithm for a long time. Subsequently, a journal paper on bounds 
on least-squares estimation in the H∞-sense, authored by Hassibi and Kailath (2001), 
was published.

adaptive signal-Processing applications

Adaptive Equalization. Until the early 1960s, the equalization of telephone chan-
nels to combat the degrading effects of intersymbol interference on data transmission 
was performed by using either fixed equalizers (resulting in a performance loss) or 
equalizers whose parameters were adjusted manually (a rather cumbersome procedure). 
In 1965, Lucky made a major breakthrough in the equalization problem by proposing a 
zero-forcing algorithm for automatically adjusting the tap weights of an FIR equalizer 
(Lucky, 1965). A distinguishing feature of the work by Lucky was the use of a minimax 
type of performance criterion. In particular, he used a performance index called peak 
distortion, which is directly related to the maximum value of intersymbol interference 
that can occur. The tap weights in the equalizer are adjusted to minimize the peak dis-
tortion. This has the effect of forcing the intersymbol interference due to those adjacent 
pulses which are contained in the FIR equalizer to become zero—hence the name of the 
algorithm. A sufficient, but not necessary, condition for optimality of the zero-forcing 
algorithm is that the initial distortion (the distortion that exists at the equalizer input) 
be less than unity. In a subsequent paper published in 1966, Lucky extended the use of 
the zero-forcing algorithm to the tracking mode of operation. In 1965, DiToro indepen-
dently used adaptive equalization to combat the effect of intersymbol interference on 
data transmitted over high-frequency links.

The pioneering work by Lucky inspired many other significant contributions to 
different aspects of the adaptive equalization problem in one way or another. Using 
a mean-square-error criterion, Gersho (1969) and Proakis and Miller (1969) inde-
pendently reformulated the adaptive equalization problem. In 1972, using the LMS 
algorithm, Ungerboeck presented a detailed mathematical analysis of the convergence 
properties of an adaptive FIR equalizer. In 1974, as mentioned previously, Godard used 
Kalman filter theory to derive a powerful algorithm for adjusting the tap weights of 
an FIR equalizer. In 1978, Falconer and Ljung presented a modification of this algo-
rithm that simplified its computational complexity to a level comparable to that of the 
simple LMS algorithm. Satorius and Alexander (1979) and Satorius and Pack (1981) 
demonstrated the usefulness of lattice-based algorithms for the adaptive equalization 
of dispersive channels.

The preceding brief historical review pertains to the use of adaptive equalizers for 
linear synchronous receivers, where, by “synchronous,” we mean that the equalizer in the 
receiver has its taps spaced at the reciprocal of the symbol rate. Even though our inter-
est in adaptive equalizers is largely restricted to this class of receivers, such a historical 
review would be incomplete without some mention of fractionally spaced equalizers 
and decision-feedback equalizers.

In a fractionally spaced equalizer (FSE), the equalizer taps are spaced more closely 
than the reciprocal of the symbol rate. An FSE has the capability of compensating for 
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delay distortion much more effectively than a conventional synchronous equalizer does. 
Another advantage of the FSE is the fact that data transmission may begin with an arbi-
trary sampling phase. However, mathematical analysis of the FSE is much more com-
plicated than that of a conventional synchronous equalizer. It appears that early work 
on the FSE was initiated by Brady (1970). Other contributions to the subject include 
subsequent work by Ungerboeck (1976) and Gitlin and Weinstein (1981). In the early 
1990s, more light was cast on the benefits of fractional equalization by showing how it 
could be exploited for “blind” equalization of the channel, using only second-order sta-
tistics. Previously, the conventional wisdom had been that only minimum-phase channels 
could be identified or equalized in this way, since second-order statistics are indifferent 
to the phase information in the channel output. However, this indifference holds only 
for stationary second-order statistics; the oversampling used in the FSE means that the 
second-order statistics are cyclostationary, which adds a new dimension, namely, the 
period, to the partial description of the channel output (Franks, 1969; Gardner & Franks, 
1975; Gardner, 1994a, b). Tong and his collaborators (1993, 1994a, b) showed how, under 
weak operating conditions, cyclostationarity could be effectively exploited for blind 
equalization. Their papers have led to an explosion of activity in the field, with numer-
ous extensions, refinements, and variations subsequenty appearing. (See, for example, 
the tutorial paper by Tong and Perreau, 1998.)

A decision-feedback equalizer uses a feedforward section as well as a feedback 
section. The feedforward section consists of an FIR filter whose taps are spaced at the 
reciprocal of the symbol rate. The data sequence to be equalized is applied to the input 
of this section. The feedback section consists of another FIR filter whose taps are also 
spaced at the reciprocal of the symbol rate. The input applied to the feedback section is 
made up of decisions on previously detected symbols. The function of the feedback sec-
tion is to subtract out that portion of intersymbol interference produced by  previously 
detected symbols from the estimates of future symbols. This cancellation is an old idea 
known as the bootstrap technique. A decision-feedback equalizer yields good perfor-
mance in the presence of severe intersymbol interference, which is experienced in fad-
ing radio channels, for example. The first report on decision-feedback equalization was 
published by Austin (1967), and the optimization of the decision-feedback receiver for 
minimum mean-square-error analysis was first accomplished by Monsen (1971).

Coding of Speech. In 1966, Saito and Itakura used a maximum-likelihood 
approach for the application of prediction to speech. A standard assumption in the 
application of the maximum-likelihood principle is that the input process is Gaussian. 
Under this condition, the exact application of the principle yields a set of nonlinear 
equations for the parameters of the predictor. To overcome this difficulty, Itakura and 
Saito utilized approximations based on the assumption that the number of available 
data points greatly exceeds the prediction order. The use of this assumption makes 
the result obtained from the maximum-likelihood principle assume an approximate 
form that is the same as the result of the autocorrelation method of linear prediction. 
The application of the maximum-likelihood principle is justified on the assumption 
that speech is a stationary Gaussian process, which seems reasonable in the case of 
unvoiced sounds.
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In 1970, Atal presented the first use of the term “linear prediction” in speech 
 analysis. Details of this new approach, called linear predictive coding (LPC), to 
speech analysis and synthesis were published by Atal and Hanauer in 1971. In LPC, the 
speech waveform is represented directly in terms of time-varying parameters related 
to the transfer function of the vocal tract and the characteristics of the excitation. The 
predictor coefficients are determined by minimizing the mean-square error, with the 
error defined as the difference between the actual and predicted values of the speech 
samples. In the work by Atal and Hanauer, the speech wave was sampled at 10 kHz 
and then analyzed by predicting the present speech sample as a linear combination of 
the 12 previous samples. Thus, 15 parameters [the 12 parameters of the predictor, the 
pitch period, a binary parameter indicating whether the speech is voiced or unvoiced, 
and the root-mean-square (rms) value of the speech samples] were used to describe the 
speech analyzer. For the speech synthesizer, an all-pole filter was used, with a sequence 
of quasi-periodic pulses or a white-noise source providing the excitation.

Another significant contribution to the linear prediction of speech was made in 
1972 by Itakura and Saito, who used partial correlation techniques to develop a new 
structure, the lattice, for formulating the linear prediction problem.3 The parameters that 
characterize the lattice predictor are called reflection coefficients. Although by 1972 the 
essence of the lattice structure had been considered by several other investigators, the 
invention of the lattice predictor is credited to Saito and Itakura. In 1973, Wakita showed 
that the filtering actions of the lattice predictor model and an acoustic tube model of 
speech are identical, with the reflection coefficients in the acoustic tube model as com-
mon factors. This discovery made possible the extraction of the reflection coefficients 
by the use of a lattice predictor.

A limitation of the linear predictive modeling of speech signals is the failure to 
recover the correct envelope from discrete spectral samples; this limitation is traceable 
to the choice of the minimum mean-square error as the criterion for linear predictive 
modeling. To mitigate the problem, Itakura and Saito (1970) developed a maximum-like-
lihood procedure for the spectral envelope estimation of voiced sounds; in so doing, they 
introduced a new criterion known as the Itakura–Saito distance measure. This develop-
ment was followed by further contributions due to McAulay (1984) and El-Jaroudi and 
Makhoul (1991).

Early designs of a lattice predictor were based on a block-processing approach 
(Burg, 1967). In 1981, Makhoul and Cossell used an adaptive approach to design the 
lattice predictor for applications in speech analysis and synthesis. They showed that the 
convergence of the adaptive lattice predictor is fast enough for its performance to equal 
that of the optimal (but more expensive) adaptive autocorrelation method.

The historical review on speech coding presented up to now relates to LPC vocod-
ers. We next present a historical review of the adaptive predictive coding of speech, 
starting with ordinary pulse-code modulation (PCM).

PCM was invented in 1937 by Reeves (1975). Then came the invention of dif-
ferential pulse-code modulation (DPCM) by Cutler (1952). The early use of DPCM 

3According to Markel and Gray (1976) the work of Itakura and Saito in Japan on the partial correlation 
(PARCOR) formulation of linear prediction had been presented in 1969.
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for the predictive coding of speech signals was limited to linear predictors with fixed 
parameters (McDonald, 1966). However, because of the nonstationary nature of 
speech signals, a fixed predictor cannot predict the signal values efficiently at all times. 
In order to respond to the nonstationary characteristics of speech signals, the predic-
tor has to be adaptive. In 1970, Atal and Schroeder described a sophisticated scheme 
for implementing the adaptive predictive coding of speech. The scheme recognizes 
that there are two main causes of redundancy in speech (Schroeder, 1966): (1) quasi-
periodicity during voiced segments and (2) nonflatness of the short-time spectral 
envelope. Thus, the predictor is designed to remove signal redundancy in two stages: 
First, it removes the quasi-periodic nature of the signal, and then it removes formant 
information from the spectral envelope. The scheme achieves dramatic reductions in 
bit rate at the expense of a significant increase in complexity of the circuit. Atal and 
Schroeder (1970) reported that the scheme can transmit speech at 10 kb/s, which is 
several times slower than the bit rate required for logarithmic-PCM encoding with 
comparable speech quality.

Spectrum Analysis. At the turn of the 20th century, Schuster introduced the 
periodogram for analyzing the power spectrum of a time series (Schuster, 1898). The 
periodogram is defined as the squared amplitude of the discrete Fourier transform of 
the series. The periodogram was originally used by Schuster to detect and estimate the 
amplitude of a sine wave of known frequency that is buried in noise. Until the work of 
Yule in 1927, the periodogram was the only numerical method available for spectrum 
analysis. However, the periodogram suffers from the limitation that when it is applied 
to empirical time series observed in nature, the results obtained are highly erratic. This 
limitation led Yule to introduce a new approach based on the concept of a finite para-
meter model for a stationary stochastic process in his investigation of the periodicities 
in time series with special reference to Wolfer’s sunspot number (Yule, 1927). In effect, 
Yule created a stochastic feedback model in which the present sample value of the time 
series is assumed to consist of a linear combination of past sample values plus an error 
term. This model is called an autoregressive model, in that a sample of the time series 
regresses on its own past values, and the method of spectrum analysis based on such a 
model is accordingly called autoregressive spectrum analysis. The name “autoregressive” 
was coined by Wold in his doctoral thesis (Wold, 1938).

Interest in the autoregressive method was reinitiated by Burg (1967, 1975), who 
introduced the term maximum-entropy method to describe an algorithmic approach for 
estimating the power spectrum directly from the available time series. The idea behind 
the maximum-entropy method is to extrapolate the autocorrelation function of the 
series in such a way that the entropy of the corresponding probability density function 
is maximized at each step of the extrapolation. In 1971, Van den Bos showed that the 
maximum-entropy method is equivalent to least-squares fitting of an autoregressive 
model to the known autocorrelation sequence.

Another important contribution to the literature on spectrum analysis is that by 
Thomson (1982). His method of multiple windows, based on the prolate spheroidal wave 
functions, is a nonparametric method for spectrum estimation that overcomes many of 
the limitations of the aforementioned techniques.
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Adaptive Noise Cancellation. The initial work on adaptive echo cancellers 
started around 1965. It appears that Kelly of Bell Telephone Laboratories was the first 
to propose the use of an adaptive filter for echo cancellation, with the speech signal itself 
utilized in performing the adaptation; Kelly’s contribution is recognized in a paper by 
Sondhi (1967). This invention and its refinement are described in patents by Kelly and 
Logan (1970) and Sondhi (1970).

The adaptive line enhancer was originated by Widrow and his coworkers at 
Stanford University. An early version of the device was built in 1965 to cancel 60-Hz 
interference at the output of an electrocardiographic amplifier and recorder. This work 
is described in a paper by Widrow et al. (1975b). The adaptive line enhancer and its 
application as an adaptive detector were patented by McCool et al. (1980).

The adaptive echo canceller and the adaptive linear enhancer, although intended 
for different applications, may be viewed as examples of the adaptive noise canceller 
discussed by Widrow et al. (1975b). This scheme operates on the outputs of two sensors: 
a primary sensor that supplies a desired signal of interest buried in noise and a reference 
sensor that supplies noise alone. It is assumed that (1) the signal and noise at the output 
of the primary sensor are uncorrelated and (2) the noise at the output of the reference 
sensor is correlated with the noise component of the primary sensor output.

The adaptive noise canceller consists of an adaptive filter that operates on the refer-
ence sensor output to produce an estimate of the noise, which is then subtracted from the 
primary sensor output. The overall output of the canceller is used to control the adjust-
ments applied to the tap weights in the adaptive FIR filter. The adaptive canceller tends 
to minimize the mean-square value of the overall output, thereby causing the output to be 
the best estimate of the desired signal in the minimum mean-square-error sense.

Adaptive Beamforming. The development of adaptive beamforming technology 
may be traced back to the invention of the intermediate frequency (IF) sidelobe cancel-
ler by Howells in the late 1950s. In a paper published in a 1976 special issue of the IEEE 
Transactions on Antennas and Propagation, Howells describes his personal observations 
on early work on adaptive antennas at General Electric and Syracuse University Research 
Corporation. According to this historic report, by mid-1957 Howells had developed  
a side lobe canceller capable of automatically nulling out the effect of a single jammer. 
The sidelobe canceller uses a primary (high-gain) antenna and a reference omnidirectional 
(low-gain) antenna to form a two-element array with one degree of freedom that makes 
it possible to steer a deep null anywhere in the sidelobe region of the combined antenna 
pattern. In particular, a null is placed in the direction of the jammer, with only a minor per-
turbation of the main lobe. Subsequently, Howells (1965) patented the sidelobe canceller.

The second major contribution to adaptive array antennas was made by 
Applebaum in 1966. In a classic report, he derived the control law governing the opera-
tion of an adaptive array antenna, with a control loop for each element of the array 
(Applebaum, 1966). The algorithm derived by Applebaum was based on maximizing 
the signal-to-noise ratio (SNR) at the array antenna output for any type of noise envi-
ronment. Applebaum’s theory included the sidelobe canceller as a special case. His 
1966 classic report was reprinted in the 1976 special issue of the IEEE Transactions on 
Antennas and Propagation.
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Another algorithm for the weight adjustment in adaptive array antennas was 
advanced independently in 1967 by Widrow and coworkers at Stanford University. 
They based their theory on the simple, yet effective, LMS algorithm. The 1967 paper by 
Widrow et al. not only was the first publication in the open literature on adaptive array 
antenna systems, but also is considered to be another classic of that era.

It is noteworthy that the maximum-SNR algorithm (used by Applebaum) and the 
LMS algorithm (used by Widrow and coworkers) for adaptive array antennas are rather 
similar. Both algorithms derive the control law for adaptive adjustment of the weights in 
the array antenna by sensing the correlation between element signals. Indeed, they both 
converge toward the optimum Wiener solution for stationary inputs (Gabriel, 1976).

A different method for solving the adaptive beamforming problem was proposed 
by Capon (1969), who realized that the poor performance of the delay-and-sum beam-
former is due to the fact that its response along a direction of interest depends not 
only on the power of the incoming target signal, but also on undesirable contributions 
received from other sources of interference. To overcome this limitation, Capon pro-
posed a new beamformer in which the weight vector w(n) is chosen so as to minimize 
the variance (i.e., average power) of the output, subject to the constraint wH(n)s(u) = 1 
for all n, where s(u) is a prescribed steering vector. This constrained minimization yields 
an adaptive beamformer with minimum-variance distortionless response (MVDR).

In 1983, McWhirter proposed a simplification of the Gentleman–Kung (systolic) 
array for recursive least-squares estimation. The resulting filtering structure, often 
referred to as the McWhirter (systolic) array, is particularly well suited for adaptive 
beamforming applications.

The historical notes presented in this introductory chapter on adaptive filter 
theory and applications are not claimed to be complete. Rather, they are intended to 
highlight many of the early significant contributions made to this important part of 
the ever-expanding field of adaptive signal processing. Above all, it is hoped that they 
provide a source of inspiration to the reader. 
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C H A P T E R  1

Stochastic Processes  
and Models

The term stochastic process, or random process, is used to describe the time evolution of 
a statistical phenomenon according to probabilistic laws. The time evolution of the phe-
nomenon means that the stochastic process is a function of time, defined on some obser-
vation interval. The statistical nature of the phenomenon means that, before conducting 
an experiment, it is not possible to define exactly the way it evolves in time. Examples 
of a stochastic process include speech signals, television signals, radar signals, digital 
computer data, the output of a communication channel, seismological data, and noise.

The form of a stochastic process that is of interest to us is one that is defined at 
discrete and uniformly spaced instants of time (Box & Jenkins, 1976; Priestley, 1981). 
Such a restriction may arise naturally in practice, as in the case of radar signals or digital 
computer data. Alternatively, the stochastic process may be defined originally for a con-
tinuous range of real values of time; however, before processing, it is sampled uniformly 
in time, with the sampling rate chosen to be greater than twice the highest frequency 
component of the process (Haykin, 2013).

A stochastic process is not just a single function of time; rather, it represents, in the-
ory, an infinite number of different realizations of the process. One particular realization 
of a discrete-time stochastic process is called a time series. For convenience of notation,  
we normalize time with respect to the sampling period. For example, the sequence u(n), 
u(n - 1), . . . , u(n - M) represents a time series that consists of the present observation u(n) 
made at time n and M past observations of the process made at times n - 1, . . . , n - M.

We say that a stochastic process is strictly stationary if its statistical properties are 
invariant to a time shift. Specifically, for a discrete-time stochastic process represented 
by the time series u(n), u(n - 1), . . . , u(n - M) to be strictly stationary, the joint prob-
ability density function of random variables represented by the observations times n,  
n - 1, . . . , n - M must remain the same no matter what values we assign to n for fixed M.

1.1  PARTiAl CHARACTERizATion of A DiSCRETE-TiME  
SToCHASTiC PRoCESS

In practice, we usually find that it is not possible to determine (by means of suitable 
measurements) the joint probability density function for an arbitrary set of observa-
tions made on a stochastic process. Accordingly, we must content ourselves with a 
partial characterization of the process by specifying its first and second moments.
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Consider a discrete-time stochastic process represented by the time series u(n), 
u(n - 1), . . . , u(n - M), which may be complex valued. To simplify the terminology, we 
use u(n) to denote such a process. This simplified terminology1 is used throughout the 
book. We define the mean-value function of the processs

 m1n2 = 𝔼[u1n2], (1.1)

where 𝔼 denotes the statistical expectation operator. We define the autocorrelation func-
tion of the process

 r1n, n - k2 = 𝔼[u1n2u*1n - k2], k =  0, {1, {2, . . . , (1.2)

where the asterisk denotes complex conjugation. We define the autocovariance function 
of the process

c(n, n - k) = 𝔼 [(u(n) - m(n))(u(n - k) - m(n - k))*],   k = 0, {1, {2, c.     (1.3)

From Eqs. (1.1) through (1.3), we see that the mean-value, autocorrelation, and autoco-
variance functions of the process are related by

 c(n, n - k) = r(n, n - k) - m(n)m*(n - k). (1.4)

For a partial (second-order) characterization of the process, we therefore need to specify 
(1) the mean-value function μ(n) and (2) the autocorrelation function r(n, n - k) or the 
autocovariance function c(n, n - k) for various values of n and k that are of interest. 
Note that the autocorrelation and autocovariance functions have the same value when 
the mean μ(n) is zero for all n.

This form of partial characterization offers two important advantages:

 1. It lends itself to practical measurements.
 2. It is well suited to linear operations on stochastic processes.

For a discrete-time stochastic process that is strictly stationary, all three quantities defined 
in Eqs. (1.1) through (1.3) assume simpler forms. In particular, they satisfy two conditions 

 1. The mean-value function of the process is a constant μ (say), that is,

 m(n) = m           for all n. (1.5)

 2. The autocorrelation and autocovariance functions depend only on the difference 
between the observation times n and n - k; that is, they depend on the lag k, as 
shown by

 r(n, n - k) = r(k) (1.6)

  and

 c(n, n - k) = c(k). (1.7)

1 To be rigorous in our terminology, we should use an uppercase symbol—U(n), for example—to 
denote a discrete-time stochastic process and the corresponding lowercase symbol—u(n)—to denote a 
sample of the process. We have not done so to simplify the exposition.
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Note that when k = 0, corresponding to a time difference, or lag, of zero, r(0) equals the 
mean-square value of u(n):

 r(0) = 𝔼3 ∙u(n) ∙24. (1.8)

Also, c(0) equals the variance of u(n):

 c(0 ) = s2
u. (1.9)

Equations (1.5) through (1.7) are not sufficient to guarantee that the discrete-time sto-
chastic process is strictly stationary. Rather, a discrete-time stochastic process that is not 
strictly stationary, but for which these conditions hold, is said to be wide-sense or weakly 
stationary. A strictly stationary process {u(n)}, or u(n) for short, is stationary in the wide 
sense if and only if (Doob, 1953)

𝔼[∙u(n)∙2] 6 ∞  for all n.

This condition is ordinarily satisfied by stochastic processes encountered in the physical 
sciences and engineering.

1.2 MEAn ERgoDiC THEoREM

The expectations, or ensemble averages, of a stochastic process are averages “across 
different realizations of the process” for a fixed instant of time. Clearly, we may also 
define long-term sample averages, or time averages that are averages “along the process.” 
Indeed, time averages may be used to build a stochastic model of a physical process by 
estimating unknown parameters of the model. For such an approach to be rigorous, 
however, we have to show that time averages converge to corresponding ensemble 
averages of the process in some statistical sense. A popular criterion for convergence is 
that of the mean-square error.

In this regard, consider a discrete-time stochastic process u(n) that is wide-sense 
stationary. Let a constant μ denote the mean of the process and c(k) denote its auto-
covariance function for lag k. For an estimate of the mean μ, we may use the time average

 mn (N) =
1
N

 a
N - 1

n = 0
u(n), (1.10)

where N is the total number of samples used in the estimation. Note that the estimate 
mn (N) is a random variable with a mean and variance of its own. In particular, we readily 
find from Eq. (1.10) that the mean (expectation) of mn (N) is

 𝔼[mn (N)] = m  for all N. (1.11)

It is in the sense of Eq. (1.11) that we say the time average mn (N) is an unbiased estimator 
of the ensemble average (mean) of the process.

Moreover, we say that the process u(n) is mean ergodic in the mean-square-error 
sense if the mean-square value of the error between the ensemble average μ and the time 
average mn (N) approaches zero as the number of samples, N, approaches infinity; that is,

lim
NS∞

 𝔼[ ∙m - mn (N) ∙2] = 0.
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Using the time average formula of Eq. (1.10), we may write

  𝔼[ ∙m - mn (N) ∙2] = 𝔼 c ` m -
1
N

 a
N - 1

n = 0
u(n) `

2

d  

  =
1

N2 𝔼 c ` a
N - 1

n = 0
(u(n) - m) `

2

d  

  =
1

N2 𝔼 c a
N - 1

n = 0
a

N - 1

k = 0
(u(n) - m)(u(k) - m)* d  

  =
1

N2 a
N - 1

n = 0
a

N - 1

k = 0
𝔼[(u(n) - m)(u(k) - m)*]  

  =
1

N2 a
N - 1

n = 0
a

N - 1

k = 0
c(n - k).  (1.12)

Let l = n - k. We may then simplify the double summation in Eq. (1.12) as follows:

𝔼[ ∙m - mn (N) ∙2] =
1
N

 a
N - 1

l = -N + 1
a1 -

0 l 0
N

bc(l).

Accordingly, we may state that the necessary and sufficient condition for the process 
u(n) to be mean ergodic in the mean-square-error sense is

 lim
NS ∞

1
N a

N - 1

l = - N + 1
a1 -

∙ l ∙
N

bc(l) = 0. (1.13)

In other words, if the process u(n) is asymptotically uncorrelated in the sense of 
Eq. (1.13), then the time average mn (N) of the process converges to the ensemble aver-
age μ in the mean-square-error sense. This is the statement of a particular form of the 
mean ergodic theorem (Gray & Davisson, 1986).

The use of the mean ergodic theorem may be extended to other time averages 
of the process. Consider, for example, the following time average used to estimate the 
autocorrelation function of a wide-sense stationary process:

 rn(k, N) =
1
N

 a
N - 1

n = 0
u(n)u(n - k),  0 … k … N - 1. (1.14)

The process u(n) is said to be correlation ergodic in the mean-square-error sense if the 
mean-square value of the difference between the true value r(k) and the estimate rn(k, N) 
approaches zero as the number of samples, N, approaches infinity. Let z(n, k) denote a 
new discrete-time stochastic process related to the original process u(n) as follows:

 z(n, k) = u(n)u(n - k). (1.15)

Hence, by substituting z(n, k) for u(n)u(n - k), we may use the mean ergodic theorem 
to establish the conditions for z(n, k) to be mean ergodic or, equivalently, for u(n) to be 
correlation ergodic.
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From the viewpoint of parameter estimation, the extraction of the mean (i.e., the 
DC component) is the most important preprocessing operation performed on a time 
series before computing the estimate of interest. This preprocessing results in a residual 
time series with zero mean, in which case the computation of the autocorrelation func-
tion for different lags is sufficient for partial characterization of the process.

Henceforth, we assume that the stochastic process u(n) has zero mean, as shown by

𝔼[u(n)] = 0  for all n.

The set of autocorrelations of u(n) for a finite number of lags defines the correlation 
matrix of the process.

1.3 CoRRElATion MATRix

Let the M-by-1 observation vector u(n) represent the elements of the zero-mean time 
series u(n), u(n - 1), c, u(n - M + 1). To show the composition of the vector u(n) 
explicitly, we write

 u(n) = [u(n), u(n - 1), c, u(n - M + 1)]T, (1.16)

where the superscript T denotes transposition. We define the correlation matrix of a sta-
tionary discrete-time stochastic process represented by this time series as the expectation 
of the outer product of the observation vector u(n) with itself. Let R denote the M-by-M 
correlation matrix defined in this way. We thus write

 R = 𝔼[u(n) uH(n)], (1.17)

where the superscript H denotes Hermitian transposition (i.e., the operation of transpo-
sition combined with complex conjugation). Substituting Eq. (1.16) into Eq. (1.17) and 
using the condition of wide-sense stationarity, we express the correlation matrix in the 
expanded form

 R = ≥
r(0) r(1) g r(M - 1)
r(-1) r(0) g r(M - 2)
f f f f
r(-M + 1) r(-M + 2) g r(0)

¥ . (1.18)

The element r(0) on the main diagonal is always real valued. For complex-valued data, 
the remaining elements of R assume complex values.

Properties of the Correlation Matrix

The correlation matrix R plays a key role in the statistical analysis and design of discrete-
time filters. It is therefore important that we understand its various properties and their 
implications. In particular, using the definition given in Eq. (1.17), we find that the correla-
tion matrix of a stationary discrete-time stochastic process has the properties that follow.

Property 1. The correlation matrix of a stationary discrete-time stochastic process 
is Hermitian.
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We say that a complex-valued matrix is Hermitian if it is equal to its conjugate trans-
pose. We may thus express the Hermitian property of the correlation matrix R by writing

 RH = R. (1.19)

This property follows directly from the definition of Eq. (1.17).
Another way of stating the Hermitian property of the correlation matrix R is 

to write

 r(-k) = r*(k), (1.20)

where r(k) is the autocorrelation function of the stochastic process u(n) for a lag of k. 
Accordingly, for a wide-sense stationary process, we only need M values of the auto-
correlation function r(k) for k = 0, 1, . . . , M - 1 in order to completely define the 
 correlation matrix R. We may thus rewrite Eq. (1.18) as

 R = ≥
r(0) r(1) g r(M - 1)
r*(1) r(0) g r(M - 2)
f f  f f
r*(M - 1) r*(M - 2) g r(0)

¥ . (1.21)

From here on, we will use this representation for the expanded-matrix form of the cor-
relation matrix of a wide-sense stationary discrete-time stochastic process. Note that for 
the special case of real-valued data, the autocorrelation function r(k) is real for all k and 
the correlation matrix R is symmetric.

Property 2. The correlation matrix of a stationary discrete-time stochastic process 
is Toeplitz.

We say that a square matrix is Toeplitz if all the elements on its main diagonal are 
equal and if the elements on any other diagonal parallel to the main diagonal are also 
equal. From the expanded form of the correlation matrix R given in Eq. (1.21), we see 
that all the elements on the main diagonal are equal to r(0), all the elements on the first 
diagonal above the main diagonal are equal to r(1), all the elements along the first diago-
nal below the main diagonal are equal to r*(1), and so on for the other diagonals. We 
conclude, therefore, that the correlation matrix R is Toeplitz.

It is important to recognize, however, that the Toeplitz property of the correlation 
matrix R is a direct consequence of the assumption that the discrete-time stochastic 
process represented by the observation vector u(n) is wide-sense stationary. Indeed, 
we may state that if the discrete-time stochastic process is wide-sense stationary, then 
its correlation matrix R must be Toeplitz; and, conversely, if the correlation matrix R is 
Toeplitz, then the discrete-time stochastic process must be wide-sense stationary.

Property 3. The correlation matrix of a discrete-time stochastic process is always 
nonnegative definite and almost always positive definite.

Let a be an arbitrary (nonzero) M-by-1 complex-valued vector. Define the scalar 
random variable y as the inner product of a and the observation vector u(n), as shown by

y = aHu(n).
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Taking the Hermitian transpose of both sides and recognizing that y is a scalar, we get

y* = uH(n)a,

where the asterisk denotes complex conjugation. The mean-square value of the random 
variable y is

𝔼[ ∙ y ∙2] = 𝔼[ yy*]

= 𝔼[aHu(n)uH(n)a]

= aH𝔼[u(n)uH(n)]a

 = aHRa,

where R is the correlation matrix defined in Eq. (1.17). The expression aH Ra is called 
a Hermitian form. Since

𝔼[ ∙ y ∙2] Ú 0,

it follows that

 aHRa Ú 0. (1.22)

A Hermitian form that satisfies this condition for every nonzero a is said to be non-
negative definite or positive semidefinite. Accordingly, we may state that the correlation 
matrix of a wide-sense stationary process is always nonnegative definite.

If the Hermitian form satisfies the condition

aHRa 7 0

for every nonzero a, we say that the correlation matrix R is positive definite. This condi-
tion is satisfied for a wide-sense stationary process, unless there are linear dependencies 
between the random variables that constitute the M elements of the observation vector 
u(n). Such a situation arises essentially only when the process u(n) consists of the sum 
of K sinusoids with K … M. (See Section 1.4 for more details.) In practice, we find that 
this idealized situation occurs so rarely that the correlation matrix R is almost always 
positive definite.

Property 4. The correlation matrix of a wide-sense stationary process is nonsin-
gular due to the unavoidable presence of additive noise.

The matrix R is said to be nonsingular if its determinant, denoted by det(R),  
is nonzero. Typically, each element of the observation u(n) includes an additive noise 
component. Accordingly,

∙r(l) ∙ 6 r(0)      for all l ≠ 0,

in which case det(R) Z 0 and the correlation matrix is nonsingular.
Property 4 has an important computational implication: Nonsingularity of the 

matrix R means that its inverse, denoted by R-1, exists. The inverse of R is defined by

 R- 1 =
adj(R)

det(R)
, (1.23)
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where adj(R) is the adjoint of R. By definition, adj(R) is the transpose of a matrix whose 
entries are the cofactors of the elements in det(R). Equation (1.23) shows that when  
det(R) Z 0 (i.e., the matrix R is nonsingular), the inverse matrix R-1 exists and is therefore 
computable.

Property 5. When the elements that constitute the observation vector of a station-
ary discrete-time stochastic process are rearranged backward, the effect is equivalent to 
the transposition of the correlation matrix of the process.

Let uB(n) denote the M-by-1 vector obtained by rearranging the elements that 
constitute the observation vector u(n) backward. We illustrate this operation by writing

 uBT(n) = [u(n - M + 1), u(n - M + 2), c, u(n)], (1.24)

where the superscript B denotes the backward rearrangement of a vector. The correla-
tion matrix of the vector uB(n) is, by definition,

 𝔼[uB
 (n)uBH

 (n)] = ≥
r(0) r*(1) g r*(M - 1)
r(1) r(0) g r*(M - 2)
f f  f f
r(M - 1) r(M - 2) g r(0)

¥ . (1.25)

Hence, comparing the expanded correlation matrix of Eq. (1.25) with that of Eq. (1.21), 
we see that

𝔼[uB(n)uBH
 (n)] = RT,

which is the desired result.

Property 6. The correlation matrices RM and RM + 1 of a stationary discrete-time 
stochastic process, pertaining to M and M + 1 observations of the process, respectively, 
are related by

 RM + 1 = c r(0) rH

r RM
d  (1.26)

or, equivalently,

 RM + 1 = cRM rB*

rBT r(0)
d , (1.27)

where r(0) is the autocorrelation of the process for a lag of zero,

 rH = [r(1), r(2), c , r(M)], (1.28)

and

 rBT = [r(-M), r(-M + 1), c , r(-1)]. (1.29)

Note that in describing Property 6 we have added a subscript, M or M + 1, to the 
symbol for the correlation matrix in order to display dependence on the number of 
observations used to define that matrix. We follow such a practice (in the context of the 
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correlation matrix and other vector quantities) only when the issue at hand involves 
dependence on the number of observations or dimensions of the matrix.

To derive Eq. (1.26), we express the correlation matrix RM + 1 in its expanded form, 
partitioned as follows:

 RM + 1 = E r(0)
r*(1)
r*(2)
f
r*(M)

r(1)
r(0)
r*(1)
f
r*(M - 1)

r(2)
r(1)
r(0)
f
r*(M - 2)

g
g
g
 f
g

r(M)
r(M - 1)
r(M - 2)
f
r(0)

U . (1.30)

Using Eqs. (1.18), (1.20), and (1.28) in Eq. (1.30), we obtain Eq. (1.26). Note that, accord-
ing to this relation, the observation vector uM + 1(n) is partitioned in the form

 uM + 1(n) = Eu(n)
u(n - 1)
u(n - 2)
f
u(n - M)

U
 = cu(n)

uM (n - 1)
d , (1.31)

where the subscript M + 1 is intended to denote the fact that the vector uM + 1(n) has  
M + 1 elements, and likewise for uM(n).

To prove the relation of Eq. (1.27), we express the correlation matrix RM + 1 in its 
expanded form, partitioned in the alternative form

 RM + 1 = E r(0)
r*(1)
f
r*(M - 1)
r*(M)

r(1)
r(0)
f
r*(M - 2)
r*(M - 1)

g
g
f
g
g

r(M - 1)
r(M - 2)
f
r(0)
r*(1)

r(M)
r(M - 1)
 

r(1)
r(0)

U . (1.32)

Here again, using Eqs. (1.18), (1.20), and (1.29) in Eq. (1.32), we get the result given in 
Eq. (1.27). Note that according to this second relation the observation vector uM + 1(n) 
is partitioned in the alternative form

 uM + 1(n) = Eu(n)
u(n - 1)
f
u(n - M + 1)
u(n - M)

U
 = cuM (n)

u(n - M)
d . (1.33)
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1.4 CoRRElATion MATRix of SinE WAvE PluS noiSE

A time series of special interest is one that consists of a complex sinusoid corrupted by 
additive noise. Such a time series is representative of several important signal-processing 
applications. In the temporal context, for example, this type of series represents the 
composite signal at the input of a receiver, with the complex sinusoid representing a 
target signal and the noise representing thermal noise generated at the front end of the 
receiver. In the spatial context, it represents the received signal in a linear array of sen-
sors, with the complex sinusoid representing a plane wave produced by a remote source 
(emitter) and the noise representing sensor noise.

Let a denote the amplitude of the complex sinusoid and v denote its angular fre-
quency. Let n(n) denote a sample of the noise, assumed to have zero mean. We may then 
express a sample of the time series that consists of the complex sinusoid plus noise as

 u(n) = a exp ( jvn) + n(n),  n = 0, 1, c, N - 1. (1.34)

The sources of the complex sinusoid and the noise are naturally independent of each 
other. Since, by assumption, the noise component n(n) has zero mean, we see from  
Eq. (1.34) that the mean of u(n) is equal to a exp (jvn).

To calculate the autocorrelation function of the process u(n), we clearly need to 
know the autocorrelation function of the noise n(n). To proceed, then, we assume a 
special form of noise characterized by the autocorrelation function

 𝔼[n(n)n*(n - k)] = es
2
n, k = 0

0, k ≠ 0
. (1.35)

Such a form of noise is commonly referred to as white noise; more will be said about it 
in Section 1.14. Since the sources responsible for the generation of the complex sinusoid 
and the noise are independent and, therefore, uncorrelated, it follows that the autocor-
relation function of the process u(n) equals the sum of the autocorrelation functions of 
its two individual components. Accordingly, using Eqs. (1.34) and (1.35), we find that the 
autocorrelation function of the process u(n) for a lag k is given by

r(k) = 𝔼[u(n)u*(n - k)]

 = e ∙a ∙2 + s2
n, k = 0

∙a ∙2exp(jvk), k ≠ 0
, (1.36)

where |a| is the magnitude of the complex amplitude a. Note that for a lag k ≠ 0, the 
autocorrelation function r(k) varies with k in the same sinusoidal fashion as the sample 
u(n) varies with n, except for a change in amplitude. Given the series of samples u(n), 
u(n - 1), c, u(n - M + 1), we may thus express the correlation matrix of u(n) as

 
R = 0a 0 2G1 +

1
r

exp(- jv)

f

exp(- jv(M - 1))

exp(jv)

1 +
1
r

f

exp(- jv(M - 2))

g

g

 f

g

exp(jv(M - 1))

exp( jv(M - 2))

f

1 +
1
r

W
 
,
 (1.37)
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where

 r =
∙a ∙2

s2
n

 (1.38)

is the signal-to-noise ratio. The correlation matrix R of Eq. (1.37) has all of the properties 
described in Section 1.3; the reader is invited to verify them.

Equation (1.36) provides the mathematical basis of a two-step practical 
 procedure for estimating the parameters of a complex sinusoid in the presence of 
additive noise:

 1. Measure the mean-square value r(0) of the process u(n). Hence, given the noise 
variance s2

n, determine the magnitude |a|.
 2. Measure the autocorrelation function r(k) of the process u(n) for a lag k ≠ 0.

Hence, given |a|2 from step 1, determine the angular frequency v.

Note that this estimation procedure is invariant to the phase of a, a property that is a 
direct consequence of the definition of the autocorrelation function r(k).

ExAMPlE 1   

Consider the idealized case of a noiseless sinusoid of angular frequency v. For the purpose of 
illustration, we assume that the time series of interest consists of three uniformly spaced samples 
drawn from this sinusoid. Hence, setting the signal-to-noise ratio r = ∞  and the number of sam-
ples M = 3, we find from Eq. (1.37) that the correlation matrix of the time series so obtained is

 R = 0a 0 2C 1 exp( jv) exp( j2v)
exp(- jv) 1 exp( jv)

exp(- j2v) exp(- jv) 1
S . 

From this expression, we readily see that the determinant of R and all principal minors are identi-
cally zero. Hence, this correlation matrix is singular.

We may generalize the result we have just obtained by stating that when a process u(n) 
consists of M samples drawn from the sum of K sinusoids with K 6 M and there is no additive 
noise, then the correlation matrix of that process is singular.

1.5 SToCHASTiC MoDElS

The term model is used for any hypothesis that may be applied to explain or describe the 
hidden laws that are supposed to govern or constrain the generation of physical data of 
interest. The representation of a stochastic process by a model dates back to an idea by Yule 
(1927). The idea is that a time series u(n) consisting of highly correlated observations may 
be generated by applying a series of statistically independent “shocks” to a linear filter, as 
in Fig. 1.1. The shocks are random variables drawn from a fixed distribution that is usually 
assumed to be Gaussian with zero mean and constant variance. Such a series of random 
variables constitutes a purely random process, commonly referred to as white Gaussian noise. 
Specifically, we may describe the input n(n) in the figure in statistical terms as

 𝔼[n(n)] = 0  for all n (1.39)
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and

 𝔼[n(n)n*(k)] = bs2
n,

0,
k = n
otherwise

, (1.40)

where s2
n is the noise variance. Equation (1.39) follows from the zero-mean 

 assumption, and Eq. (1.40) follows from the fact that white noise has a flat power 
spectrum, as in white light. The implication of the Gaussian assumption is discussed 
in Section 1.11.

In general, the time-domain description of the input–output relation for the sto-
chastic model of Fig. 1.1 may be described as follows:

 ¢ present value
of model output

≤ + £ linear combination
of past values

of model output
≥ = £ linear combination of

present and past values
of model input

≥.  (1.41)

A stochastic process so described is referred to as a linear process.
The structure of the linear filter in Fig. 1.1 is determined by the manner in which 

the two linear combinations indicated in Eq. (1.41) are formulated. We may thus identify 
three popular types of linear stochastic models:

 1. Autoregressive models, in which no past values of the model input are used.
 2. Moving-average models, in which no past values of the model output are used.
 3. Mixed autoregressive–moving-average models, in which the description of  

Eq. (1.41) applies in its entire form. Hence, this class of stochastic models includes 
autoregressive and moving-average models as special cases.

Autoregressive Models

We say that the time series u(n), u(n - 1), c, u(n - M) represents the realization of 
an autoregressive (AR) process of order M if it satisfies the difference equation

 u(n) + a*1u(n - 1) + g + a*Mu(n - M) = n(n), (1.42)

where a1, a2, . . . , aM are constants called the AR parameters and n(n) is white noise.  
The term a*

k u(n - k) is the scalar version of the inner product of ak and u(n - k), where 
k = 1, . . . , M.

To explain the reason for the term “autoregressive,” we rewrite Eq. (1.42) in the 
form

 u(n) = w*1u(n - 1) + w*2u(n - 2) +  g +  w*Mu(n - M) + n(n), (1.43)

“Shock” drawn
from purely
random process,
n(n)

Sample of
discrete-time
stochastic
process, u(n)

Discrete-time
linear �lter

FigurE 1.1 Stochastic model.
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where wk = -ak. We thus see that the present value of the process—that is, u(n)—equals 
a finite linear combination of past values of the process, u(n - 1), . . . , u(n - M) plus an 
error term n(n). We now see the reason for the term “autoregressive”: A linear model

 y = a
M

k = 1
w*

kxk +  n 

relating a dependent variable y to a set of independent variables x1, x2, . . . , xM plus an 
error term n is often referred to as a regression model, and y is said to be “regressed” on 
x1, x2, . . . , xM. In Eq. (1.43), the variable u(n) is regressed on previous values of itself—
hence the term “autoregressive.”

The left-hand side of Eq. (1.42) represents the convolution of the input sequence 
{u(n)} and the sequence of parameters 5a*

n6 . To highlight this point, we rewrite the 
equation in the form of a convolution sum; that is,

 a
M

k = 0
a*

k u(n - k) = n(n), (1.44)

where a0 = 1. By taking the z-transform of both sides of Eq. (1.44), we transform the con-
volution sum on the left-hand side of the equation into a multiplication of the z-trans-
forms of the two sequences {u(n)} and 5a*

n6. Let

 HA (z) = a
M

n = 0
a*

n z- n (1.45)

denote the z-transform of the sequence {a*n}, and let

 U(z) = a
∞

n = 0
u(n)z- n, (1.46)

where z is a complex variable, denote the z-transform of the input sequence {u(n)}. We 
may thus transform the difference Eq. (1.42) into the equivalent form

 HA (z)U(z) = V(z), (1.47)

where

 V(z) = a
∞

n = 0
n(n)z- n. (1.48)

The z-transform of Eq. (1.47) offers two interpretations, depending on whether the AR 
process u(n) is viewed as the input or output of interest:

 1. Given the AR process u(n), we may use the filter shown in Fig. 1.2(a) to produce 
the white noise n(n) as output. The parameters of this filter bear a one-to-one 
correspondence with those of u(n). Accordingly, such a filter represents a pro-
cess analyzer with discrete transfer function HA(z) = V(z)/U(z). The impulse 
response of the AR process analyzer [i.e., the inverse z-transform of HA(z)] has 
finite duration.
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*
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FigurE 1.2 (a) AR process analyzer; (b) AR process generator.
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 2. With the white noise n(n) acting as input, we may use the filter shown in Fig. 1.2(b) 
to produce the AR process u(n) as output. Accordingly, this second filter repre-
sents a process generator, whose transfer function equals

  HG (z) =
U(z)

V(z)
 

  =
1

HA (z)
 

  =
1

a
M

n = 0
a*

n z- n

. (1.49)

  The impulse response of the AR process generator [i.e., the inverse z-transform 
of HG(z)] has infinite duration.

The AR process analyzer of Fig. 1.2(a) is an all-zero filter. It is so called because 
its transfer function HA(z) is completely defined by specifying the locations of its zeros. 
This filter is inherently stable.

The AR process generator of Fig. 1.2(b) is an all-pole filter. It is so called because 
its transfer function HG(z) is completely defined by specifying the locations of its poles, 
as shown by

 HG(z) =
1

(1 - p1z
-1)(1 - p2z

-1) c (1 - pMz-1)
. (1.50)

The parameters p1, p2, . . . , pM are poles of HG(z); they are defined by the roots of the 
characteristic equation

 1 + a*1z-1 + a*2z-2 + g + a*Mz-M = 0. (1.51)

For the all-pole AR process generator of Fig. 1.2(b) to be stable, the roots of the charac-
teristic Eq. (1.51) must all lie inside the unit circle in the z-plane. This is also a necessary 
and sufficient condition for wide-sense stationarity of the AR process produced by the 
model of Fig. 1.2(b). We shall have more to say on the issue of stationarity in Section 1.7.

Moving-Average Models

In a moving-average (MA) model, the discrete-time linear filter of Fig. 1.1 consists of 
an all-zero filter driven by white noise. The resulting process u(n), produced at the filter 
output, is described by the difference equation

 u(n) = n(n) + b*1n(n - 1) + g +  b*Kn(n - K), (1.52)

where b1, . . . , bK are constants called the MA parameters and n(n) is white noise of zero 
mean and variance s2

n. Except for n(n), each term on the right-hand side of Eq. (1.52) 
represents the scalar version of an inner product. The order of the MA process equals K. 
The term “moving average” is a rather quaint one; nevertheless, its use is firmly estab-
lished in the literature. Its usage arose in the following way: If we are given a complete 
temporal realization of the white noise n(n), we may compute u(n) by constructing a 
weighted average of the sample values n(n), n(n - 1), . . . , n(n - K).
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From Eq. (1.52), we readily obtain the MA model (i.e., process generator) depicted 
in Fig. 1.3. Specifically, we start with white noise n(n) at the model input and generate 
an MA process u(n) of order K at the model output. To proceed in the reverse manner 
[i.e., to produce the white noise n(n), given the MA process u(n)], we require the use of 
an all-pole filter. In other words, the filters used in the generation and analysis of an MA 
process are the opposite of those used in the case of an AR process.

Autoregressive–Moving-Average Models

To generate a mixed autoregressive–moving-average (ARMA) process u(n), we use the 
discrete-time linear filter of Fig. 1.1 with a transfer function that contains both poles and 
zeros. Accordingly, given the white noise n(n) as the filter input, the ARMA process u(n) 
produced at the filter output is described by the difference equation

 u(n) + a*1u(n - 1) + g +  a*Mu(n - M)

= n(n) + b*1n(n - 1) +  g +  b*Kn(n - K),  (1.53)

where a1, . . . , aM and b1, . . . , bK are called the ARMA parameters. Except for u(n) on the 
left-hand side of Eq. (1.53) and n(n) on the right-hand side, all of the terms represent sca-
lar versions of inner products. The order of the ARMA process is expressed by (M, K).

From Eq. (1.53), we readily deduce the ARMA model (i.e., the process generator) 
depicted in Fig. 1.4. Comparing this figure with Fig. 1.2(b) and Fig. 1.3, we clearly see that 
AR and MA models are indeed special cases of an ARMA model, as indicated previously.

The transfer function of the ARMA process generator in Fig. 1.4 has both poles 
and zeros. Similarly, the ARMA analyzer used to generate white noise n(n), given an 
ARMA process u(n), is characterized by a transfer function containing both poles and 
zeros.

From a computational viewpoint, the AR model has an advantage over the MA 
and ARMA models: The computation of the AR coefficients in the model of Fig. 1.2(a) 
involves a system of linear equations known as the Yule–Walker equations, details of 
which are given in Section 1.8. On the other hand, the computation of the MA coef-
ficients in the model of Fig. 1.3 and the computation of the ARMA coefficients in the 
model of Fig. 1.4 are much more complicated. Both of these computations require solv-
ing systems of nonlinear equations. It is for this reason that, in practice, we find that AR 
models are more popular than MA and ARMA models. The wide application of AR 
models may also be justified by virtue of a fundamental theorem of time-series analysis, 
which is discussed next.

1.6 WolD DECoMPoSiTion

Wold (1938) proved a fundamental theorem which states that any stationary discrete-
time stochastic process may be decomposed into the sum of a general linear process 
and a predictable process, with these two processes being uncorrelated with each other. 
More precisely, Wold proved the following result: Any stationary discrete-time stochastic 
process x(n) may be expressed in the form

 x(n) = u(n) + s(n), (1.54)
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where

 1. u(n) and s(n) are uncorrelated processes;
 2. u(n) is a general linear process represented by the MA model, viz.,

 u(n) = a
∞

k = 0
b*

kn(n - k) (1.55)

g g

z–1

z–1

z–1

aM–1

aM

g ga2

g g

g g

a1

bK 

b2

b1

+

–
Sample 
of white
noise, n(n)

Sample of
ARMA 
process, u(n)

*

*

*

* *

* *

FigurE 1.4 ARMA model (process generator) of order (M, K), assuming that M 7 K.
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  with b0 = 1, and

 a
∞

k = 0
∙ bk ∙2 6 ∞ , 

  and where n(n) is white noise uncorrelated with s(n)—that is,

 𝔼[n(n)s*(k)] = 0  for all (n, k); 

 3. s(n) is a predictable process; that is, the process can be predicted from its own past 
with zero prediction variance.

This result is known as Wold’s decomposition theorem. A proof of the theorem is given 
in Priestley (1981).

According to Eq. (1.55), the general linear process u(n) may be generated by feed-
ing an all-zero filter with white noise n(n), as in Fig. 1.5(a). The zeros of the transfer 
function of this filter equal the roots of the equation

 B(z) = a
∞

n = 0
b*nz-n = 0. 

A solution of particular interest is an all-zero filter that is minimum phase, which 
means that all the zeros of the polynomial B(z) lie inside the unit circle. In such a case, 
we may replace the all-zero filter with an equivalent all-pole filter that has the same 
impulse response hn = bn, as in Fig. 1.5(b). This means that, except for a predictable 
component, a stationary discrete-time stochastic process may also be represented as 
an AR process of the appropriate order, subject to the just-mentioned restriction on 
B(z). The basic difference between the MA and AR models is that B(z) operates on 
the input n(n) in the MA model, whereas the inverse B-1(z) operates on the output 
u(n) in the AR model.

White
noise,
n(n)

General
linear
process,
u(n)

All-zero �lter
of impulse
response hn =  bn

(a)

White
noise,
n(n)

General
linear
process,
u(n)

All-pole �lter
of impulse
response hn =  bn

(b)

FigurE 1.5 (a) Model, based on 
all-zero filter, for generating the 
linear process u(n); (b) model,  
based on all-pole filter, for  
generating the general linear  
process u(n). Both filters have  
exactly the same impulse response.
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1.7 ASyMPToTiC STATionARiTy of An AuToREgRESSivE PRoCESS

Equation (1.42) is a linear, constant-coefficient difference equation of order M in which n(n) 
plays the role of input or driving function and u(n) that of output or solution. By using the 
classical method2 for solving such an equation, we may formally express the solution u(n) 
as the sum of a complementary function uc(n) and a particular solution up(n):

 u(n) = uc(n) + up(n). (1.56)

The evaluation of the solution u(n) may thus proceed in two stages:

 1. The complementary function uc(n) is the solution of the homogeneous equation

 u(n) + a*1u(n - 1) + a*2u(n - 2) + g +  a*Mu(n - M) = 0. 

  In general, uc(n) is therefore of the form

 uc(n) = B1p
n
1 + B2 p

n
2 + g +  BM p

n
M, (1.57)

  where B1, B2, . . . , BM are arbitrary constants and p1, p2, . . . , pM are roots of the 
characteristic Eq. (1.51).

 2. The particular solution is defined by

 up(n) = HG(D) [n(n)], (1.58)

  where D is the unit-delay operator and the operator HG(D) is obtained by sub-
stituting D for z-1 in the discrete-transfer function of Eq. (1.49). The unit-delay 
operator D has the property that

 Dk[u(n)] = u(n - k),  k = 0, 1, 2, c. (1.59)

The constants B1, B2, . . . , BM are determined by the choice of initial conditions, which 
equal M in number. It is customary to set

  u(0) = 0, 

  u(-1) = 0, 
(1.60)

  f  

  u(-M + 1) = 0. 

This is equivalent to setting the output of the model in Fig. 1.2(b), as well as the suc-
ceeding (M - 1) tap inputs, equal to zero at time n = 0. Thus, by substituting these initial 
conditions into Eqs. (1.56) through (1.58), we obtain a set of M simultaneous equations 
that can be solved for the constants B1, B2, . . . , BM.

The result of imposing the initial conditions of Eq. (1.60) on the solution u(n) is to 
make the discrete-time stochastic process represented by that solution nonstationary. 
On reflection, it is clear that this must be so, since we have given a “special status” to 

2We may also use the z-transform method to solve the difference Eq. (1.42). However, for the discussion 
presented here, we find it more informative to use the classical method.
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the time point n = 0 and the property of invariance under a shift of time origin cannot 
hold, even for second-order moments. If, however, u(n) is able to “forget” its initial 
conditions, the resulting process is asymptotically stationary in the sense that it settles 
down to a stationary behavior as n approaches infinity (Priestley, 1981). This require-
ment may be achieved by choosing the parameters of the AR model in Fig. 1.2(b) such 
that the complementary function uc(n) decays to zero as n approaches infinity. From 
Eq. (1.57), we see that, for arbitrary constants in the equation, this requirement can be 
met if and only if

 0 pk 0 6 1  for all k. 

Hence, for asymptotic stationarity of the discrete-time stochastic process represented by 
the solution u(n), we require that all the poles of the filter in the AR model lie inside the 
unit circle in the z-plane. This requirement is intuitively satisfying.

Correlation function of an Asymptotically Stationary AR Process

Assuming that the condition for asymptotic stationarity is satisfied, we may derive an 
important recursive relation for the autocorrelation function of the resulting AR pro-
cess. We begin by multiplying both sides of Eq. (1.42) by u*(n - l), and then we apply 
the expectation operator, thereby obtaining

 𝔼 c a
M

k = 0
a*

ku(n - k)u *(n - l) d = 𝔼3n(n)u* (n - l)4. (1.61)

Next, we simplify the left-hand side of Eq. (1.61) by interchanging the expectation and 
summation and by recognizing that the expectation 𝔼[u(n - k)u*(n - l)] equals the auto-
correlation function of the AR process for a lag of l - k. We simplify the right-hand side 
by observing that the expectation 𝔼[n(n)u*(n - l)] is zero for l 7 0, since u(n - l) involves 
only samples of white noise at the filter input in Fig. 1.2(b) up to time n - l, which are 
uncorrelated with the white-noise sample n(n). Accordingly, we simplify Eq. (1.61) to

 a
M

k = 0
a*

kr(l - k) = 0,   l 7 0, (1.62)

where a0 = 1. We thus see that the autocorrelation function of the AR process satisfies 
the difference equation

 r(l) = w*
1r(l - 1) + w*

 2r(l - 2) + g + w*
Mr(l - M),   l 7 0, (1.63)

where wk = -ak, k = 1, 2, . . . , M. Note that Eq. (1.63) is analogous to the difference equa-
tion satisfied by the AR process u(n) itself.

We may express the general solution of Eq. (1.63) as

 r(m) = a
M

k = 1
Ck p

m
k , (1.64)

where C1, C2, . . . , CM are constants and p1, p2, . . . , pM are roots of the characteristic  
Eq. (1.51). Note that when the AR model of Fig. 1.2(b) satisfies the condition for 
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asymptotic stationarity, |pk| < 1 for all k, in which case the autocorrelation function 
r(m) approaches zero as the lag m approaches infinity.

The exact form of the contribution made by a pole pk in Eq. (1.64) depends on 
whether the pole is real or complex. When pk is real, the corresponding contribution 
decays geometrically to zero as the lag m increases. We refer to such a contribution as a 
damped exponential. On the other hand, complex poles occur in conjugate pairs, and the 
contribution of a complex-conjugate pair of poles is in the form of a damped sine wave. 
We thus find that, in general, the autocorrelation function of an asymptotically station-
ary AR process consists of a mixture of damped exponentials and damped sine waves.

1.8 yulE–WAlkER EquATionS

In order to uniquely define the AR model of order M, depicted in Fig. 1.2(b), we need 
to specify two sets of model parameters:

 1. The AR coefficients a1, a2, . . . , aM.
 2. The variance s2

n of the white noise n(n) used as excitation.

We now address these two issues in turn.
First, writing Eq. (1.63) for l = 1, 2, . . . , M, we get a set of M simultaneous equations 

with the values r(0), r(1), . . . , r(M) of the autocorrelation function of the AR process as 
the known quantities and the AR parameters a1, a2, . . . , aM as the unknowns. This set of 
equations may be expressed in the expanded matrix form

 D r(0)
r*(1)
f
r*(M - 1)

r(1)
r(0)
f
r*(M - 2)

g
g
 f
g

r(M - 1)
r(M - 2)
f
r(0)

T  D w1

w2

f
wM

T = D r*(1)
r*(2)
f

r*(M)

T , (1.65)

where wk = -ak. The set of Eqs. (1.65) is called the Yule–Walker equations (Yule, 1927; 
Walker, 1931).

We may express the Yule–Walker equations in the compact matrix form

 Rw = r. (1.66)

Assuming that the correlation matrix R is nonsingular (i.e., the inverse matrix R-1 
exists), we obtain the solution of Eq. (1.66) as

 w = R- 1r, (1.67)

where

 w = [w1, w2, c , wM]T. 

The correlation matrix R is defined by Eq. (1.21), and the vector r is defined by  
Eq. (1.28). From these two equations, we see that we may uniquely determine both 
the matrix R and the vector r, given the autocorrelation sequence r(0), r(1), . . . , r(M). 
Hence, using Eq. (1.67), we may compute the coefficient vector w and, therefore, the 
AR coefficients ak = -wk, k = 1, 2, . . ., M. In other words, there is a unique relationship 
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between the coefficients a1, a2, . . . , aM of the AR model and the normalized correlation 
coefficients r1, r2, c, rM of the AR process u(n), as shown by

 {a1, a2, c, aM} ∆ {r1, r2, c, rM}, (1.68)

where the kth correlation coefficient is defined by

 rk =
r(k)

r(0)
,    k = 1, 2, c , M. (1.69)

variance of the White noise

For l = 0, we find that the expectation on the right-hand side of Eq. (1.61), in light of  
Eq. (1.42), assumes the special form

  𝔼[n(n)u*(n)] = 𝔼[n(n)n*(n)] 

  = s2
n,  (1.70)

where s2
n is the variance of the zero-mean white noise n(n). Accordingly, setting l = 0 

in Eq. (1.61) and performing a complex conjugation on both sides, we get the formula

 s2
n = a

M

k = 0
akr(k), (1.71)

with a0 = 1, for the variance of the white noise. Hence, given the autocorrelations r(0), 
r(1), . . . , r(M), we may determine the white-noise variance s2

n.

1.9  CoMPuTER ExPERiMEnT: AuToREgRESSivE PRoCESS  
of oRDER TWo

To illustrate the theory just developed for the modeling of an AR process, we consider 
the example of a second-order AR process that is real valued.3 Figure 1.6 shows the 
block diagram of the model used to generate this process. The time-domain description 
of the process is governed by the second-order difference equation

 u(n) + a1u(n - 1) + a2u(n - 2) = n(n), (1.72)

where n(n) is drawn from a white-noise process of zero mean and variance s2
n. Figure 1.7(a) 

shows one realization of this white-noise process. The variance s2
n is chosen to make the 

variance of u(n) equal unity.

Conditions for Asymptotic Stationarity

The second-order AR process u(n) has the characteristic equation

 1 + a1z
-1 + a2z

-2 = 0. (1.73)

3In this example, we follow the approach described by Box and Jenkins (1976).
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Let p1 and p2 denote the two roots of this equation:

 p1, p2 =
1
2

 (-a1 { 2a2
1 - 4a2). (1.74)

To ensure the asymptotic stationarity of u(n), we require that these two roots lie inside 
the unit circle in the z-plane. That is, both p1 and p2 must have a magnitude less than 
unity. This restriction, in turn, requires that the AR parameters a1 and a2 lie in the tri-
angular region defined by

  -1 … a2 + a1, 

  -1 … a2 - a1, (1.75)

and

  -1 … a2 … 1,  

as shown in Fig. 1.8.

Autocorrelation function

The autocorrelation function r(m) of an asymptotically stationary AR process for lag 
m satisfies the difference Eq. (1.63). Hence, using this equation, we obtain the following 
second-order difference equation for the autocorrelation function of a second-order 
AR process:

 r(m) + a1r(m - 1) + a2r(m - 2) = 0, m 7 0. (1.76)

Sample of
AR process
of order 2,
u(n)

Sample of
white noise,
n(n)

z–1

z–1

a2

g

g

a1

u(n – 2)

u(n – 1)

+

–

FigurE 1.6 Model of (real-valued) AR process of order 2.

M01_HAYK4083_05_SE_C01.indd   71 21/06/13   8:19 AM



W
hi

te
 n

oi
se

, n
(n

)
A

R
 p

ro
ce

ss
, u

(n
)

A
R

 p
ro

ce
ss

, u
(n

)
A

R
 p

ro
ce

ss
, u

(n
)

0 256
Time, n

(d)

(c)

(b)

(a)

FigurE 1.7 (a) One realization of white-noise input; (b), (c), (d) corresponding outputs of 
AR model of order 2 for parameters of Eqs. (1.79), (1.80), and (1.81), respectively.
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For the initial values, we have (as will be explained later)

 r(0) = s2
u (1.77)

and

  r(1) =
-a1

1 + a2
 s2

u. 

Thus, solving Eq. (1.76) for r(m), we get (for m > 0)

 r(m) = s2
u c

p1(p2
2 - 1)

(p2 - p1)(p1p2 + 1)
 pm

1 -
p2(p2

1 - 1)

(p2 - p1)(p1p2 + 1)
 pm

2 d , (1.78)

where p1 and p2 are defined by Eq. (1.74).
There are two specific cases to be considered, depending on whether the roots p1 

and p2 are real or complex.

Case 1: Real Roots. This case occurs when

 a2
1 - 4a2 7 0, 

1

0 2–2

–1

Region 1 Region 2

a1

a2

Complex
roots

FigurE 1.8 Permissible region for the AR parameters a1 and a2.
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which corresponds to regions 1 and 2 below the parabolic boundary in Fig. 1.8. In region 
1, the autocorrelation function remains positive as it damps out, corresponding to a 
positive dominant root. This situation is illustrated in Fig. 1.9(a) for the AR parameters

  a1 = -0.10 

(1.79)and

  a2 = -0.8.  

In Fig. 1.7(b), we show the time variation of the output of the model in Fig. 1.6 [with a1 
and a2 assigned the values given in Eq. (1.79)]. This output is produced by the white-
noise input shown in Fig. 1.7(a).

In region 2 of Fig. 1.8, the autocorrelation function alternates in sign as it damps 
out, corresponding to a negative dominant root. This situation is illustrated in Fig. 1.9(b) 
for the AR parameters

 a1 = 0.1 

(1.80)and 

 a2 = -0.8. 

In Fig. 1.7(c), we show the time variation of the output of the model in Fig. 1.6 [with 
a1 and a2 assigned the values given in Eq. (1.80)]. This output is also produced by the 
white-noise input shown in Fig. 1.7(a).

Case 2: Complex-Conjugate Roots. This second case occurs when

 a2
1 - 4a2 6 0, 

which corresponds to the shaded region shown in Fig. 1.8 above the parabolic boundary. 
Here, the autocorrelation function displays a pseudoperiodic behavior, as illustrated in 
Fig. 1.9(c) for the AR parameters

  a1 = -0.975 

(1.81)and

  a2 = 0.95.  

In Fig. 1.7(d), we show the time variation of the output of the model in Fig. 1.6 [with 
a1 and a2 assigned the values given in Eq. (1.81)]. This output, too, is produced by the 
white-noise input shown in Fig. 1.7(a).

yule–Walker Equations

Substituting the value M = 2 for the order of the AR model of Eq. (1.65), we get the 
following Yule–Walker equations for the second-order AR process:

 Jr(0)
r(1)

r(1)
r(0)

R  Jw1

w2
R = Jr(1)

r(2)
R  .  (1.82)
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Section 1.9 Computer Experiment: Autoregressive Process of Order Two    75

M01_HAYK4083_05_SE_C01.indd   75 21/06/13   8:19 AM



76   Chapter 1  Stochastic Processes and Models 

Here, we have used the fact that r(–1) = r(1) for a real-valued process. Solving Eq. (1.82) 
for w1 and w2, we get

  w1 = -a1 =
r(1)[r(0) - r(2)]

r 2(0) - r 2(1)
 

(1.83)and

  w2 = -a2 =
r(0)r(2) - r 2(1)

r 2(0) - r 2(1)
. 

We may also use Eq. (1.82) to express r(1) and r(2) in terms of the AR parameters a1 
and a2; that is,

  r(1) = a -a1

1 + a2
bs2

u  

(1.84)and

  r(2) = a-a2 +
a2

1

1 + a2
bs2

u, 

where s2
u = r(0). This solution explains the initial values for r(0) and r(1) that were 

quoted in Eq. (1.77).

1.0

0.0

–1.0
0 50 100

Lag, m

r
m

=
 r

(m
)/

r(
0)

(c)

FigurE 1.9  (continued)
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The conditions for asymptotic stationarity of the second-order AR process are 
given in terms of the AR parameters a1 and a2 in Eq. (1.75). Using the expressions for 
r(1) and r(2) in terms of a1 and a2 given in Eq. (1.84), we may reformulate the conditions 
for asymptotic stationarity as

  -1 6 r1 6 1, 

  -1 6 r2 6 1, 
(1.85)

and

 r2
1 6

1
2

 (1 + r2), 

where

 r1 =
r(1)

r(0)
 

(1.86)and

 r2 =
r(2)

r(0)
 

are the normalized correlation coefficients. Fig. 1.10 shows the admissible region for r1 
and r2.

variance of the White noise

Putting M = 2 in Eq. (1.71), we may express the variance of the white noise n(n) as

 s2
n = r(0) + a1r(1) + a2r(2). (1.87)

Next, substituting Eq. (1.84) into Eq. (1.87), and solving for s2
u = r(0), we get

 s2
u = a1 + a2

1 - a2
b  

s2
n

[(1 + a2)
2 - a2

1]
. (1.88)

For the three sets of AR parameters considered previously, we thus find that the  variance 
of the white noise n(n) has the values given in Table 1.1, assuming that s2

u = 1.

TAblE 1.1 AR Parameters and Noise Variance

a1 a2 s2
n

- 0.10 - 0.8 0.27
0.1 - 0.8 0.27

- 0.975 0.95 0.0731
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1.10 SElECTing THE MoDEl oRDER

The representation of a stochastic process by a linear model may be used for synthesis 
or analysis. In synthesis, we generate a desired time series by assigning a prescribed set 
of values to the parameters of the model and feeding it with white noise of zero mean 
and prescribed variance. In analysis, on the other hand, we estimate the parameters of 
the model by processing a given time series of finite length. Insofar as the estimation 
is statistical, we need an appropriate measure of the fit between the model and the 
observed data. This implies that, unless we have some prior information, the estimation 
procedure should include a criterion for selecting the model order (i.e., the degrees of 
freedom in the model). In the case of an AR process defined by Eq. (1.42), the model 
order equals M. In the case of an MA process defined by Eq. (1.52), the model order 
equals K. In the case of an ARMA process defined by Eq. (1.53), the model order equals 
(M, K). Various criteria for selecting the model order are described in the literature 
(Priestley, 1981; Kay, 1988). In this section, we describe two such important criteria, one 
of which was pioneered by Akaike (1973, 1974) and the other by Rissanen (1978) and 

–1

–1

1

1

r
1

r
2

2–1/ 21/

0

FigurE 1.10 Permissible region for parameters of second-order AR process in terms of the 
normalized correlation coefficients r1 and r2.
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Schwartz (1978); both criteria result from the use of information-theoretic arguments, 
but in entirely different ways.

An information-Theoretic Criterion

Let ui = u(i), i = 1, 2, . . . , N, denote the data obtained by N independent observations 
of a stationary discrete-time stochastic process and g(ui) denote the probability density 
function of ui. Let fU (ui ∙    𝛉n m) denote the conditional probability density function of ui, 
given  𝛉n m, the estimated vector of parameters that model the process. Let m be the model 
order, so that we may write

    𝛉n m = [ un1m,  un2m, c ,  unmm]T. (1.89)

We thus have several models that compete with each other to represent the process of 
interest. An information-theoretic criterion (AIC) proposed by Akaike selects the model 
for which the quantity

 AIC(m) = -2L(𝛉n 

 
m) + 2m (1.90)

is a minimum. The function

 L(𝛉n 
m) = maxa

N

i = 1
ln fU(ui 0 𝛉n 

 
m), (1.91)

where ln denotes the natural logarithm. The criterion expressed in Eq. (1.91) is derived 
by minimizing the Kullback–Leibler divergence,4 which is used to provide a measure of 
the divergence between the “unknown” true probability density function g(u) and the 
conditional probability density function fU(ui 0 𝛉n 

 
m) given by the model in light of the 

observed data.
The function L(𝛉n 

 
m), constituting the first term on the right-hand side of Eq. (1.90), 

except for a scalar, is recognized as a logarithm of the maximum-likelihood estimates of 
the parameters in the model. (The method of maximum likelihood is briefly reviewed in 
Appendix D.) The second term, 2m, represents a model complexity penalty that makes 
AIC(m) an estimate of the Kullback–Leibler divergence.

The first term in the equation tends to decrease rapidly with the model order m. 
On the other hand, the second term increases linearly with m. The result is that if we 
plot AIC(m) versus m, the graph will, in general, show a definite minimum value, and the 
optimum order of the model is determined by that value of m at which AIC(m) attains 
its minimum value, which, incidentally, is called MAIC (minimum AIC).

4In Akaike (1973, 1974, 1977) and in Ulrych and Ooe (1983), Eq. (1.90) is derived from the principle 
of minimizing the expectation 

Dg}  f (𝛉n 

 
m) = L

∞

-∞
g(u) ln g(u)du - L

∞

-∞
g(u) ln fU(u 0 𝛉n 

 
m) du.

We refer to Dg}  f(𝛉n 

 
m) as the Kullback–Leibler divergence for discrimination between the two probabil-

ity density functions g(u) and fU(u 0 𝛉n 

 
m) (Kullback & Leibler, 1951). The idea is to minimize the information 

added to the time series by modeling it as an AR, MA, or ARMA process of finite order, since any information 
added is virtually false information in a real-world situation. Because g(u) is fixed and unknown, the problem 
of maximizing the second term that makes up Dg}  f (𝛉n  

m) reduces to one. 
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Minimum Description length Criterion

Rissanen (1978, 1989) used an entirely different approach to solve the statistical model 
identification problem. Specifically, he started with the notion that a model may be viewed 
as a device for describing the regular features of a set of observed data, with the objective 
being that of searching for a model that best captures the regular features or constraints 
that give the data their special structure. Recognizing that the presence of constraints 
reduces uncertainty about the data, we note that the objective may equally be that of 
encoding the data in the shortest or least redundant manner. The term “encoding,” as 
used here, refers to an exact description of the observed data. Accordingly, the number of 
binary digits needed to encode both the observed data, when advantage is taken of the 
constraints offered by a model, and the model itself may be used as a criterion for measur-
ing the amount of the same constraints and therefore the goodness of the model.

We may thus formally state Rissanen’s minimum description length (MDL) crite-
rion5 as follows:

Given a data set of interest and a family of competing statistical models, the best 
model is the one that provides the shortest description length for the data.

In mathematical terms, this model is defined by6 (Rissanen, 1978, 1989; Wax, 1995)

 MDL(m) = -L(𝛉n  

m) +
1
2

 m ln N, (1.92)

where m is the number of independently adjusted parameters in the model and N 
is the sample size (i.e., the number of observations). As with Akaike’s information- 
theoretic criterion, L( 𝛉n m) is the logarithm of the maximum-likelihood estimates of the 
model parameters. In comparing Eqs. (1.90) and (1.92), we see that the principal dif-
ference between the AIC and MDL criteria lies in the structure-dependent term.

According to Rissanen (1989), the MDL criterion offers the following attributes:

	 •	 The model permits the shortest encoding of the observed data and captures all of 
the learnable properties of the observed data in the best possible manner.

	 •	 The MDL criterion is a consistent model-order estimator in the sense that it con-
verges to the true model order as the sample size increases.

	 •	 The model is optimal in the context of linear regression problems as well as ARMA 
models.

5The idea of a minimum description length of individual recursively definable objects may be traced 
to Kolmogorov (1968).

6Schwartz (1989) has derived a similar result, using a Bayesian approach. In particular, he considers the 
asymptotic behavior of Bayes estimators under a special class of priors. These priors put positive probability 
on the subspaces that correspond to the competing models. The decision is made by selecting the model that 
yields the maximum a posteriori probability.

It turns out that, in the large sample limit, the two approaches taken by Schwartz and Rissanen yield 
essentially the same result. However, Rissanen’s approach is much more general, whereas Schwartz’s approach 
is restricted to the case that the observations are independent and come from an exponential distribution.
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Perhaps the most significant point to note is that, in nearly all of the applications involv-
ing the MDL criterion, no anomalous result or model with undesirable properties has 
been reported in the literature.

1.11 CoMPlEx gAuSSiAn PRoCESSES

Gaussian stochastic processes, or simply Gaussian processes, are frequently encountered 
in both theoretic and applied analysis. In this section, we present a summary of some 
important properties of Gaussian processes that are complex valued.7

Let u(n) denote a complex Gaussian process consisting of N samples. For the first-
and second-order statistics of this process, we assume the following:

 1. A mean of zero, as shown by

 m = 𝔼[u(n)] = 0    for 1, 2, c , N. (1.93)

 2. An autocorrelation function denoted by

 r(k) = 𝔼[u(n)u*(n - k)],  k = 0, 1, c , N - 1. (1.94)

  The set of autocorrelation functions 5r(k), k = 0, 1, c , N - 16  defines the 
correlation matrix R of the Gaussian process u(n).

The shorthand notation N (0, R) is commonly used to refer to a Gaussian process with 
a mean vector of zero and correlation matrix R.

Equations (1.93) and (1.94) imply wide-sense stationarity of the process. Knowledge 
of the mean m and the autocorrelation function r(k) for varying values of lag k is indeed 
sufficient for a complete characterization of the complex Gaussian process u(n). In par-
ticular, the joint probability density function of N samples of the process so described is 
defined by (Kelly et al., 1960)

  fU (u) =
1

(2p)N
 det (𝚲)

 exp a-
1
2

 uH𝚲-1ub , (1.95)

where

  u = [u(1), u(2), c , u(N)]T  

is an N-by-1 data vector and Λ is the N-by-N Hermitian-symmetric moment matrix of 
the process, defined in terms of the correlation matrix R = {r(k)} as

  𝚲 = 1
2 𝔼[uuH] (1.96)

  = 1
2 R. 

Note that the joint probability density function fU(u) is 2N-dimensional, where the fac-
tor 2 accounts for the fact that each of the N samples of the process has a real and an 

7For a detailed treatment of complex Gaussian processes, see the book by Miller (1974). Properties of 
complex Gaussian processes are also discussed in Kelly et al. (1960), Reed (1962), and McGee (1971).
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imaginary part. Note also that the probability density function of a single sample of the 
process, which is a special case of Eq. (1.95), is given by

 fU (u) =
1

ps2 exp a-
∙ u ∙2

s2 b , (1.97)

where |u| is the magnitude of the sample u(n) and s2 is its variance.
Based on the representation described herein, we may now summarize some 

important properties of a zero-mean complex Gaussian process u(n) that is wide-sense 
stationary as follows:

 1. The process u(n) is stationary in the strict sense.
 2. The process u(n) is circularly complex, in the sense that any two different samples 

u(n) and u(k) of the process satisfy the condition

 𝔼[u(n)u(k)] = 0  for n ≠ k. 

It is for this reason that the process u(n) is often referred to as a circularly complex 
Gaussian process.

 3. Let un = u(n), n = 1, 2, . . . , N, denote samples picked from a zero-mean, complex 
Gaussian process. According to Reed (1962)

 (a) If k ≠ l, then

 𝔼[u*s1
u*s2

c u*sk
ut1ut2 c utl] = 0, (1.98)

   where si and tj are integers selected from the available set 51, 2, c , N6 .
 (b) If k = l, then

 𝔼[u*s1
u*s2

c u*sl
ut1ut2 c utl] = p𝔼[u*sp(1)

ut1]𝔼[u*sp(2)
ut2] c 𝔼[u*sp(l)

ut1], (1.99)

where π is a permutation of the set of integers 51, 2, c , l6  and p( j) is the jth 
element of that permutation. For the set of integers 51, 2, c , l6 , we have a 
total of l! possible permutations. This means that the right-hand side of Eq. (1.99) 
consists of the sum of l! expectation product terms. Equation (1.99) is called the 
Gaussian moment-factoring theorem.

ExAMPlE 2   

Consider first the odd case of N = 3, for which the complex Gaussian process u(n) consists of the 
three samples u1, u2, and u3. Applying Eq. (1.98) yields the null result:

 𝔼[u*1u*2u3] = 0. (1.100)

Consider next the even case of N = 4, for which the complex Gaussian process u(n) consists of 
the four samples u1, u2, u3, and u4. The use of the Gaussian moment-factoring theorem given in 
Eq. (1.99) yields the identity:

 𝔼[u*1u*2u3u4] = 𝔼[u*1u3]𝔼[u*2u4] + 𝔼[u*2u3]𝔼[u*1u4]. (1.101)

(For other useful identities derived from the Gaussian moment-factoring theorem, see Problem 13.)
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1.12 PoWER SPECTRAl DEnSiTy

The autocorrelation function, defined in Section 1.1 and used thereafter, is a time-
domain description of the second-order statistics of a stochastic process. The frequency-
domain counterpart of this statistical parameter is the power spectral density, which is 
also referred to as the power spectrum or, simply, spectrum. Indeed, the power spectral 
density of a stochastic process is firmly established as the most useful description of the 
time series commonly encountered in engineering and physical sciences.

To proceed with the definition of the power spectral density, consider again a wide-
sense stationary discrete-time stochastic process whose mean is zero and whose auto-
correlation function is denoted by r(l) for lag l = 0, {1, {2, . . .. Let the infinitely long 
time series u(n), n = 0, {1, {2, . . . , denote a single realization of the process. Initially, 
we focus attention on a windowed portion of this time series by writing

 uN(n) = bu(n),
0,

n = 0, {1, c, {N.
0 n 0 7 N

 (1.102)

Then we permit the length 2N + 1 to approach infinity. By definition, the discrete-time 
Fourier transform of the windowed time series uN(n) is given by

 UN (v) = a
N

n = -N
uN (n)e - jvn, (1.103)

where v is the angular frequency, lying in the interval (-p, p]. In general, UN(v) is 
complex valued; specifically, its complex conjugate is given by

 U *
N (v) = a

N

k = -N
u*

N(k)ejvk, (1.104)

where the asterisk denotes complex conjugation. In Eq. (1.104) we have used the vari-
able k to denote discrete time for reasons that will become apparent immediately. In 
particular, we multiply Eq. (1.103) by (1.104) to express the squared magnitude of UN(n) 
as follows:

 ∙ UN (v) ∙2 = a
N

n = -N
a
N

k = -N
uN (n)u*

N (k)e - jv(n - k). (1.105)

Each realization UN(n) produces such a result. The expected result is obtained by taking 
the statistical expectation of both sides of Eq. (1.105) and interchanging the order of 
expectation and double summation:

 𝔼[ ∙ UN (v) ∙2] = a
N

n = -N
a
N

k = -N
𝔼[uN (n)u*

N (k)]e - jv(n - k). (1.106)

We are permitted to do this interchange as we are dealing with linear operations. We 
now recognize that, for the wide-sense stationary discrete-time stochastic process under 
discussion, the autocorrelation function of uN(n) for lag n - k is

 rN (n - k) = 𝔼[uN (n)u*
N(k)], (1.107)
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which may be rewritten as follows, in light of the defining Eq. (1.102):

 rN(n - k) = b𝔼[u(n)u*(k)] = r(n - k)
0

for -N … (n, k) … N
otherwise

. (1.108)

Accordingly, Eq. (1.106) takes on the form

 𝔼[ ∙ UN (v) ∙2] = a
N

n = - N
a
N

k = - N
r(n - k)e - jv(n - k). (1.109)

Let l = n – k, and so rewrite Eq. (1.109) as

 
1
N

 𝔼[ ∙ UN (v) ∙2] = a
N

l = -N
a1 -

∙ l ∙
N

br(l)e-jvl. (1.110)

Equation (1.110) may be interpreted as the discrete-time Fourier transform of the prod-
uct of two time functions: the autocorrelation function rN(l) for lag l, and a triangular 
window known as the Bartlett window. The latter function is defined by

 
wB1l2 = c 1 -

0 l 0
N

,

0,

0 l 0 … N

0 l 0 Ú N
. (1.111)

As N approaches infinity, wB(l) approaches unity for all l. Correspondingly, we may write

 lim
NS∞

 
1
N

 𝔼[ ∙ UN (v) ∙2] = a
∞

l = - ∞
r(l)e - jvl, (1.112)

where r(l) is the autocorrelation function of the original time series u(n). To be precise, 
Eq. (1.112) holds under the condition

 lim
NS∞

1
2N + 1

 a
N - 1

l = - N + 1
∙ l ∙r(l)e - jvl = 0. 

Equation (1.112) leads us to define the quantity

 S(v) = lim
NS∞

 
1
N

 𝔼[ ∙ UN (v) ∙2], (1.113)

where ∙ UN (v) ∙2
 >  N is called the periodogram of the windowed time series uN(n). Note 

that the order of expectation and limiting operations indicated in Eq. (1.113) cannot be 
changed. Note also that the periodogram converges to S (v) only in the mean value, not 
in the mean square or any other meaningful way.

When the limit in Eq. (1.113) exists, the quantity S(v) has the following interpreta-
tion (Priestley, 1981):

 S(v)dv =  average of the contribution to the total power from components of 
a wide-sense stationary stochastic process with angular frequencies 
located between w and w + dw; the average is taken over all possible  
realizations of the process. (1.114)
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Accordingly, the quantity S(v) is the “spectral density of expected power,” which is abbre-
viated as the power spectral density of the process. Thus, equipped with the definition of 
power spectral density given in Eq. (1.113), we may now rewrite Eq. (1.112) as

 S(v) = a
∞

l = -∞
r(l)e - jvl. (1.115)

In sum, Eq. (1.113) gives a basic definition of the power spectral density of a wide-sense 
stationary stochastic process, and Eq. (1.115) defines the mathematical relationship 
between the autocorrelation function and the power spectral density of such a process.

1.13 PRoPERTiES of PoWER SPECTRAl DEnSiTy

Property 1. The autocorrelation function and power spectral density of a wide-
sense stationary stochastic process form a Fourier transform pair.

Consider a wide-sense stationary stochastic process represented by the time series 
u(n), assumed to be of infinite length. Let r(l) denote the autocorrelation function of 
such a process for lag l, and let S(v) denote the power spectral density of the process. 
According to Property 1, these two quantities are related by the pair of relations

 S(v) = a
∞

l = -∞
r(l)e-jvl,  -p 6 v … p (1.116)

and

 r(l) =
1

2p
 L

p

-p
S(v)ejvl dv,  l = 0, {1, {2, c . (1.117)

Equation (1.116) states that the power spectral density is the discrete-time Fourier transform 
of the autocorrelation function. On the other hand, Eq. (1.117) states that the autocorrela-
tion function is the inverse discrete-time Fourier transform of the power spectral density. 
This fundamental pair of equations constitutes the Einstein–Wiener–Khintchine relations.

In a way, we already have a proof of this property. Specifically, Eq. (1.116) is merely a 
restatement of Eq. (1.115), previously established in Section 1.12. Equation (1.117) follows 
directly from this result by invoking the formula for the inverse discrete-time Fourier transform.

Property 2. The frequency support of the power spectral density S(v) is the 
Nyquist interval -p 6 v … p.

Outside this interval, S(v) is periodic, as shown by the relationship

 S(v + 2kp) = S(v)   for integer k. (1.118)

Property 3. The power spectral density of a stationary discrete-time stochastic 
process is real.

To derive this property, we rewrite Eq. (1.116) as

 S(v) = r(0) + a
∞

k = 1
r(k)e - jvk + a

- 1

k = - ∞
r(k)e - jvk. 
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Replacing k with –k in the third term on the right-hand side of this equation, and rec-
ognizing that r(-k) = r*(k), we get

  S(v) = r(0) + a
∞

k = 1
[r(k)e - jvk + r*(k)ejvk] 

  = r(0) + 2a
∞

k = 1
Re[r(k)e - jvk],  

(1.119)

where Re denotes the real-part operator. Equation (1.119) shows that the power spectral 
density S(v) is a real-valued function of v. It is because of this property that we have 
used the notation S(v) rather than S(ejv) for the power spectral density.

Property 4. The power spectral density of a real-valued stationary discrete-time 
stochastic process is even (i.e., symmetric); if the process is complex valued, its power 
spectral density is not necessarily even.

For a real-valued stochastic process, we find that S(-v) = S(v), indicating that 
S(v) is an even function of v; that is, it is symmetric about the origin. If, however, the pro-
cess is complex valued, then r(-k) = r*(k), in which case we find that S(-v) ≠ S(v), 
and S(v) is not an even function of v.

Property 5. The mean-square value of a stationary discrete-time stochastic process 
equals, except for the scaling factor 1>2p, the area under the power spectral density curve 
for -p 6 v … p.

This property follows directly from Eq. (1.117), evaluated for l = 0. For this condi-
tion, we may thus write

 r(0) =
1

2p
 L

p

-p
S(v) dv. (1.120)

Since r(0) equals the mean-square value of the process, we see that Eq. (1.120) is a 
mathematical description of Property 5. The mean-square value of a process is equal 
to the expected power of the process developed across a load resistor of 1 Ω. On this 
basis, the terms “expected power” and “mean-square value” are used interchangeably 
in what follows.

Property 6. The power spectral density of a stationary discrete-time stochastic pro-
cess is nonnegative.

That is,

 S(v) Ú 0  for all v. (1.121)

This property follows directly from the basic formula of Eq. (1.113), reproduced here 
for convenience of presentation:

 S(v) = lim
NS∞

 
1
N

 𝔼[ ∙UN(v) ∙2]. 
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We first note that ∙ UN (v) ∙2, representing the squared magnitude of the discrete-time 
Fourier transform of a windowed portion of the time series u(n), is nonnegative for 
all v. The expectation 𝔼[ ∙ UN (v) ∙2] is also nonnegative for all v. Thus, using the basic 
definition of S(v) in terms of UN (v), we see that the property described by Eq. (1.121) 
follows immediately.

1.14  TRAnSMiSSion of A STATionARy PRoCESS THRougH 
A linEAR filTER

Consider a discrete-time filter that is linear, time invariant, and stable. Let the filter be char-
acterized by the discrete transfer function H(z), defined as the ratio of the z-transform of 
the filter output to the z-transform of the filter input. Suppose that we feed the filter with a 
stationary discrete-time stochastic process with power spectral density S(v), as in Fig. 1.11. 
Let So (v) denote the power spectral density of the filter output. We may then write

 So (v) = ∙ H(ejv) ∙  

2S(v), (1.122)

where H(e jv) is the frequency response of the filter. The frequency response H(e jv) 
equals the discrete transfer function H(z) evaluated on the unit circle in the z-plane. 
The important feature of this result is that the value of the output spectral density at 
angular frequency v depends purely on the squared amplitude response of the filter and 
the input power spectral density at the same angular frequency v.

Equation (1.122) is a fundamental relation in stochastic process theory. To derive 
it, we may proceed as follows: Let y(n) denote the filter output in Fig. 1.11 produced in 
response to u(n) applied to the filter input. Assuming that u(n) represents a wide-sense 
stationary discrete-time stochastic process, we find that y(n) also represents a wide-sense 
stationary discrete-time stochastic process modified by the filtering operation. Thus, 
given the autocorrelation function of the filter input u(n), written as

 ru (l) = 𝔼[u(n)u*(n - l)], 

we may express the autocorrelation function of the filter output y(n) in a correspond-
ing way as

 ry  (l) = 𝔼[y(n)y*(n - l)], (1.123)

where y(n) is related to u(n) by the convolution sum

 y(n) = a
∞

i = -∞
h(i)u(n - i). (1.124)

Stationary
process
with power
spectrum
S(v)

Stationary
process 
with power
spectrum
So(v)

Discrete-time
linear �lter

FigurE 1.11 Transmission of stationary process through a discrete-time linear filter.
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Similarly, we may write

 y*(n - l) = a
∞

k = - ∞
h*(k)u*(n - l - k). (1.125)

Substituting Eqs. (1.124) and (1.125) into Eq. (1.123) and interchanging the orders of 
expectation and summation, we find that the autocorrelation functions ry(l) and ru(l), 
for lag l, are related by

 ry  (l) = a
∞

i = - ∞
a
∞

k = - ∞
h(i)h*(k)ru (k - i + l). (1.126)

Finally, taking the discrete-time Fourier transforms of both sides of Eq. (1.126), and 
invoking Property 1 of the power spectral density and the fact that the transfer function 
of a linear filter is equal to the Fourier transform of its impulse response, we get the 
result described in Eq. (1.122).

Power Spectrum Analyzer

Suppose that the discrete-time linear filter in Fig. 1.11 is designed to have a bandpass 
characteristic. That is, the amplitude response of the filter is defined by

 ∙ H(ejv)∙ = e1, ∙v - vc∙ … ∆v

0, remainder of the interval -p 6 v … p.
 (1.127)

This amplitude response is depicted in Fig. 1.12. We assume that the angular bandwidth 
of the filter, 2∆v, is small enough for the spectrum inside this bandwidth to be essen-
tially constant. Then, using Eq. (1.122), we may write

 So (v) = eS(vc), ∙v - vc∙ … ∆v

0, remainder of the interval -p 6 v … p.
 (1.128)

–vc

2¢v

vc
v

2¢v

0

1

|H(e jw)|

FigurE 1.12 Ideal bandpass characteristic.
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Next, using Properties 4 and 5 of the power spectral density, we may express the mean-
square value of the filter output resulting from a real-valued stochastic input as

  Po =
1

2p
 L

p

-p
So(v) dv  

  =
2∆v

2p
 S(vc) +

2∆v

2p
 S(-vc)  

  = 2 
∆v

p
 S(vc)  (for real data). 

Equivalently, we may write

 S(vc) =
pPo

2∆v
, (1.129)

where ∆v>p is that fraction of the Nyquist interval that corresponds to the passband of 
the filter. Equation (1.129) states that the value of the power spectral density of the filter 
input u(n), measured at the center frequency vc, of the filter, is equal to the mean-square 
value Po of the filter output, scaled by a constant factor. We may thus use Eq. (1.129) as 
the mathematical basis for building a power spectrum analyzer, as depicted in Fig. 1.13. 
Ideally, the discrete-time bandpass filter employed here should satisfy two requirements: 
It should have a fixed bandwidth and an adjustable center frequency. Clearly, in a practi-
cal filter design, we can only approximate these two ideal requirements. Also, note that 
the reading of the average power meter at the output end of the figure approximates (for 
finite averaging time) the expected power of an ergodic process y(n).

Time series
representing
a stationary
process

Discrete-time
bandpass �lter

Power
meter

FigurE 1.13 Power spectrum 
analyzer.

ExAMPlE 3  White noise

A stochastic process of zero mean is said to be white if its power spectral density S(v) is constant 
for all frequencies, as shown by

 S(v) = s2 for -p < v … p, 

where s2 is the variance of a sample taken from the process. Suppose that this process is passed 
through a discrete-time bandpass filter characterized as in Fig. 1.12. Then, from Eq. (1.129), we 
find that the mean-square value of the filter output is

 Po =
2s2∆v

p
. 
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White noise has the property that any two of its samples are uncorrelated, as shown by the auto-
correlation function

 r(t) = s2dt, 0, 

where dt, 0 is the Kronecker delta:

 dt, 0 = e1, t = 0
0, otherwise

. 

If the white noise is Gaussian, then any two samples of the process are statistically indepen-
dent. In a sense, white Gaussian noise represents the ultimate in randomness.

1.15  CRAMéR SPECTRAl REPRESEnTATion  
foR A STATionARy PRoCESS

Equation (1.113) provides one way of defining the power spectral density of a wide-sense 
stationary process. Another way of defining the power spectral density is to use the Cramér 
spectral representation for a stationary process. According to this representation, a discrete-
time stochastic process u(n) is described by the inverse Fourier transform (Thomson, 1982):

 u(n) =
1

2p
 L

p

-p
ejvn dZ (v). (1.130)

If the process u(n) is wide-sense stationary with no periodic components, then the incre-
ment process dZ (v) has two basic properties:

 1. The mean of dZ (v) is zero; that is,

 𝔼[dZ (v)] = 0  for all v. (1.131)

 2. The generalized spectral density, in terms of the increment process, is given by

 𝔼[dZ (v) dZ*(n)] = S(v) d(v - n)dv dn. (1.132)

  The d(v) is the delta function in the v-domain; for a continuous function G(v), it 
satisfies the sifting property

 
1

2p
 L

p

-p
G(n)d(v - n) dn = G(v). (1.133)

In other words, for a wide-sense stationary discrete-time stochastic process u(n), the 
increment process dZ(v) defined by Eq. (1.130) is a zero-mean orthogonal process. More 
 precisely, dZ(v) may be viewed as a “white process” described in the frequency domain 
in a manner similar to the way ordinary white noise is described in the time domain.

Equation (1.133), in conjunction with Eq. (1.132), provides another basic defini-
tion for the power spectral density S(v). Taking the complex conjugate of both sides of  
Eq. (1.130) and using n in place of v, we get

 u*(n) =
1

2p
 L

p

-p
e-jnn dZ* (n). (1.134)
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Hence, multiplying Eq. (1.130) by Eq. (1.134), we may express the squared magnitude of u(n) as

 ∙u(n) ∙2 =
1

(2p)2 L
p

-p L
p

-p
ejn(v- v) dZ (v) dZ* (n). (1.135)

Next, taking the statistical expectation of Eq. (1.135) and interchanging the order of 
expectation and double integration, we get

 𝔼[ ∙u(n) ∙ ]2 =
1

(2p)2 L
p

-p L
p

-p
ejn(v- v)𝔼[dZ (v) dZ* (n)]. (1.136)

If we now use the basic property of the increment process dZ (v) described by  
Eqs. (1.132) and (1.133), we may simplify Eq. (1.136) to the form

 𝔼[ ∙u(n) ∙2] =
1

2p
 L

p

-p
S(v) dv. (1.137)

The expectation 𝔼[ ∙ u(n) ∙2] on the left-hand side of Eq. (1.137) is recognized as the mean-
square value of u(n). The right-hand side of this equation equals the total area under 
the curve of the power spectral density S(v), scaled by the factor 1>2p. Accordingly, 
Eq. (1.137) is merely a restatement of Property 5 of the power spectral density S(v), 
described by Eq. (1.120).

The fundamental Equation

Using the dummy variable n in place of v in the Cramér spectral representation given 
in Eq. (1.130) and then substituting the result into Eq. (1.103), we get

 UN (v) =
1

2p
 L

p

-p
a
N

n = -N
(e - j(v-n)n) dZ (n), (1.138)

where we have interchanged the order of summation and integration. Next, we define

 KN (v) = a
N

n = - N
e - jvn, (1.139)

which is known as the Dirichlet kernel. The kernel KN (v) represents a geometric series 
with a first term equal to ejvN, a common ratio of e-jv, and a total number of terms equal 
to 2N + 1. Summing this series, we may redefine the kernel as

  KN (v) =
ejvN(1 - e-jv(2N + 1))

1 - e-jv  

  =
sin((2N + 1)v  >  2)

sin(v  >  2)
.  (1.140)

Note that KN(0) = 2N + 1. Returning to Eq. (1.138), we may use the definition of the 
Dirichlet kernel KN (v) given in Eq. (1.139) to write

 UN (v) =
1

2p
 L

p

-p
KN (v - n) dZ (n). (1.141)
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The integral Eq. (1.141) is a linear relation referred to as the fundamental equation of 
power spectrum analysis.

An integral equation involves an unknown function under the integral sign. In the 
context of power spectrum analysis as described by Eq. (1.141), the increment variable 
dZ(v) is the unknown function, and UN (v) is known. Accordingly, that equation may 
be viewed as an example of a Fredholm integral equation of the first kind (Morse & 
Feshbach, 1953; Whittaker & Watson, 1965).

Note that UN (v) may be inverse Fourier transformed to recover the original data. 
It follows, therefore, that UN (v) is a sufficient statistic for determining the power spectral 
density. This property makes the use of Eq. (1.141) for spectrum analysis all the more 
important.

1.16 PoWER SPECTRuM ESTiMATion

An issue of practical importance is how to estimate the power spectral density of a wide-
sense stationary process. Unfortunately, this issue is complicated by the fact that there 
is a bewildering array of power spectrum estimation procedures, with each procedure 
purported to have or to show some optimum property. The situation is made worse by 
the fact that, unless care is taken in the selection of the right method, we may end up 
with misleading conclusions.

Two philosophically different families of power spectrum estimation methods can 
be identified in the literature: parametric methods and nonparametric methods. The basic 
ideas behind these methods are discussed next.

Parametric Methods

In parametric methods of spectrum estimation, we begin by postulating a stochastic 
model for the situation at hand. Depending on the specific model adopted, we may 
identify three different parametric approaches for spectrum estimation:

 1. Model-identification procedures. In this class of parametric methods, a rational 
function or a polynomial in e-jv is assumed for the transfer function of the model, 
and a white-noise source is used to drive the model, as depicted in Fig. 1.14. The 
power spectrum of the resulting model output provides the desired spectrum esti-
mate. Depending on the application of interest, we may adopt one of the following 
models (Kay & Marple, 1981; Marple, 1987; Kay, 1988):

 (i) An autoregressive (AR) model with an all-pole transfer function.
 (ii) A moving-average (MA) model with an all-zero transfer function.

White noise of
zero mean and
variance s2

Parameterized process
with a rational power
spectrum equal to s2|H(e jv)|2

Stochastic model of
process u(n),
characterized by
transfer function H(e jv)

FigurE 1.14 Rationale for model-identification procedure for power spectrum estimation.
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 (iii)  An autoregressive–moving-average (ARMA) model with a pole–zero transfer 
function.

The resulting power spectra measured at the outputs of these models are referred 
to as AR, MA, and ARMA spectra, respectively. With reference to the input–out-
put relation of Eq. (1.122), set the power spectrum S(v) of the model input equal 
to the white noise variance s2. We then find that the power spectrum So (v) of 
the model output is equal to the squared amplitude response ∙ H(ejv) ∙2 of the 
model, multiplied by s2. The problem thus becomes one of estimating the model 
parameters [i.e., parameterizing the transfer function H(ejv)] such that the pro-
cess produced at the model output provides an acceptable representation (in 
some statistical sense) of the stochastic process under study. Such an approach to 
power spectrum estimation may indeed be viewed as a problem in model (system) 
identification.

Among the model-dependent spectra defined herein, the AR spectrum is 
by far the most popular. The reason for this popularity is twofold: (1) the linear 
form of the system of simultaneous equations involving the unknown AR model 
parameters and (2) the availability of efficient algorithms for computing the 
solution.

 2. Minimum-variance distortionless response method. To describe this second para-
metric approach for power spectrum estimation, consider the situation depicted in 
Fig. 1.15. The process u(n) is applied to a finite-duration impulse response (FIR) 
filter (i.e., a discrete-time filter with an all-zero transfer function). In the minimum-
variance distortionless response (MVDR) method, the filter coefficients are chosen 
so as to minimize the variance (which is the same as the expected power for a 
zero-mean process) of the filter output, subject to the constraint that the frequency 
response of the filter is equal to unity at some angular frequency v0. Under this 
constraint, the process u(n) is passed through the filter with no distortion at the 
angular frequency v0. Moreover, signals at angular frequencies other than v0 tend 
to be attenuated.

 3. Eigendecomposition-based methods. In this final class of parametric spectrum 
estimation methods, the eigendecomposition of the ensemble-average correla-
tion matrix R of the process u(n) is used to define two disjoint subspaces: sig-
nal subspace and noise subspace. This form of partitioning is then exploited to 
derive an appropriate algorithm for estimating the power spectrum (Schmidt, 1979, 
1981). (Eigenanalysis and the notion of subspace decomposition are discussed in 
Appendix E.)

Stochastic
process
u(n)

Residual process with
a power spectrum equal
to the MVDR spectrum
of the process u(n)

Optimized FIR �lter,
subject to a distortionless
response constraint at
some angular frequency v0

FigurE 1.15 Diagram illustrating the MVDR procedure for power spectrum estimation.
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nonparametric Methods

In nonparametric methods of power spectrum estimation, no assumptions are made with 
respect to the stochastic process under study. The starting point in the discussion is the 
fundamental Eq. (1.141). Depending on the way in which this equation is interpreted, 
we may distinguish two different nonparametric approaches:

 1. Periodogram-based methods. Traditionally, the fundamental Eq. (1.141) is treated 
as a convolution of two frequency functions. One, U(v), represents the discrete-
time Fourier transform of an infinitely long time series, {u(n)}; this function arises 
from the definition of the increment variable dZ(v) as the product of U(v) and 
the frequency increment dv. The other frequency function is the kernel KN (v), 
defined by Eq. (1.140). This approach leads us to consider Eq. (1.113) as the basic 
definition of the power spectral density S(v) and therefore the periodogram 
∙ UN (v) ∙2

 >  N as the starting point for the data analysis. However, the periodo-
gram suffers from a serious limitation in the sense that it is not a sufficient statistic 
for the power spectral density. This implies that the phase information ignored in 
the use of the periodogram is essential. Consequently, the statistical insufficiency 
of the periodogram is inherited by any estimate that is based on or equivalent to 
the periodogram.

 2. Multiple-window method also called the multitaper method. A more constructive 
nonparametric approach is to treat the fundamental Eq. (1.141) as a Fredholm inte-
gral equation of the first kind for the increment variable dZ(v); the goal here is to 
obtain an approximate solution of the equation with statistical properties that are 
close to those of dZ(v) in some sense (Thomson, 1982). The key to the attainment 
of this important goal is the use of windows defined by a set of special sequences 
known as Slepian sequences,8 or discrete prolate spheroidal sequences, which are 
fundamental to the study of time- and frequency-limited systems. The remarkable 
property of this family of windows is that the energy distributions of the windows 
add up in a very special way that collectively defines an ideal (in the sense of the 
total in-bin versus out-of-bin energy concentration) rectangular frequency bin. 
This property, in turn, allows us to trade spectral resolution for improved spectral 
properties (e.g., reduced variance of the spectral estimate).

In general, a discrete-time stochastic process u(n) has a mixed spectrum in that 
its power spectrum contains two components: a deterministic one and a continuous  
one. The deterministic component represents the first moment of the increment process 
dZ(v) and is explicitly given by

 𝔼[dZ(v)] = a
k

akd(v - vk) dv, (1.142)

8Detailed information on Slepian sequences is given in Slepian (1978). A method for computing such 
sequences, for large data length, is given in the appendix of the paper by Thomson (1982). [For additional 
information, see the references listed in Thomson’s paper; Mullis and Scharf (1991) also present an informative 
discussion of the role of Slepian sequences in spectrum analysis.]
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where d(v) is the Dirac delta function defined in the frequency domain. The vk are the 
angular frequencies of periodic or line components contained in the process u(n), and 
the ak are their amplitudes. The continuous component, on the other hand, represents 
the second central moment of the increment process, namely,

 𝔼[ ∙dZ (v) - 𝔼[dZ (v)] ∙2]. (1.143)

It is important that the distinction between the first and second moments be carefully 
noted.

Spectra computed using the parametric methods tend to have sharper peaks and 
higher resolution than those obtained from the nonparametric (classical) methods. The 
application of these parametric methods is therefore well suited for estimating the deter-
ministic component and, in particular, for locating the frequencies of periodic compo-
nents in additive white noise when the signal-to-noise ratio is high. Another well-proven 
technique for estimating the deterministic component is the classical method of maxi-
mum likelihood. (As mentioned previously, Appendix D briefly reviews maximum-like-
lihood estimation.) Of course, if the physical laws governing the generation of a process 
match a stochastic model (e.g., the AR model) in an exact manner or approximately in 
some statistical sense, then the parametric method corresponding to that model may be 
used to estimate the power spectrum of the process. If, however, the stochastic process 
of interest has a purely continuous power spectrum and the underlying physical mecha-
nism responsible for the generation of the process is unknown, then the recommended 
procedure is the nonparametric method of multiple windows.

In this book, we confine our attention to classes 1 and 2 of parametric methods 
of spectrum estimation, as their theory fits naturally under the umbrella of adaptive 
filters.9

1.17  oTHER STATiSTiCAl CHARACTERiSTiCS  
of A SToCHASTiC PRoCESS

In the material presented up to this point in the discussion, we have focused our atten-
tion on a partial characterization of a discrete-time stochastic process. According to 
this particular characterization, we only need to specify the mean as the first moment 
of the process and its autocorrelation function as the second moment. Since the auto-
correlation function and power spectral density form a Fourier-transform pair, we may 
equally well specify the power spectral density in place of the autocorrelation function. 
The use of second-order statistics as described in Sections 1.1 through 1.14 is adequate 
for the study of linear adaptive filters operating under the supervision of a teacher. 
However, when we move on later in the book to consider difficult applications (e.g., 
blind deconvolution), we have to resort to the use of other statistical properties of a 
stochastic process.

9For a comprehensive discussion of the other methods of spectrum analysis, see Gardner (1987), Marple 
(1987), Kay (1988), Thomson (1982), and Mullis and Scharf (1991).
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Two particular statistical properties that bring in additional information about a 
stochastic process, which can prove useful in the study of blind deconvolution, are as 
follows:

 1. High-order statistics. An obvious way of expanding the characterization of a sta-
tionary stochastic process is to include high-order statistics (HOS) of the process. 
This is done by invoking the use of cumulants and their Fourier transforms, known 
as polyspectra. Indeed, cumulants and polyspectra of a zero-mean stochastic pro-
cess may be viewed as generalizations of the autocorrelation function and power 
spectral density, respectively. It is important to note that HOS are meaningful only 
in the context of non-Gaussian processes. Furthermore, to exploit them, we need 
to use some form of nonlinear filtering.

 2. Cyclostationarity. In an important class of stochastic processes commonly encoun-
tered in practice, the mean and autocorrelation function of the process exhibit 
periodicity, as in

 m(t1 + T) = m(t1) (1.144)

and

 r(t1 + T, t2 + T) = r(t1, t2) (1.145)

for all t 1 and t 2. Both t 1 and t 2 represent values of the continuous-time variable t, 
and T denotes the period. A stochastic process satisfying Eqs. (1.144) and (1.145) 
is said to be cyclostationary in the wide sense (Franks, 1969; Gardner & Franks, 
1975; Gardner, 1994a, b). Modeling a stochastic process as cyclostationary adds 
a new dimension, namely, the period T, to the partial description of the process. 
Examples of cyclostationary processes include a modulated process obtained by 
varying the amplitude, phase, or frequency of a sinusoidal carrier.

In Sections 1.18 and 1.19, we discuss these two specific aspects of stochastic processes as 
they pertain to polyspectra and spectral-correlation density. As already mentioned, poly-
spectra provide a frequency-domain description of the HOS of a stationary stochastic 
process. By the same token, spectral-correlation density provides a frequency-domain 
description of a cyclostationary stochastic process.

1.18 PolySPECTRA

Consider a stationary stochastic process with zero mean. Let u(n), u(n + t1), g , 
u(n + tk - 1) denote the random variables obtained by observing this stochastic process 
at times n, n + t1, c, n + tk - 1, respectively. These random variables form the k-by-1 
vector

 u = [u(n), u(n + t1), c , u(n + tk - 1)]T. 

Correspondingly, define a k-by-1 vector

 z = [z1, z2, c , zk]T. 
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We may then define the kth-order cumulant of the stochastic process u(n), denoted by 
ck (t1, t2, c , tk - 1), as the coefficient of the vector z in the Taylor expansion of the cumu-
lant-generating function (Priestley, 1981; Swami & Mendel, 1990; Gardner, 1994a, b):

 K(z) = ln 𝔼[exp(zTu)]. (1.146)

The kth-order cumulant of the process u(n) is thus defined in terms of its joint moments 
of orders up to k; to simplify the presentation in this section, we assume that u(n) is real 
valued. Specifically, the second-, third-, and fourth-order cumulants are given, respec-
tively, by

 c2 (t) = 𝔼[u(n)u(n + t)], (1.147)

 c3 (t1, t2) = 𝔼[u(n)u(n + t1)u(n + t2)], (1.148)
and

  c4(t1, t2, t3) = 𝔼[u(n)u(n + t1)u(n + t2)u(n + t3)]  

  - 𝔼[u(n)u(n + t1)]𝔼[u(n + t2)u(n + t3)]  

  - 𝔼[u(n)u(n + t2)]𝔼[u(n + t3)u(n + t1)]  
(1.149)

  - 𝔼[u(n)u(n + t3)]𝔼[u(n + t1)u(n + t2)]. 

From the definitions given in Eqs. (1.147) through (1.149), we note the following:

 1. The second-order cumulant c2 (t) is the same as the autocorrelation function r(t).
 2. The third-order cumulant c3(t1, t2) is the same as the third-order moment 

𝔼[u(n)u(n + t1)u(n + t2)].
 3. The fourth-order cumulant c4 (t1, t2, t3) is different from the fourth-order moment 

𝔼[u(n)u(n + t1)u(n + t2)u(n + t3)]. In order to generate the fourth-order cumu-
lant, we need to know the fourth-order moment and six different values of the 
autocorrelation function.

Note that the kth-order cumulant c(t1, t2, c , tk - 1) does not depend on time 
n. For this to be valid, however, the process u(n) has to be stationary up to order k. A 
 process u(n) is said to be stationary up to order k if, for any admissible set of time instants  
{n1, n2, . . . , np}, all the joint moments up to order k of 5u(n1), u(n2), c , u(np)6  
exist and equal the corresponding joint moments up to order k of 5u(n1 + t), 
u(n2 + t), c , u(np + t)6 , where 5n1 + t, n2 + t, c , np + t6  is an admissible 
set, too (Priestley, 1981).

Consider next a linear time-invariant system characterized by the impulse response 
hn. Let the system be excited by a process x(n) consisting of independent and identically 
distributed (i.i.d.) samples. Let u(n) denote the resulting system output. The kth-order 
cumulant of u(n) is given by

 ck(t1, t2, c , tk - 1) = gk a
∞

i = - ∞
hihi+t1 g  hi+tk - 1

, (1.150)

where gk is the kth-order cumulant of the input process x(n). Note that the summa-
tion term on the right-hand side of Eq. (1.150) has a form similar to that of a kth-order 
moment, except that the expectation operator has been replaced by a summation.
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The kth-order polyspectrum (or kth-order cumulant spectrum) is defined by 
(Priestley, 1981; Nikias & Raghuveer, 1987)

  Ck(v1, v2, c, vk - 1) = a
∞

t1 = -∞
g a

∞

tk - 1 = -∞
ck(t1, t2, c, tk - 1)  

(1.151)

  * exp[- j(v1t1 + v2t2 + c +  vk - 1tk - 1)]. 

A sufficient condition for the existence of the polyspectrum Ck (v1, v2, c , vk - 1) is 
that the associated kth-order cumulant ck (t1, t2, c , tk - 1) be absolutely summable, as 
shown by

 a
∞

t1 = -∞
g a

∞

tk - 1 = -∞
∙ck(t1, t2, c, tk - 1) ∙ 6 ∞ .  (1.152)

The power spectrum, bispectrum, and trispectrum are special cases of the kth-order poly-
spectrum defined in Eq. (1.151). Specifically, we may state the following:

 1. For k = 2, we have the ordinary power spectrum,

 C2(v1) = a
∞

t1 = -∞
c2(t1) exp(- jv1t1), (1.153)

which is a restatement of the Einstein–Wiener–Khintchine relation given in  
Eq. (1.116).

 2. For k = 3, we have the bispectrum, defined by

 C3(v1, v2) = a
∞

t1 = -∞
 a

∞

t2 = -∞
c3(t1, t2) exp[- j(v1t1 + v2t2)]. (1.154)

 3. For k = 4, we have the trispectrum, defined by

 C4(v1, v2, v3) = a
∞

t1 = -∞
 a

∞

t2 = -∞
 a

∞

t3 = -∞
c4(t1, t2, t3) exp[- j(v1t1 + v2t2 + v3t3)]. (1.155)

An outstanding property of the polyspectrum is that all polyspectra of order higher 
than the second vanish when the process u(n) is Gaussian. This property is a direct con-
sequence of the fact that all joint cumulants of order higher than the second are zero 
for multivariate Gaussian distributions. Accordingly, the bispectrum, trispectrum, and all 
higher-order polyspectra are identically zero if the process u(n) is Gaussian. Thus, higher-
order spectra provide measures of the departure of a stochastic process from Gaussianity.

The kth-order cumulant ck (t1, t2, c , tk - 1) and the kth-order polyspectrum 
Ck (v1, v2, c , vk - 1) form a pair of multidimensional Fourier transforms. Specifically, 
the polyspectrum Ck (v1, v2, c , vk - 1) is the multidimensional discrete-time Fourier 
transform of ck (t1, t2, c , tk - 1), and ck (t1, t2, c , tk - 1) is the inverse multidimen-
sional discrete-time Fourier transform of Ck (v1, v2, c , vk - 1). For example, given the 
bispectrum C3 (v1, v2), we may determine the third-order cumulant c3 (t1, t2) by using 
the inverse two-dimensional discrete-time Fourier transform:

 c3(t1, t2) = a 1
2p

b
2

L
p

-p L
p

-p
C3(v1, v2) exp[j(v1t1 + v2t2)] dv1 dv2. (1.156)
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We may use this relation to develop an alternative definition of the bispectrum as fol-
lows: According to the Cramér spectral representation, we have

 u(n) =
1

2p
 L

p

-p
ejvn dZ(v)  for all n. (1.157)

Hence, using Eq. (1.157) in Eq. (1.148), we get

  c3 (t1, t2) = a 1
2p

b
3

L
p

-p L
p

-p L
p

-p
exp [jn(v1 + v2 + v3)]  

  *  exp [j(v1t1 + v2t2)]𝔼[dZ(v1) dZ(v2) dZ(v3)]. (1.158)

Comparing the right-hand sides of Eqs. (1.156) and (1.158), we deduce the following result:

 𝔼[dZ(v1) dZ(v2) dZ(v3)] = eC3 (v1, v2) dv1 dv2, v1 + v2 + v3 = 0
0, otherwise

. (1.159)

It is apparent from Eq. (1.159) that the bispectrum C3(v1, v2) represents the contribu-
tion to the mean product of three Fourier components whose individual frequencies add 
up to zero. This property is an extension of the interpretation developed for the ordinary 
power spectrum in Section 1.14. In a similar manner, we may develop an interpretation 
of the trispectrum.

In general, the polyspectrum Ck (v1, v2, c , vk - 1) is complex for order k higher 
than two, as shown by

 Ck(v1, v2, c, vk - 1) = ∙Ck(v1, v2, c, vk - 1) ∙  exp[jfk(v1, v2, c, vk - 1)], (1.160)

where we note that ∙ Ck(v1, v2, c , vk - 1) ∙  is the magnitude of the polyspectrum and 
fk (v1, v2, c , vk - 1) is the phase. Moreover, the polyspectrum is a periodic function 
with period 2p; that is,

 Ck (v1, v2, c , vk - 1) = Ck(v1 + 2p, v2 + 2p, c , vk - 1 + 2p). (1.161)

Whereas the power spectral density of a stationary stochastic process is phase blind, the 
polyspectra of the process are phase sensitive. More specifically, the power spectral density 
is real valued: Referring to the input–output relation of Eq. (1.122), we clearly see that, 
in passing a stationary stochastic process through a linear system, information about the 
phase response of the system is completely destroyed in the power spectrum of the output. 
In contrast, the polyspectrum is complex valued, with the result that in a similar situation 
the polyspectrum of the output signal preserves information about the phase response 
of the system. It is for this reason that polyspectra provide a useful tool for the “blind” 
identification of an unknown system, where we have access only to the output signal and 
some additional information in the form of a probabilistic model of the input signal.

1.19 SPECTRAl-CoRRElATion DEnSiTy

Polyspectra preserve phase information about a stochastic process by invoking higher-
order statistics of the process, which is feasible only if the process is non-Gaussian. The 
preservation of phase information is also possible if the process is cyclostationary in the 
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wide sense, as defined in Eqs. (1.144) and (1.145). The latter approach has two important 
advantages over the higher-order statistics approach:

 1. The phase information is contained in second-order cyclostationary statistics of 
the process; hence, the phase information can be exploited in a computationally 
efficient manner that avoids the use of higher-order statistics.

 2. Preservation of the phase information holds, irrespective of Gaussianity.

Consider, then, a discrete-time stochastic process u(n) that is cyclostationary in 
the wide sense. Without loss of generality, the process is assumed to have zero mean. 
The ensemble-average autocorrelation function of u(n) is defined in the usual way by 
Eq. (1.2):

 r(n, n - k) = 𝔼[u(n)u*(n - k)]. 

Under the condition of cyclostationarity, the autocorrelation function r(n, n – k) is periodic 
in n for every k. Keeping in mind the discrete-time nature of u(n), we may expand the 
autocorrelation function r(n, n – k) into the complex Fourier series (Gardner, 1994a, b)

 r(n, n - k) = a
 

{a}
ra(k)ej2pan - jpak, (1.162)

where both n and k take on only integer values and the set 5a6  includes all values of a 
for which the corresponding Fourier coefficient ra(k) is not zero. The Fourier coefficient 
ra(k) is itself defined by

 ra (k) =
1
N

 a
N - 1

n = 0
r(n, n - k)e-j2pan + jpak, (1.163)

where the number of samples, N, denotes the period. Equivalently, in light of Eq. (1.6), 
we may define

 ra (k) =
1
N

 e a
N - 1

n = 0
𝔼[u(n)u*(n - k)e-j2pan] fejpak. (1.164)

The quantity ra(k) is called the cyclic autocorrelation function, which has the following 
properties:

 1. The cyclic autocorrelation function ra(k) is periodic in a with period two.
 2. For any a, we have, from Eq. (1.164),

 ra+ 1
 (k) = (-1)k

 ra (k). (1.165)

 3. For the special case of a = 0, Eq. (1.164) reduces to

 r 0(k) = r(k), (1.166)

  where r(k) is the ordinary autocorrelation function of a stationary process.

According to the Einstein–Wiener–Khintchine relations given in Eqs. (1.116) and 
(1.117), the ordinary versions of the autocorrelation function and power spectral den-
sity of a wide-sense stationary stochastic process form a Fourier-transform pair. In a 
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corresponding way, we may define the discrete-time Fourier transform of the cyclic 
autocorrelation function ra(k) as follows (Gardner, 1994a, b):

 Sa(v) = a
∞

k = -∞
ra(k)e-jvk,  -p 6 v … p. (1.167)

The new quantity Sa
 (v) is called the spectral-correlation density, which is complex val-

ued for a Z 0. Note that, for the special case of a = 0, Eq. (1.167) reduces to

 S0(v) = S(v), 

where S(v) is the ordinary power spectral density.
In light of the defining Eqs. (1.164) and (1.167), we may set up the block dia-

gram of Fig. 1.16 for measuring the spectral-correlation density Sa
 (v). For this  

measurement, it is assumed that the process u(n) is cycloergodic (Gardner, 1994a, b), 
which means that time averages may be substituted for ensemble averages, with sam-
ples taken once per period. According to the instrumentation described in Fig. 1.16, 
Sa

 (v) is the bandwidth-normalized version of the cross-correlation narrowband spec-
tral components contained in the time series u(n) at the angular frequencies v + ap 
and v - ap, in the limit as the bandwidth of these spectral components is permitted 
to approach zero (Gardner, 1994a, b). Note that the two narrowband filters in the 
figure are identical, both having a midband (angular) frequency v and a bandwidth 
∆v that is small compared with v, but large compared with the reciprocal of the 
averaging time used in the cross-correlator at the output end in the diagram. In one 
channel of this scheme the input u(n) is multiplied by exp (- jpan), and in the other 
channel it is multiplied by exp(jpan); the resulting filtered signals are then applied to 
the cross-correlator. It is these two multiplications (prior to correlation) that provide 
the spectral-correlation density Sa

 (v) with a phase-preserving property for nonzero 
values of a.

Bandpass
�lter

Bandpass
�lter

Complex
conjugation

Time-averaged
cross-correlator

Cyclostationary
process
u(n)

e jpan

e– jpan

Midband frequency = v
Bandwidth = ¢v

Sa(v)

FigurE 1.16 Scheme for measuring the spectral-correlation density of a cyclostationary 
process.
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1.20 SuMMARy AnD DiSCuSSion

In this chapter we studied the partial characterization of a stationary discrete-time sto-
chastic process, which, in the time domain, is uniquely described in terms of two statisti-
cal parameters:

 1. The mean, which is a constant;
 2. The autocorrelation function, which depends only on the time difference between 

any two samples of the process.

The mean of the process may naturally be zero, or it can always be subtracted from the 
process to yield a new process with zero mean. For that reason, in much of the discus-
sion in subsequent chapters of this book, the mean of the process is assumed to be zero. 
Thus, given an M-by-1 observation vector u(n) known to belong to a complex, stationary, 
discrete-time stochastic process with zero mean, we may partially describe the process 
by defining an M-by-M correlation matrix R as the statistical expectation of the outer 
product of u(n) with itself, that is, u(n)uH(n). The matrix R is Hermitian, Toeplitz, and 
almost always positive definite.

Another topic we discussed in the chapter is the notion of a stochastic model, the 
need for which arises when we are given a set of experimental data known to be of a 
statistical nature and the requirement is to analyze the data. In this context, there are 
two general requirements for a suitable model:

 1. An adequate number of adjustable parameters for the model to capture the essen-
tial information content of the input data.

 2. Mathematical tractability of the model.

The first requirement, in effect, means that the complexity of the model should closely match 
the complexity of the underlying physical mechanism responsible for generating the input 
data; when this is the case, problems associated with underfitting or overfitting the input 
data are avoided. The second requirement is usually satisfied by the choice of a linear model.

Within the family of linear stochastic models, the autoregressive (AR) model is 
often preferred over the moving-average (MA) model and the autoregressive–moving-
average (ARMA) model for an important reason: Unlike the situation in an MA or 
ARMA model, computation of the AR coefficients is governed by a system of linear 
equations, namely, the Yule–Walker equations. Moreover, except for a predictable com-
ponent, we may approximate a stationary, discrete-time stochastic process by an AR 
model of sufficiently high order, subject to certain restrictions. To select a suitable value 
for the model order, we may use an information-theoretic criterion according to Akaike 
or the minimum description length (MDL) criterion according to Rissanen. A useful 
feature of the MDL criterion is that it is a consistent model-order estimator.

Another important way of characterizing a wide-sense stationary stochastic pro-
cess is in terms of the power spectral density or power spectrum. In the latter part of this 
chapter, we identified three distinct spectral parameters that depend on the statistical 
characterization of the process:

 1. The power spectral density S(v), defined as the discrete-time Fourier transform of 
the ordinary autocorrelation function of a wide-sense stationary process. For such 
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a process, the autocorrelation function is Hermitian, always making S(v) a real-
valued quantity. Accordingly, S(v) destroys phase information about the process. 
Despite this limitation, the power spectral density is commonly accepted as a use-
ful parameter for displaying the correlation properties of a wide-sense stationary 
process.

 2. Polyspectra Ck (v1, v2, c , vk - 1), defined as the multidimensional Fourier trans-
form of the cumulants of a stationary process. For second-order statistics, k = 2, 
C2 (v1) reduces to the ordinary power spectral density S(v). For higher-order sta-
tistics, k > 2, the polyspectra Ck (v1, v1, c , vk - 1) take on complex forms. It is this 
property of polyspectra that makes them a useful tool for dealing with situations 
in which knowledge of the phase is a requirement. However, for polyspectra to 
be meaningful, the process has to be non-Gaussian, and the exploitation of phase 
information contained in polyspectra requires the use of nonlinear filtering.

 3. The spectral-correlation density Sa
 (v), defined as the discrete-time Fourier trans-

form of the cyclic autocorrelation function of a process that is cyclostationary in 
the wide sense. For a ≠ 0, Sa

 (v) is complex valued; for a = 0, it reduces to S(v). 
The useful feature of Sa

 (v) is that it preserves phase information, which can be 
exploited by means of linear filtering, irrespective of whether the process is or is 
not Gaussian.

The different properties of the ordinary power spectral density, polyspectra, and the 
spectral-correlation density give these statistical parameters their own individual areas 
of application in adaptive filtering.

One last comment is in order: The theories of second-order cyclostationary pro-
cesses and conventional polyspectra have been brought together under the umbrella of 
cyclic polyspectra. Simply stated, cyclic polyspectra are spectral cumulants in which the 
individual frequencies involved can add up to any cycle frequency a, whereas they must 
add up to zero for polyspectra.

PRoblEMS

 1. The sequences y(n) and u(n) are related by the difference equation

 y(n) = u(n + a) + u(n - a), 

where a is a constant. Evaluate the autocorrelation function of y(n) in terms of u(n).

 2. Consider a correlation matrix R for which the inverse matrix R-1 exists. Show that R-1 is 
Hermitian.

 3. The received signal of a digital communication system is given by

 u(n) = s(n) + n(n) 

where s(n) is a distorted version of the transmitted signal and n(n) denotes additive white 
Gaussian noise. The correlation matrices of s(n) and n(n) are denoted by Rs and Rv, respec-
tively. Assume that the elements of the matrix Rv are defined by

 rn (l) = es
2 for l = 0

0 for l ≠ 0
. 
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Determine the condition that the noise variance s2 must satisfy for the correlation matrix of 
u(n) to be nonsingular. You may illustrate this derivation by considering the case of a two-
by-two correlation matrix.

 4. In theory, a square matrix can be nonnegative definite and yet singular. Demonstrate the truth 
of this statement with the example of a 2-by-2 matrix given by

 R = c 1 1
1 1

d . 

 5. (a) Equation (1.26) relates the (M + 1)-by-(M + 1) correlation matrix RM + 1, pertaining to the 
observation vector uM + 1(n) taken from a stationary stochastic process, to the M-by-M 
correlation matrix RM of the observation vector uM(n) taken from the same process. 
Evaluate the inverse of the correlation matrix RM + 1 in terms of the inverse of the cor-
relation matrix RM.

 (b) Repeat your evaluation using Eq. (1.27).

 6. A first-order real-valued AR process u(n) satisfies the real-valued difference equation

 u(n) + a1 u(n - 1) = n(n), 

where a1 is a constant and n(n) is a white-noise process with variance s2
n.

 (a) Show that if n(n) has a nonzero mean, the AR process u(n) is nonstationary.
 (b) For the case when n(n) has zero mean and the constant a1 satisfies the condition ∙ a1 ∙ 6 1, 

show that the variance of u(n) is given by

 var [u(n)] =
s2
n

1 - a2
1
. 

 (c) For the conditions specified in part (b), find the autocorrelation function of the AR 
process u(n). Sketch this autocorrelation function for the two cases 0 6 a1 6 1 and 
-1 6 a1 6 0.

 7. Consider an autoregressive process u(n) of order two described by the difference equation

 u(n) = u(n - 1) + 0.5u(n - 2) + n(n) 

where n(n) is white noise with zero mean and variance 0.5.
 (a) Write the Yule–Walker equations for the process.
 (b) Find the variance of u(n).

 8. Consider a wide-sense stationary process that is modeled as an AR process u(n) of order M. 
The set of parameters made up of the average power P0 and the AR coefficients a1, a2, . . . , 
aM bear a one-to-one correspondence with the autocorrelation sequence r(0), r(1), r (2), . . . , 
r(M), as shown by

 5r(0), r(1), r(2), c , r(M)6 ∆ 5P0, a1, a2, c , aM6 . 

Show that this statement is true.

 9. Evaluate the transfer functions of the following two stochastic models:
 (a) The MA model of Fig. 1.3.
 (b) The ARMA model of Fig. 1.4.
 (c) Specify the conditions for which the transfer function of the ARMA model of Fig. 1.4 

reduces (1) to that of an AR model and (2) to that of an MA model.

 10. Consider an MA process x(n) of order two described by the difference equation

 x(n) = n(n) + 0.75 n(n - 1) + 0.75 n(n - 2), 
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where n(n) is a zero-mean white-noise process of unit variance. The requirement is to approximate 
this process by an AR process u(n) of order M. Do this approximation for the following orders:

 (a) M = 2.        (b) M = 5.        (c) M = 10.
Comment on your results. How big would the order M of the AR process u(n) have to be for 
it to be equivalent to the MA process x(n) exactly?

 11. A time series u(n) obtained from a wide-sense stationary stochastic process of zero mean and 
correlation matrix R is applied to an FIR filter with impulse response wn, which defines the 
coefficient vector w.

 (a) Show that the average power of the filter output is equal to wHRw.
 (b) How is the result in part (a) modified if the stochastic process at the filter input is a white 

noise with variance s2?

 12. A general linear complex-valued process is described by

 u(n) = a
∞

k = 0
b*

kn(n - k), 

where n(n) is white noise and bk is a complex coefficient. Justify the following statements:
 (a) If n(n) is Gaussian, then u(n) is also Gaussian.
 (b) Conversely, if u(n) is Gaussian, then n(n) must be Gaussian.

 13. Consider a complex Gaussian process u(n). Let u(n) = un. Using the Gaussian moment-
factoring theorem, demonstrate the following identities:

 (a) 𝔼[(u*1u2)
k] = k!(𝔼[u*1u2])

k. (b) 𝔼[ 0 u 0 2k] = k!(𝔼[ 0 u 0 2])k.

 14. Consider the definition of the power spectral density given in Eq. (1.115). Is it permissible 
to interchange the operation of taking the limit and that of the expectation in this equation? 
Justify your answer.

 15. In deriving Eq. (1.126), we invoked the notion that if a wide-sense stationary process is applied 
to a linear, time-invariant, stable filter, the stochastic process produced at the filter output is 
wide-sense stationary, too. Show that, in general,

 ry(n, m) = a
∞

i = -∞
 a

∞

k = -∞
h(i)h*(k)ru(n - i, m - k), 

which includes the result of Eq. (1.126) as a special case.

 16. How can you estimate the parameters of a complex sinusoid in the presence of additive noise 
in the correlation matrix?

 17. Consider a correlation matrix R for which the inverse matrix R−1 exists. Under what condition 
will R−1 be Hermitian and Toeplitz?

 18. A real-valued, stationary stochastic process u(n) is said to be periodic if its autocorrelation 
function is periodic, as shown by

  r(l) = 𝔼[u(n)u(n - l)] 

  = r(l + N),  

where N is the period. Expanding r(l) into a Fourier series, we write

 r(l) =
1
N

 a
N - 1

k = 0
Sk exp (jlvk),  l = 0, 1, c , N - 1, 
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where

 vk =
2pk
N

 

and

 Sk = a
N - 1

k = 0
r(l) exp(- jlvk),  k = 0, 1, c, N - 1. 

The parameter

 Sk = 𝔼[ ∙ Uk ∙2] 

specifies the discrete power spectrum; the Uk are complex random variables defined by

 Uk = a
N - 1

n = 0
u(n) exp(- jnvk),  k = 0, 1, c, N - 1 

and

 u(n) =
1
N

 a
N - 1

k = 0
Uk exp(jnvk),  n = 0, 1, c, N - 1. 

 (a) Show that the spectral samples U0, U1, . . . , UN - 1 are uncorrelated; that is, show that

 𝔼[UkU *
j ] = eSk for j = k

0 otherwise
. 

 (b) Assuming that u(n), and therefore Uk, is Gaussian distributed, show that the joint prob-
ability density function of U0, U1, . . . , UN - 1 is given by

 fU (U0, U1, c, UN - 1) = p-N exp a-  a
N - 1

k = 0
 
∙ Uk∙2

Sk
- ln Skb . 

 19. Determine the correlation matrix R for M = 2 no. of samples. [Hint : signal-to-noise r = ∞.]
 20. Show that the integral of a stochastic process X(t) is a random variable.
 21. Evaluate the transfer functions of the stochastic MA model of Fig 1.3.
 22. Consider a stochastic process whose mean is zero. The process is white, which means that its 

power spectral density S(v) is constant for all frequencies, as shown by 

 S(v) = s2  for  -2p < v <-2p 

where s2 is the variance of a sample taken from the process. Suppose that this process is 
passed through a discrete-time band pass filter as characterized in Fig. 1.13, find the mean-
square of the filter output.

 23. Determine the complex Gaussian process for the odd case of N = 5 with u(n) consisting of 
the five samples u1, u2, u3, u4, and u5.

 24. By using the Gaussian moment-factoring theorem, determine the complex Gaussian process 
for the even case of N = 2. U(n) consists of the samples u1 and u2.

 25. Prove that a random process {X (t)} is mean square continuous if its autocorrelation function 
is continuous. 
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C h a p t e r  2

Wiener Filters

With the material of Chapter 1 on the statistical characterization of stationary stochastic 
processes at hand, we are ready to develop a framework for assessing the performance 
of linear adaptive filters. In particular, in this chapter we study a class of linear optimum 
discrete-time filters known collectively as Wiener filters. Wiener filter theory is formu-
lated for the general case of a complex-valued stochastic process with the filter specified 
in terms of its impulse response. The reason for using complex-valued time series is that 
in many practical situations (e.g., communications, radar, sonar) the observables are 
measured in baseband form; as mentioned in Chapter 1, the term “baseband” is used 
to designate a band of frequencies representing the original signal, as delivered by the 
source of information. The case of real-valued time series may, of course, be considered 
a special case of this theory. We begin the chapter by outlining the linear optimum fil-
tering problem and setting the stage for examining the rest of the theory of the Wiener 
filter and its variants.

2.1 Linear Optimum FiLtering: Statement OF the prObLem

Consider the block diagram of Fig. 2.1 built around a linear discrete-time filter.  The filter 
input consists of a time series u(0), u(1), u(2), . . . , and the filter is itself characterized 
by the impulse response represented by the sequence w0, w1, w2, . . . . At some discrete 
time n, the filter produces an output denoted by y(n). This output is used to provide an 
estimate of a desired response designated by d(n). With the filter input and the desired 
response representing single realizations of respective stochastic processes, the estima-
tion is ordinarily accompanied by an error with statistical characteristics of its own. In 
particular, the estimation error, denoted by e(n), is defined as the difference between 
the desired response d(n) and the filter output y(n). The requirement is to make the 
estimation error e(n) “as small as possible” in some statistical sense.

Two restrictions have so far been placed on the filter:

 1. The filter is linear, which makes the mathematical analysis easy to handle.
 2. The filter operates in discrete time, which makes it possible for the filter to be 

implemented using digital hardware or software.

The final details of the filter specification, however, depend on two other choices that 
have to be made:
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 1. Whether the impulse response of the filter has finite or infinite duration.

 2. The type of statistical criterion used for the optimization.

The choice of a finite-duration impulse response (FIR) or an infinite-duration impulse 
response (IIR) for the filter is dictated by practical considerations. The choice of a statis-
tical criterion for optimizing the filter design is influenced by mathematical tractability. 
We next consider these two issues in turn.

For the initial development of Wiener filter theory, we will assume an IIR filter; 
so developed, the theory includes FIR filters as a special case. However, for much of 
the material presented in this chapter, and also in the rest of the book, we will confine 
our attention to the use of FIR filters. We do so because an FIR filter is inherently 
stable, since its structure involves the use of forward paths only. In other words, the only 
mechanism for input–output interaction in the filter is via forward paths from the filter 
input to its output. Indeed, it is this form of signal transmission through the filter that 
limits its impulse response to a finite duration. On the other hand, an IIR filter involves 
both feedforward and feedback. The presence of feedback means that portions of the 
filter output and possibly other internal variables in the filter are fed back to the input. 
Consequently, unless the filter is properly designed, feedback can indeed make it unsta-
ble, with the result that the filter oscillates; this kind of operation is clearly unacceptable 
when the requirement is that stability is a “must.” By itself, the stability problem in IIR 
filters is manageable in both theoretic and practical terms. However, when the filter is 
required to be adaptive, bringing with it stability problems of its own, the inclusion of 
adaptivity combined with feedback that is inherently present in an IIR filter makes an 
already difficult problem that much more difficult to handle. It is for this reason that 
we find that in the majority of applications requiring the use of adaptivity, the use of 
an FIR filter is preferred over an IIR filter even though the latter is less demanding in 
computational requirements.

Turning next to the issue of what criterion to choose for statistical optimization, 
we find that there are indeed several criteria that suggest themselves. Specifically, we 

Input
u(0), u(1), u(2), …

Linear
discrete-time
�lter:
w0, w1, w2, …

Desired
response
d(n)

+–

Estimation
error
e(n)

Output
y(n)

Conditions at time nGiven input samples and �lter coef�cients

g

Figure 2.1 Block diagram representation of the statistical filtering problem.
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may consider optimizing the filter design by minimizing a cost function, or index of 
performance, selected from the following short list of possibilities:

 1. Mean-square value of the estimation error.
 2. Expectation of the absolute value of the estimation error.
 3. Expectation of third or higher powers of the absolute value of the estimation error.

Option 1 has a clear advantage over the other two, because it leads to tractable math-
ematics. In particular, the choice of the mean-square-error criterion results in a second-
order dependence for the cost function on the unknown coefficients in the impulse response 
of the filter. Moreover, the cost function has a distinct minimum that uniquely defines the 
optimum statistical design of the filter. Accordingly, henceforth we confine attention to 
the mean-square-error criterion.

We now summarize the essence of the filtering problem with the following statement:

Design a linear discrete-time filter whose output y(n) provides an estimate of 
a desired response d(n), given a set of input samples u(0), u(1), u(2), . . . , such 
that the mean-square value of the estimation error e(n), defined as the difference 
between the desired response d(n) and the actual response y(n), is minimized.

We develop the mathematical solution to this statistical optimization problem 
by following two entirely different approaches that are complementary. One approach 
leads to the development of an important theorem commonly known as the principle 
of orthogonality. The other approach highlights the error-performance surface that 
describes the second-order dependence of the cost function on the filter coefficients. 
We will proceed by deriving the principle of orthogonality first, because the derivation 
is relatively simple and the principle is highly insightful.

2.2 prinCipLe OF OrthOgOnaLity

Consider again the statistical filtering problem described in Fig. 2.1. The filter input is 
denoted by the time series u(0), u(1), u(2), . . . , and the impulse response of the filter is 
denoted by w0, w1, w2, . . . , both of which are assumed to have complex values and infinite 
duration. The filter output at a discrete time n is defined by the linear convolution sum

 y1n2 = a
∞

k = 0
w*k  u1n - k2,  n = 0, 1, 2, c , (2.1)

where the asterisk denotes complex conjugation. Note that, in complex terminology, the 
term w*ku1n - k2  represents the scalar version of an inner product of the filter coeffi-
cient wk and the filter input u(n – k). Figure 2.2 illustrates the steps involved in computing 
the linear discrete-time form of convolution described in Eq. (2.1) for real data.

The purpose of the filter in Fig. 2.1 is to produce an estimate of the desired response 
d(n). We assume that the filter input and the desired response are single  realizations of 
jointly wide-sense stationary stochastic processes, both with zero mean. If the means are 
nonzero, we simply subtract them from the input u(n) and desired response d(n) before 
filtering, in accordance with the remarks on preprocessing made in Section 1.2. The 
 estimation of d(n) is naturally accompanied by an error, which is defined by the difference

 e1n2 = d1n2 - y1n2. (2.2)
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The estimation error e(n) is the sample value of a random variable. To optimize the filter 
design, we choose to minimize the mean-square value of e(n). We thus define the cost func-
tion as the mean-square error

  J = 𝔼3e1n2e*1n24 
  = 𝔼3 ∙ e1n2∙24,  (2.3)

where 𝔼 denotes the statistical expectation operator. The requirement is therefore to 
determine the operating conditions under which J attains its minimum value.

For complex input data, the filter coefficients are, in general, complex, too. Let the 
kth filter coefficient wk be denoted in terms of its real and imaginary parts as

 wk = ak + jbk,  k = 0, 1, 2, c . (2.4)

Correspondingly, we may define a gradient operator, the kth element of which is written 
in terms of first-order partial derivatives with respect to the real part ak and the imaginary 
part bk, as

 ∇k =
0

0ak
+ j 

0
0bk

,    k = 0, 1, 2, c. (2.5)

0 1 2 3 4 5 k

wk

–2 –1 0 1 2 3 k

u(n – k) wk u(n – k)

(a) (b)

(c) (d)

0 1 2 3 4 5
k

u(k)

0 1 2 3
k

Filter output y(n) equals
the sum of these samples.

Figure 2.2 Linear convolution: (a) impulse response; (b) filter input; (c) time-reversed and 
shifted version of filter input; (d) calculation of filter output at time n = 3.

M02_HAYK4083_05_SE_C02.indd   111 21/06/13   8:21 AM



112  Chapter 2  Wiener Filters

Thus, for the situation at hand, applying the operator ∇ to the cost function J, we obtain 
a multidimensional complex gradient vector ∇J, the kth element of which is

 ∇kJ =
0J
0ak

+ j 
0J

0bk
,    k = 0, 1, 2, c. (2.6)

Equation (2.6) represents a natural extension of the customary definition of the gradi-
ent for a function of real coefficients to the more general case of a function of complex 
coefficients.1 Note that for the definition of the complex gradient given in Eq. (2.6) to 
be valid, it is essential that J be real. The gradient operator is always used in the context 
of finding the stationary points of a function of interest. This means that a complex 
constraint must be converted to a pair of real constraints. In Eq. (2.6), the pair of real 
constraints is obtained by setting both the real and imaginary parts of ∇k J equal to zero.

For the cost function J to attain its minimum value, all the elements of the gradient 
vector ∇J must be simultaneously equal to zero; that is,

 ∇k J = 0,  k = 0, 1, 2, c. (2.7)

Under this set of conditions, the filter is said to be optimum in the mean-square-error sense.2

According to Eq. (2.3), the cost function J is a scalar that is independent of time n. 
Hence, substituting the first term of that equation into Eq. (2.6), we get

 ∇kJ = 𝔼 c 0e1n2
0ak

 e*1n2 +
0e*1n2

0ak
 e1n2 +

0e1n2
0bk

 je*1n2 +
0e*1n2

0bk
 je1n2 d . (2.8)

Using Eqs. (2.2) and (2.4), we obtain the four partial derivatives

  
0e1n2

0ak
= -u1n - k2,  

  
0e1n2
0bk

= ju1n - k2,  
(2.9)

  
0e*1n2

0ak
= -u*1n - k2,  

  
0e*1n2

0bk
= - ju*1n - k2. 

1For the general case of complex data, the cost function J is not complex–differentiable for reasons 
discussed in Appendix B; see Problem 1 for an illustrative example.

In this chapter we have gotten around this difficulty by defining the complex gradient vector of the 
cost function with respect to a set of filter coefficients in the manner described in Eq. (2.6). Specifically, the 
kth partial derivative of the complex gradient vector consists of two parts, one dealing with the real part of 
the kth filter coefficient and the other dealing with its imaginary part. From an algebraic perspective, this 
procedure makes intuitive sense.

In Appendix B, we describe another procedure based on Wirtinger calculus, which is simple and 
straightforward to apply. Mathematically, however, it is more sophisticated than the procedure described in 
this chapter.

2Note that in Eq. (2.7), we have presumed optimality at a stationary point. In the linear filtering prob-
lem, finding a stationary point assures global optimization of the filter by virtue of the quadratic nature of the 
error-performance surface. (See Section 2.5.)
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Thus, substituting these partial derivatives into Eq. (2.8) and then cancelling common 
terms finally yields

 ∇kJ = -2𝔼3u1n - k2e*1n24. (2.10)

We are now ready to specify the operating conditions required for minimizing the 
cost function J. Let eo denote the special value of the estimation error that results when 
the filter operates in its optimum condition. We then find that the conditions specified in 
Eq. (2.7) are indeed equivalent to

 𝔼3u1n - k2e*o 1n24 = 0,    k = 0, 1, 2, c. (2.11)

In words, Eq. (2.11) states the following:

The necessary and sufficient condition for the cost function J to attain its mini-
mum value is for the corresponding value of the estimation error eo(n) to be 
orthogonal to each input sample that enters into the estimation of the desired 
response at time n.

Indeed, this statement constitutes the principle of orthogonality; it represents one of 
the most elegant theorems in the subject of linear optimum filtering. It also provides 
the mathematical basis of a procedure for testing whether the linear filter is operating 
in its optimum condition.

Corollary to the principle of Orthogonality

There is a corollary to the principle of orthogonality that we may derive by examining 
the correlation between the filter output y(n) and the estimation error e(n). Using 
Eq. (2.1), we may express this correlation as

  𝔼3y1n2e*1n24 = 𝔼 c a
∞

k = 0
w*ku1n - k2e*1n2 d  

  = a
∞

k = 0
w*k𝔼3u1n - k2e*1n24.  (2.12)

Let yo(n) denote the output produced by the filter optimized in the mean-square-error 
sense, with eo(n) denoting the corresponding estimation error. Hence, using the principle 
of orthogonality described by Eq. (2.11), we get the desired result:

 𝔼3yo1n2e*o 1n24 = 0. (2.13)

We may thus state the corollary to the principle of orthogonality as follows:

When the filter operates in its optimum condition, the estimate of the desired 
response defined by the filter output yo(n) and the corresponding estimation error 
eo(n) are orthogonal to each other.
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114   Chapter 2  Wiener Filters

Let dn1n ∙ un2 denote the estimate of the desired response that is optimized in the 
mean-square-error sense, given the input data that span the space un up to and 
including time n.3

We may then write
 dn1n ∙ un2 = yo1n2. (2.14)

Note that the estimate dn1n ∙ un2 has zero mean, because the tap inputs are assumed  
to have zero mean. This condition matches the assumed zero mean of the desired 
response d(n).

geometric interpretation of the Corollary to the principle  
of Orthogonality

Equation (2.13) offers an interesting geometric interpretation of the conditions that 
exist at the output of the optimum filter, as illustrated in Fig. 2.3. In this figure, the 
desired response, the filter output, and the corresponding estimation error are repre-
sented by vectors labeled d, yo, and eo, respectively; the subscript o in yo and eo refers 
to the optimum condition. We see that, for the optimum filter, the vector representing 
the estimation error is normal (i.e., perpendicular) to the vector representing the filter 
output. It should, however, be emphasized that the situation depicted in the Fig. 2.3 is 
merely an analogy wherein random variables and expectations are replaced with vectors 
and vector inner products, respectively. Also, for obvious reasons, the geometry depicted 
in the figure may be viewed as a statistician’s Pythagorean theorem.

3If a space un consists of all linear combinations of random variables, u1, u2, . . . , un, then these random 
variables are said to span that particular space. In other words, every random variable in un can be expressed 
as some combination of the u’s, as shown by

u = w*1u1 + c + w*nun

for some coefficients w1, . . . , wn. This assumes that the space un has a finite dimension.

d
eo

0 yo

Figure 2.3 Geometric 
interpretation of the 
relationship between the 
desired response, the estimate 
at the filter output, and the 
estimation error.

2.3 minimum mean-Square errOr

When the linear discrete-time filter in Fig. 2.1 operates in its optimum condition,  
Eq. (2.2) takes on the special form

  eo1n2 = d1n2 - yo 1n2  

  = d1n2 - dn1n ∙ un2, (2.15)
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where, in the second line, we have made use of Eq. (2.14). Rearranging terms in  
Eq. (2.15), we have

 d1n2 = dn1n ∙ un2 + eo1n2. (2.16)

Let

 Jmin = 𝔼3 ∙ eo 1n2 ∙24  (2.17)

denote the mininum mean-square error. Then, evaluating the mean-square values of 
both sides of Eq. (2.16) and applying to it the corollary to the principle of orthogonality 
described by Eqs. (2.13) and (2.14), we get 

 s2
d = s

n d
2 + Jmin, (2.18)

where s2
d is the variance of the desired response and s

n d
2 is the variance of the estimate 

dn1n ∙ un2; both of these random variables are assumed to be of zero mean. Solving  
Eq. (2.18) for the minimum mean-square error, we get

 Jmin = s2
d - s

n d
2. (2.19)

This relation shows that, for the optimum filter, the minimum mean-square error equals 
the difference between the variance of the desired response and the variance of the 
estimate that the filter produces at its output.

It is convenient to normalize the expression in Eq. (2.19) in such a way that the 
minimum value of the mean-square error always lies between zero and unity. We may 
do this by dividing both sides of Eq. (2.19) by s2

d, obtaining

 
Jmin

s2
d

= 1 -
s

n d
2

s2
d
. (2.20)

Clearly, this is possible because s2
d is never zero, except in the trivial case of a desired 

response d(n) that is zero for all n. Now, let

 e =
Jmin

s2
d

. (2.21)

The quantity e is called the normalized mean-square error, in terms of which we may 
rewrite Eq. (2.20) in the form

 e = 1 -
s

n d
2

s2
d
. (2.22)

We note that (1) the ratio e can never be negative and (2) the ratio s
n d
2

 >  s2
d is always 

positive. We therefore have

 0 … e … 1. (2.23)

If e is zero, the optimum filter operates perfectly, in the sense that there is complete 
agreement between the estimate dn1n ∙ un2 at the filter output and the desired response 
d(n). On the other hand, if e is unity, there is no agreement whatsoever between these two 
quantities; this corresponds to the worst possible situation.
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116  Chapter 2  Wiener Filters

2.4 Wiener–hOpF equatiOnS

The principle of orthogonality, described in Eq. (2.11), specifies the necessary and suf-
ficient condition for the optimum operation of the filter. We may reformulate the nec-
essary and sufficient condition for optimality by substituting Eqs. (2.1) and (2.2) into  
Eq. (2.11). In particular, we write

 𝔼 cu1n - k2ad*1n2 - a
∞

i = 0
woiu*1n - i2 b d = 0,  k = 0, 1, 2, c, 

where woi is the ith coefficient in the impulse response of the optimum filter. Expanding 
this equation and rearranging terms, we get

 a
∞

i = 0
woi𝔼3u1n - k2u*1n - i24 = 𝔼3u1n - k2d*1n24,  k = 0, 1, 2c. (2.24)

The two expectations in Eq. (2.24) may be interpreted as follows:

 1. The expectation 𝔼3u1n - k2u*1n - i24  is equal to the autocorrelation function 
of the filter input for a lag of i - k. We may thus express this expectation as

 r1 i - k2 = 𝔼3u1n - k2u*1n - i24 . (2.25)

 2. The expectation 𝔼3u1n - k2d*1n24  is equal to the cross-correlation between the 
filter input u1n - k2  and the desired response d(n) for a lag of - k. We may thus 
express this second expectation as

 p1-k2 = 𝔼3u1n - k2d*1n24. (2.26)

Accordingly, using the definitions of Eqs. (2.25) and (2.26) in Eq. (2.24), we get an infi-
nitely large system of equations as the necessary and sufficient condition for optimality 
of the filter:

 a
∞

i = 0
woir1 i - k2 = p1 -k2 ,  k = 0, 1, 2, c. (2.27)

The system of equations (2.27) defines the optimum filter coefficients, in the most gen-
eral setting, in terms of two correlation functions: the autocorrelation function of the 
filter input and the cross-correlation between the filter input and the desired response. 
These equations are called the Wiener–Hopf equations.4

Solution of the Wiener–hopf equations for Fir Filters

The solution of the set of Wiener–Hopf equations is greatly simplified for the special case 
when an FIR filter, also known as a linear transversal filter, is used to obtain the estimation 
of the desired response d(n) in Fig. 2.1. Consider, then, the structure shown in Fig. 2.4. The 

4In order to solve the Wiener–Hopf equations (2.27) for the optimum filter coefficients, we need to use 
a special technique known as spectral factorization. For a description of this technique and its use in solving 
the Wiener–Hopf equations (2.27), the interested reader is referred to Haykin (1989a).

It should also be noted that the defining equation for a linear optimim filter was formulated origi-
nally by Wiener and Hopf (1931) for the case of a continuous-time filter, whereas, of course, the system of 
equations (2.27) is formulated for a discrete-time filter; the latter is simpler than the former.
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FIR filter involves a combination of three basic operations: storage, multiplication, and 
addition, as described here:

 1. The storage is represented by a cascade of M - 1 one-sample delays, with the 
block for each such unit labeled z-1. We refer to the various points at which the 
one-sample delays are accessed as tap points. The tap inputs are denoted by 
u1n2 , u1n - 12 , c , u1n - M + 12 . Thus, with u(n) viewed as the current value 
of the filter input, the remaining M - 1 tap inputs, u1n - 12 , c, u1n - M + 12 , 
represent past values of the input.

 2. The scalar inner products of tap inputs u1n2 , u1n - 12 , c, u1n - M + 12  and 
tap weights w0, w1, c , wM - 1 are respectively formed by using a corresponding 
set of multipliers. In particular, the multiplication involved in forming the scalar 
inner product of u(n) and w0 is represented by a block labeled w*0 , and so on for 
the other inner products.

 3. The function of the adders is to sum the multiplier outputs to produce an overall 
output for the filter.

The impulse response of the FIR filter in Fig. 2.4 is defined by the finite set of tap 
weights w0, w1, c , wM - 1. Accordingly, the Wiener–Hopf equations (2.27) reduce to 
the system of M simultaneous equations.

 a
M - 1

i = 0
woir1i - k2 = p1-k2,  k = 0, 1, c, M - 1, (2.28)

where wo 0, wo 1, c , wo, M - 1 are the optimum values of the tap weights of the filter.

. . .

. . .

. . . gg

g

g

z–1z–1z–1
u(n – 1)u(n)

w0
* wM–2 wM–1w1

*

d(n)

u(n – M + 1)u(n – M + 2)

e(n)

d(n| n)

+

–

ˆ

**

Figure 2.4 FIR filter for studying the Wiener filter.
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118  Chapter 2  Wiener Filters

matrix Formulation of the Wiener–hopf equations

Let R denote the M-by-M correlation matrix of the tap inputs u1n2 , u1n - 12 , c, 
u1n - M + 12 in the FIR filter of Fig. 2.4; that is,

 R = 𝔼3u1n2uH1n24 , (2.29)

where

 u1n2  = 3u1n2, u1n - 12, c, u1n - M + 124T (2.30)

is the M-by-1 tap-input vector. The superscript T in Eq. (2.30) denotes transposition. In 
expanded form, we have

 R = ≥
r102 r112 g r1M - 12
r*112 r102 g r1M - 22
 f  f  f  f
r*1M - 12 r*1M - 22 g r102

¥ . (2.31)

Correspondingly, let p denote the M-by-1 cross-correlation vector between the tap inputs 
of the filter and the desired response d(n):

 p = 𝔼3u1n2d*1n24. (2.32)

In expanded form, we have

 p = 3p102, p1-12, c, p11 - M24T. (2.33)

Note that the lags used in the definition of p are either zero or negative. We may thus 
rewrite the Wiener–Hopf equations (2.28) in the compact matrix form

 Rwo = p, (2.34)

where wo denotes the M-by-1 optimum tap-weight vector of the FIR filter (optimum in 
the mean-square-error sense); that is,

 wo = 3wo 0, wo 1, c , wo, M - 14T. (2.35)

To solve the Wiener–Hopf equations (2.34) for wo, we assume that the correlation matrix 
R is nonsingular. We may then premultiply both sides of Eq. (2.34) by R–1, the inverse 
of the correlation matrix, obtaining

 wo = R- 1p . (2.36)

The computation of the optimum tap-weight vector wo requires knowledge of two 
quantities: (1) the correlation matrix R of the tap-input vector u(n) and (2) the cross-
correlation vector p between the tap-input vector u(n) and the desired response d(n).

2.5 errOr-perFOrmanCe SurFaCe

The Wiener–Hopf equations (2.34), as derived in the previous section, are traceable 
to the principle of orthogonality, which itself was derived in Section 2.2. We may also 
derive the Wiener–Hopf equations by examining the dependence of the cost func-
tion J on the tap weights of the FIR filter in Fig. 2.4. First, we write the estimation 
error e(n) as
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 e1n2 = d1n2 - a
M - 1

k = 0
w*ku1n - k2 , (2.37)

where d(n) is the desired response; w0, w1, c , w M - 1 are the tap weights of the fil-
ter; and u1n2 , u1n - 12 , c, u1n - M + 12  are the corresponding tap inputs. 
Accordingly, we may define the cost function for the FIR filter structure of Fig. 2.4 as

 J = 𝔼3e1n2e*1n24

 = 𝔼3∙ d1n2 ∙24 - a
M - 1

k = 0
w*k  𝔼3u1n - k2d*1n24 - a

M - 1

k = 0
wk𝔼3u*1n - k2d1n24  (2.38)

 + a
M - 1

k = 0
a

M - 1

i = 0
w*kwi 𝔼3u1n - k2u*1n - i24.  

We now recognize the four expectations on the right-hand side of the second line in 
Eq. (2.38):

	 •	 For the first expectation, we have

 s2
d = 𝔼3 ∙ d1n2 ∙24, (2.39)

  where s2
d is the variance of the desired response d(n), assumed to be of zero mean.

	 •	 For the second and third expectations, we have, respectively,

 p1-k2 = 𝔼3u1n - k2d*1n24 (2.40)

  and

 p*1-k2 = 𝔼3u*1n - k2d1n24, (2.41)

  where p1-k2 is the cross-correlation between the tap input u1n - k2  and the 
desired response d(n).

	 •	 Finally, for the fourth expectation, we have

 r1i - k2 = 𝔼3u1n - k2u*1n - i24, (2.42)

  where r1 i - k2  is the autocorrelation function of the tap inputs for lag i - k.

We may thus rewrite Eq. (2.38) in the form

 J = s2
d - a

M - 1

k = 0
w*k  p1-k2 - a

M - 1

k = 0
wkp*1-k2 + a

M - 1

k = 0
 a
M - 1

i = 0
w*k  wi r1i - k2. (2.43)

Equation (2.43) states that, for the case when the tap inputs of the FIR filter and 
the desired response are jointly stationary, the cost function, or mean-square error, J is 
precisely a second-order function of the tap weights in the filter. Consequently, we may 
visualize the dependence of J on the tap weights w0, w1, c , wM - 1 as a bowl-shaped 
1M + 12-dimensional surface with M degrees of freedom represented by the tap weights 
of the filter; it is 1M + 12-dimensional because we have the variance sd

2 plus the M tap 
weights which are all needed to fully describe the cost function J.  This surface is charac-
terized by a unique minimum. For obvious reasons, we refer to the surface so described 
as the error-performance surface of the FIR filter in Fig. 2.4.
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120  Chapter 2  Wiener Filters

At the bottom, or minimum point, of the error-performance surface, the cost func-
tion J attains its minimum value, denoted by Jmin. At this point, the gradient vector ∇J  
is identically zero. In other words,

 ∇k J = 0,  k = 0, 1, c, M - 1, (2.44)

where ∇kJ is the kth element of the gradient vector. As before, we write the kth tap 
weight as

 wk = ak + jbk. 

Hence, using Eq. (2.43), we may express ∇k J as

  ∇k J =
0J
0ak

+ j 
0J

0bk
 

  = -2p1-k2 + 2 a
M - 1

i = 0
wir1i - k2. 

(2.45)

Applying the necessary and sufficient condition of Eq. (2.44) for optimality to  
Eq. (2.45), we find that the optimum tap weights wo0, wo1, c, wo,  M - 1 for the FIR filter 
in Fig. 2.4 are defined by the system of equations

 a
M - 1

i = 0
woir1i - k2 = p1-k2,  k = 0, 1, c, M - 1. 

This system of equations is identical to the Wiener–Hopf equations (2.28) derived in 
Section 2.4.

minimum mean-Square error

Let dn1n ∙ un2 denote the estimate of the desired response d(n), produced at the output 
of the FIR filter in Fig. 2.4 that is optimized in the mean-square-error sense, given the 
tap inputs u1n2 , u1n - 12 , c, u1n - M + 12  that span the space un. Then, from 
that figure, we deduce

  dn1n ∙ un2 = a
M - 1

k = 0
w*oku1n - k2 

  = wH
o u1n2,  (2.46)

where wo is the tap-weight vector of the optimum filter with elements wo0, wo1, c,
wo,  M - 1, and u(n) is the tap-input vector defined in Eq. (2.30). Note that wH

o u1n2  denotes 
an inner product of the optimum tap-weight vector wo and the tap-input vector u(n). We 
assume that u(n) has zero mean, which makes the estimate dn1n ∙ un2 have zero mean, too. 
Hence, we may use Eq. (2.46) to evaluate the variance of dn1n ∙ un2, obtaining

  s
n d
2 = 𝔼3wH

o u1n2uH
 1n2wo4  

  = wH
o 𝔼3u1n2uH

 1n24wo  

  = wH
o Rwo,  (2.47)
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where R is the correlation matrix of the tap-weight vector u(n), as defined in Eq. (2.29). 
We may eliminate the dependence of the variance s

n d
2 on the optimum tap-weight vector 

wo by using Eq. (2.34). In particular, we may rewrite Eq. (2.47) as

  s
n d
2 = pHwo  

  = pHR-1p. (2.48)

To evaluate the minimum mean-square error produced by the FIR filter in Fig. 2.4, 
we may use Eq. (2.47) or Eq. (2.48) in Eq. (2.19), obtaining

  Jmin = s2
d - wH

o Rwo  

  = s2
d - pHwo  (2.49)

  = s2
d - pHR-1p, 

which is the desired result.

Canonical Form of the error-performance Surface

Equation (2.43) defines the expanded form of the mean-square error J produced by the 
FIR filter in Fig. 2.4. We may rewrite this equation in matrix form by using the defini-
tions of the correlation matrix R and the cross-correlation vector p given in Eqs. (2.31) 
and (2.33), respectively, as shown by

 J1w2 = s2
d - wHp - pHw + wHRw, (2.50)

where the mean-square error is written as J(w) to emphasize its dependence on the tap-
weight vector w. As pointed out in Chapter 1, the correlation matrix R is almost always 
nonsingular, in which case the inverse matrix R-1 exists. Accordingly, expressing J(w) as 
a “perfect square” in w, we may rewrite Eq. (2.50) in the equivalent form

 J1w2 = s2
d - pHR-1p + 1w - R-1p2H

 R1w - R-1p2. (2.51)

From Eq. (2.51), we now immediately see that

 min
w  

J1w2 = s2
d - pHR-1p 

for

 wo = R-1p . 

In effect, starting from Eq. (2.50), we have rederived the Wiener filter in a rather simple 
way. Moreover, we may use the defining equations for the Wiener filter to write

 J1w2 = Jmin + 1w - wo2H
 R1w - wo2 . (2.52)

This equation shows explicitly the unique optimality of the minimizing tap-weight vector 
wo, since we immediately see that J (wo) = Jmin.

Although the quadratic form on the right-hand side of Eq. (2.52) is quite informa-
tive, nevertheless it is desirable to change the basis on which it is defined so that the 
representation of the error-performance surface is considerably simplified. To this end, 

M02_HAYK4083_05_SE_C02.indd   121 21/06/13   8:21 AM



122  Chapter 2  Wiener Filters

we use eigendecomposition to express the correlation matrix R of the tap-input vector 
in terms of its eigenvalues and associated eigenvectors (see Appendix E)

 R = Q𝚲QH, (2.53)

where Λ is a diagonal matrix consisting of the eigenvalues λ1, λ2, . . . , λM of the cor-
relation matrix and the matrix Q has for its columns the eigenvectors q1, q2, . . . , qM 
associated with these eigenvalues, respectively. Hence, substituting Eq. (2.53) into  
Eq. (2.52), we get

 J = Jmin + 1w - wo2H
 Q𝚲QH

 1w - wo2. (2.54)

If we next define a transformed version of the difference between the optimum solution 
wo and the tap-weight vector w as

 v = QH1wo - w2, (2.55)

then we may put the quadratic form of Eq. (2.54) into its canonical form defined by

 J = Jmin + vH𝚲v. (2.56)

This new formulation of the mean-square error contains no cross-product terms, as 
shown by

  J = Jmin + a
M

k = 1
lkvkv*k  

  = Jmin + a
M

k = 1
lk ∙ vk ∙2, (2.57)

where vk is the kth component of the vector v. The feature that makes the canonical 
form of Eq. (2.57) a rather useful representation of the error-performance surface is the 
fact that the components of the transformed coefficient vector v constitute the principal 
axes of the surface. The practical significance of this result will become apparent in later 
chapters.

2.6 muLtipLe Linear regreSSiOn mOdeL

The minimum mean-square error of the Wiener filter, denoted by Jmin and defined in 
Eq. (2.49), applies to an FIR filter configuration of prescribed length (i.e.,  prescribed 
number of tap weights). Given the possibility of adjusting the length of the FIR filter as 
a design parameter, how can we decrease Jmin down to an irreducible level? Clearly, the 
answer to this fundamental question depends on the model describing the relationship 
between the desired response d(n) and the input vector u(n).

In what follows, we make three reasonable assumptions:

 1. The model is linear.
 2. The observable (measurable) data are noisy.
 3. The noise is additive and white.
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Figure 2.5 shows a model that satisfies these assumptions. This model, called the multiple 
linear regression model, is described by the formula (Weisberg, 1980)

 d1n2 = aHum1n2 + v1n2 , (2.58)

where a denotes an unknown parameter vector of the model, um(n) denotes the input 
vector, or regressor, and v(n) accounts for the additive white noise that is statistically 
independent of um(n); the parameter vector a is also referred to as the regression vec-
tor. So long as the stochastic environment under study is linear and the model order m 
is large enough, the underlying mechanism responsible for generating the observable 
data d(n) in response to the input um(n) can be closely approximated by the multiple 
regression model of Eq. (2.58). The vectors a and um(n) are both of dimension m. Let 
s2
n denote the variance of the noise v(n). Then the variance of the observable data d(n) 

supplying the desired response is given by

  s2
d = 𝔼3d1n2d*1n24 

  = s2
n + aHRma,  (2.59)

where

 Rm = 𝔼3um 1n2uH
m1n24 (2.60)

is the m-by-m correlation matrix of the input vector.
Consider now a Wiener filter that operates on an input vector u(n) and desired 

response d(n) to produce a minimum mean-square error Jmin(M), which is  adjustable 
by varying the filter length M. The input vector u(n) and corresponding tap-weight 
vector wo are both M-by-1 vectors. Substituting Eq. (2.59) into the first line of  
Eq. (2.49), we get

 Jmin 1M2 = s2
n + 1aHRma - wH

o Rwo2 . (2.61)

The only adjustable term in this expression is wH
o Rwo, which is quadratic in M. We may 

identify three regimes of model selection:

1. Underfitted model: M 6 m
In this regime, the Wiener filter exhibits improved performance with increas-

ing M for a prescribed m. In particular, the minimum mean-square error decreases 
 quadratically with the filter length M, starting from the worst possible condition; that is,

 Jmin 102 = s2
n + aHRma. (2.62)

g d(n)a*

v(n)

um(n)

Figure 2.5 Multiple linear regression 
model.
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124  Chapter 2  Wiener Filters

2. Critically fitted model: M = m
At the critical point M = m, the Wiener filter is perfectly matched to the regression 

model, in that wo = a and R = Rm. Correspondingly, the minimum mean-square error 
of the Wiener filter attains the irreducible value,5 which is defined by

 Jmin 102 = s2
n. (2.63)

3. Overfitted model: M 7 m
When the length of the Wiener filter is greater than the model order m, the tail end 

of the tap-weight vector of the Wiener filter is zero, as shown by the formula

 wo = c a
0
d . (2.64)

Correspondingly, the tap-input vector of the Wiener filter takes the form

 u1n2 = c um 1n2
uM - m 1n2 d , (2.65)

where uM - m1n2  is an 1M - m2 -by-1 vector made up of past data samples immediately 
preceding the m-by-1 vector um(n). The net result, in theory, is the same minimum mean-
square-error performance as the critically fitted case, but with a longer filter length.

From this discussion, it is obvious that the preferred design strategy is to match 
the length M of the Wiener filter to the order m of the regression model. In this critical 
case, the estimation error eo(n) produced by the Wiener filter is white with variance s2

n, 
inheriting the statistical characterization of the additive noise v(n) in the regression 
model of Eq. (2.58).

2.7 exampLe

To illustrate the optimum filtering theory developed in the preceding sections, consider 
a regression model of order m = 3 with its parameter vector denoted by

 a = 3ao, a1, a24T. 

The statistical characterization of the model, assumed to be real valued, is as follows:

 (a) The correlation matrix of the input vector u(n) is

 R4 = ≥
1.1 0.5 0.1 -0.05
0.5 1.1 0.5   0.1
0.1 0.5 1.1   0.5

-0.05 0.1 1.5   1.1

¥ , 

  where the dashed lines are included to identify the submatrices that correspond 
to varying filter lengths.

5The term “irreducible error,” as used here, is different from similar terminology used in the literature 
on optimum filtering. When we say “irreducible error,” we mean the optimum estimation error produced by a 
realizable discrete-time Wiener filter whose length matches the order of the multiple regression model described 
in Eq. (2.58). On the other hand, in the literature (e.g., Thomas, 1969), the term “irreducible” is used to refer to 
an unrealizable Wiener filter, which is noncausal (i.e., its impulse response is nonzero for negative time).
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 (b) The cross-correlation vector between the input vector u(n) and observable  
data d(n) is

 p = [0.5272, -0.4458, -0.1003, -0.0126]T, 

  where the value of the fourth entry ensures that the model parameter a3 is zero 
(i.e., the model order m is 3, as prescribed; see Problem 9).

 (c) The variance of the observable data is

 s2
d = 0.9486. 

 (d) The variance of the additive white noise is

 s2
n = 0.1066. 

The requirement is to do three things:

 1. Investigate the variation of the minimum mean-square error Jmin produced by a 
Wiener filter of varying length M = 1, 2, 3, 4.

 2. Display the error-performance surface of a Wiener filter with length M = 2.
 3. Compute the canonical form of the error-performance surface. 

Variation of Jmin with filter length M With model order M = 3, the real-valued 
regression model is described by

 d1n2 = ao u1n2 + a1 u1n - 12 + a2 u1n - 22 + v1n2 , (2.66)

where ak = 0 for all k Ú 3. Table 2.1 summarizes the computations of the M-by-1 opti-
mum tap-weight vector and minimum mean-square error Jmin(M) produced by the 
Wiener filter for M = 1, 2, 3, 4. The table also includes the pertinent values of the cor-
relation matrix R and cross-correlation vector p that are used in Eqs. (2.36) and (2.49) 
to perform the computations.

Figure 2.6 displays the variation of the minimum mean-square error Jmin(M) with 
the Wiener filter length M. The figure also includes the point corresponding to the worst 

TabLe 2.1 Summary of Wiener Filter Computations for Varying Filter Length M

Filter  
length M

Correlation matrix  
R

Cross-correlation 
vector p

Optimum tap-weight 
vector wo

Minimum mean-square 
error Jmin(M)

1 [1.1] [0.5272] [0.4793] 0.6959

2 c1.1 0.5
0.5 1.1

d c 0.5272
-0.4458

d c 0.8360
-0.7853

d 0.1576

3 £
1.1 0.5 0.1
0.5 1.1 0.5
0.1 0.5 1.1

§ £
0.5272

-0.4458
-0.1003

§ £
0.8719

-0.9127
0.2444

§ 0.1066

4 ≥
1.1 0.5 0.1 -0.05
0.5 1.1 0.5 0.1
0.1 0.5 1.1 0.5

-0.05 0.1 0.5 1.1

¥ ≥
0.5272

-0.4458
-0.1003
-0.0126

¥ ≥
0.8719

-0.9129
0.2444
0

¥ 0.1066
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possible condition M = 0 for which Jmin 102 = s2
d. Notice the steep drop in the mini-

mum mean-square error when the filter length M is increased from one to two.

Error-performance surface For filter length M = 2, the dependence of the 
mean-square error on the 2-by-1 tap-weight vector w is defined [in accordance with 
Eq. (2.50)] as

  J1w0, w12 = 0.9486 - 230.5272, -0.44584 cw0

w1
d + 3w0, w14 c1.1 0.5

0.5 1.1
d cw0

w1
d  

 = 0.9486 - 1.0544 w0 + 0.8961 w1 + w0w1 + 1.11w2
0 + w2

 12 .   (2.67)
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Figure 2.6 Variation of Jmin(M) 
with Wiener filter length M for the 
example of Section 2.7.
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Figure 2.7 shows a three-dimensional computer plot of the mean-square error J (w0, w1) 
versus the tap weights w0 and w1.

Figure 2.8 shows contour plots of the tap weight w1 versus w0 for varying values 
of the mean-square error J. We see that the locus of w1 versus w0 for a fixed J is in the 
form of an ellipse. The elliptical locus shrinks in size as J approaches the minimum 
value Jmin. For J = Jmin, the locus reduces to a point with coordinates wo 0 = 0.8360 and 
wo 1 = -0.7853; that is, the optimum tap-weight vector is

 wo = c 0.8360
-0.7853

d . (2.68)

The minimum mean-square error is, in accordance with Eq. (2.49),

  Jmin = 0.9486 - 30.5272 -0.44584 c 0.8360
-0.7853

d  

  = 0.1579.  (2.69)

The point represented jointly by the optimum tap-weight vector wo = 30.8360, - 0.78534T 
and the minimum mean-square error Jmin = 0.1579 defines the bottom of the error- 
performance surface in Fig. 2.7 or the center of the contour plots in Fig. 2.8.
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–1.00

0.000.00

0.80
1.60
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w0 w1

0.16

3.02

5.88

8.75

11.61

14.47

C
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t f
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n 
J

Figure 2.7 Error-performance surface of the two-tap FIR filter described in the example 
of Section 2.7.
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Computation of the Canonical Form of the error-performance Surface

For eigenvalue analysis, we formulate the characteristic equation of the 2-by-2 correla-
tion matrix

 R = c1.1 0.5
0.5 1.1

d , 

which is given by the determinant of the matrix

 c1.1 - l 0.5
0.5 1.1 - l

d ; 

that is,

 11.1 - l22 - 10.522 = 0. 

The two eigenvalues of the correlation matrix R are therefore

Figure 2.8 Contour plots of the error-performance surface depicted in Fig. 2.7.
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 l1 = 1.6 
and

 l2 = 0.6 

The canonical error-performance surface is defined [in accordance with Eq. (2.57)] as

 J1v1, v22 = Jmin + 1.6 v2
1 + 0.6 v2

2. (2.70)

The locus of v2 versus v1 traces an ellipse for a fixed value of J - J min . In particular, the 
ellipse has a minor axis of 31J - J min 2 >l141>2 along the v1-coordinate and a major axis 
of 31J - J min 2 >l241>2 along the v2-coordinate, where it is assumed that l1 7 l2, which 
is in fact how they are related.

2.8 LinearLy COnStrained minimum-VarianCe FiLter

The essence of a Wiener filter is that it minimizes the mean-square value of an estimation 
error, defined as the difference between a desired response and the actual filter output. In 
solving this optimization (minimization) problem, no constraints are imposed on the solution. 
In some filtering applications, however, it may be desirable (or even mandatory) to design 
a filter that minimizes a mean-square criterion subject to a specific constraint. For example, 
the requirement may be that of minimizing the average output power of a linear filter while 
the response of the filter measured at some specific frequency of interest is constrained to 
remain constant. In this section, we examine one such solution for two different scenarios:

Scenario 1: Signal processing in the time domain.

Consider an FIR filter, as in Fig. 2.9. The filter output, in response to the tap inputs 
u1n2 , u1n - 12 , c, u1n - M + 12 , is given by

 y1n2 = a
M - 1

k = 0
w*ku1n - k2 . (2.71)

For the special case of a sinusoidal excitation

 u1n2 = ejvn, (2.72)
we may rewrite Eq. (2.71) as

 y1n2 = ejvn a
M - 1

k = 0
w*ke-jvk, (2.73)

where v is the angular frequency of the excitation, which is normalized with respect to 
the sampling rate; the summation is the frequency response of the filter.

The constrained optimization problem that we wish to solve may now be stated 
as follows:

Find the optimum set of filter coefficients wo 0, wo 1, c, wo, M - 1 that minimizes 
the mean-square value of the filter output y(n), subject to the linear constraint

 a
M - 1

k = 0
w*ke-jv0k = g, (2.74)

where v0 is a prescribed value of the normalized angular frequency v, lying inside 
the range -p 6 v … p, and g is a complex-valued gain.
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Section 2.8 Linearly Constrained Minimum-Variance Filter   131

Scenario 2: Signal processing in the spatial domain.

The constrained optimization filtering problem described by Eqs. (2.71) and (2.74) is 
temporal in nature. We may formulate the spatial version of the problem by consider-
ing the beamformer depicted in Fig. 2.10, which consists of a linear array of uniformly 
spaced antenna elements with adjustable weights (not shown in the figure). The array 
is illuminated by an isotropic source located in the far field such that, at time n, a plane 
wave impinges on the array along a direction specified by the angle f0 with respect to 
the perpendicular to the array. It is also assumed that the interelement spacing of the 
array is less than l>2, where λ is the wavelength of the transmitted signal, so as to satisfy 
the spatial analog of the sampling theorem. (See the discussion presented in Section 6 of 
the chapter on Background and Preview.) The resulting beamformer output is given by

 y1n2 = u0 1n2 a
M - 1

k = 0
w*ke-jku0, (2.75)

where the direction of arrival, signified by the electrical angle u0, is related to the actual 
angle of incidence f0 ; u0(n) is the electrical signal picked up by the antenna element 
labeled 0 in Fig. 2.10 that is treated as the point of reference; and the wk denotes the 
weights of the beamformer. The spatial version of the constrained optimization problem 
may thus be stated as follows:

Find the optimum set of elemental weights wo0, wo1, c,wo, M - 1 that minimizes 
the mean-square value of the beamformer output, subject to the linear constraint

 a
M - 1

k = 0
w*ke- jku0 = g, (2.76)

where u0 is a prescribed value of the electrical angle u, lying inside the range 
-p 6 u … p, and g is a complex-valued gain. The beamformer is narrowband 
in the sense that its response needs to be constrained only at a single frequency.

Comparing the temporal structure of Fig. 2.9 and the spatial picture of Fig. 2.10, we 
see that, although they address entirely different physical situations, their formulations 

0 1 2 M – 1

Incident wave

Linear array of M sensors

f0

Figure 2.10 Plane wave incident on a linear-array antenna.
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132  Chapter 2  Wiener Filters

are equivalent in mathematical terms. Indeed, in both cases we have exactly the same 
constrained optimization problem on our hands.

To solve the constrained optimization problem, we use the method of Lagrange 
multipliers, which is discussed in Appendix C. We begin by defining a real-valued 
cost function J that combines the two parts of the constrained optimization problem. 
Specifically, we write

 J = a
M - 1

k = 0
 a
M - 1

i = 0
w*kwir1 i - k2 + Re cl*a a

M - 1

k = 0
w*ke-ju0k - gb d , 

 (++++)++++*   (++111++)++++111* 
 output power linear constraint (2.77)

where λ is a complex Lagrange multiplier. Note that there is no desired response in the 
definition of J; rather, it includes a linear constraint that has to be satisfied for the pre-
scribed electrical angle u0 in the context of beamforming, or, equivalently, the angular 
frequency v0 in FIR filtering. In any event, imposition of the linear constraint preserves 
the signal of interest, and minimization of the cost function J attenuates interference or 
noise, which can be troublesome if left unchecked.

Optimal Solution of the Beamforming Problem.

We wish to solve for the optimum values of the elemental weights of the beamformer 
that minimize J defined in Eq. (2.77). To do so, we may determine the gradient vector 
∇J and then set it equal to zero. Thus, proceeding in a manner similar to that described 
in Section 2.2, we find that the kth element of the gradient vector ∇J is

 ∇k J = 2 a
M - 1

i = 0
wir1 i - k2 + l*e-ju0k. (2.78)

Let woi be the ith element of the optimum weight vector wo. Then the condition for 
optimality of the beamformer is described by

 a
M - 1

i = 0
woir1 i - k2 = -

l*

2
 e-ju0k,   k = 0, 1, c, M - 1. (2.79)

This system of M simultaneous equations defines the optimum values of the beam-
former’s elemental weights. It has a form somewhat similar to that of the Wiener–Hopf 
equations (2.28).

At this point in the analysis, we find it convenient to switch to matrix notation. In par-
ticular, we may rewrite the system of M simultaneous equations given in Eq. (2.79) simply as

 Rwo = -
l*

2
 s1u02 , (2.80)

where R is the M-by-M correlation matrix and wo is the M-by-1 optimum weight vector 
of the constrained beamformer. The M-by-1 steering vector is defined by

 s1u02 = 31, e-ju0, c, e-j1M - 12u04T. (2.81)

Solving Eq. (2.80) for wo, we thus have

 wo = -
l*

2
 R-1s1u02 , (2.82)
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where R-1 is the inverse of the correlation matrix R, assuming that R is nonsingular. This 
assumption is perfectly justified in practice by virtue of the fact that, in the context of a 
beamformer, the received signal at the output of each antenna element of the systems 
may include a white (thermal) noise component representing sensor noise.

The solution for the optimum weight vector wo given in Eq. (2.82) is not quite complete, 
as it involves the unknown Lagrange multiplier λ (or its complex conjugate, to be precise). 
To eliminate λ* from this expression, we first use the linear constraint of Eq. (2.76) to write

 wH
o s1𝛉02 = g, (2.83)

where the superscript H denotes Hermitian transposition (i.e., the operation of transposition 
combined with complex conjugation). Hence, taking the Hermitian transpose of both sides of 
Eq. (2.82), postmultiplying by s1u02 , and then using the linear constraint of Eq. (2.83), we get

 l = -  
2g

sH
 1u02R-1s1u02

, (2.84)

where we have used the fact that R-H = R-1. The quadratic form sH1u02R-1s1u02  is 
real valued. Hence, substituting Eq. (2.84) into Eq. (2.82), we get the desired formula 
for the optimum weight vector:

 wo =
g*R-1s1u02

sH
 1u02R-1s1u02

. (2.85)

Note that by minimizing the output power subject to the linear constraint of Eq. (2.83), 
signals incident on the array along directions different from the prescribed value u0 tend 
to be attenuated.

For obvious reasons, a beamformer characterized by the weight vector wo is referred 
to as a linearly constrained minimum-variance (LCMV) beamformer. For a zero-mean 
input and therefore zero-mean output, “minimum variance” and “minimum mean-square 
value” are indeed synonymous. Also, in light of what we said previously, the solution 
defined by Eq. (2.85) with v0 substituted for u0 may be referred to as an LCMV filter. 
Although the LCMV beamformer and LCMV filter are quite different in physical terms, 
their optimality is one and the same in mathematical terms.

minimum-Variance distortionless response beamformer

The complex constant g defines the response of an LCMV beamformer at the electrical 
angle u0. For the special case of g = 1, the optimum solution given in Eq. (2.85) reduces to

 wo =
R-1s1u02

sH
 1u02R-1s1u02

. (2.86)

The response of the beamformer defined by Eq. (2.86) is constrained to equal unity 
at the electrical angle u0. In other words, this beamformer is constrained to produce a 
distortionless response along the look direction corresponding to u0.

Now, the minimum mean-square value (average power) of the optimum beam-
former output may be expressed as the quadratic form

 Jmin = wH
o Rwo. (2.87)
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Hence, substituting Eq. (2.86) into Eq. (2.87) and simplifying terms, we get the result

 Jmin =
1

sH
 1u02R-1s1u02

. (2.88)

The optimum beamformer is constrained to pass the target signal with unit response, 
while at the same time minimizing the total output variance. This variance minimiza-
tion process attenuates interference and noise not originating at the electrical angle u0. 
Hence, Jmin represents an estimate of the variance of the signal impinging on the array 
along the direction corresponding to u0. We may generalize this result and obtain an 
estimate of variance as a function of direction by formulating Jmin as a function of u. In 
so doing, we obtain the MVDR (spatial) power spectrum defined as

 SMVDR1u2 =
1

sH
 1u2R-1s1u2 , (2.89)

where

 s1u2 = 31, e-ju, c, e-ju1M - 12 4T. (2.90)

The M-by-1 vector s1u2  is called a spatial scanning vector in the context of the beam-
forming environment of Fig. 2.10 and a frequency scanning vector with v in place of u 
for the FIR filter of Fig. 2.9. By definition, SMVDR(u) or SMVDR(v) has the dimension of 
power. Its dependence on the electrical angle u at the beamformer input or the angular 
frequency v at the FIR filter input therefore justifies referring to it as a power spectrum 
estimate. Indeed, it is commonly referred to as the minimum-variance distortionless 
response (MVDR) spectrum.6 Note that at any v in the temporal context, power due to 
other angular frequencies is minimized. Accordingly, the MVDR spectrum tends to have 
sharper peaks and higher resolution, compared with nonparametric (classical) methods 
based on the definition of the power spectrum that were discussed in Chapter 1.

2.9 generaLized SideLObe CanCeLLerS

Continuing with the discussion of the LCMV narrowband beamformer defined by the 
linear constraint of Eq. (2.76), we note that this constraint represents the inner product

 wHs1u02 = g, 

in which w is the weight vector and s1u02  is the steering vector pointing along the 
electrical angle u0. The steering vector is an M-by-1 vector, where M is the number of 
antenna elements in the beamformer. We may generalize the notion of a linear con-
straint by introducing multiple linear constraints defined by

 CHw = g. (2.91)

6The formula given in Eq. (2.89) is credited to Capon (1969). It is also referred to in the literature as the 
maximum-likelihood method (MLM). In reality, however, this formula has no bearing on the classical principle 
of maximum likelihood. The use of the terminology MLM for the formula is therefore not recommended.
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The matrix C is termed the constraint matrix, and the vector g, termed the gain vector, 
has constant elements. Assuming that there are L linear constraints, C is an M-by-L 
matrix and g is an L-by-1 vector; each column of the matrix C represents a single linear 
constraint. Furthermore, it is assumed that the constraint matrix C has linearly indepen-
dent columns. For example, with

 3s1u02 , s1u12 4H
 w = c 1

0
d , 

the narrowband beamformer is constrained to preserve a signal of interest impinging on 
the array along the electrical angle u0 and, at the same time, to suppress an interference 
known to originate along the electrical angle u1.

Let the columns of an M@by@1M - L2 matrix Ca be defined as a basis for the 
orthogonal complement of the space spanned by the columns of matrix C. Using the 
definition of an orthogonal complement, we may thus write

 CHCa = 0, (2.92)

or, just as well,

 CH
a C = 0. (2.93)

The null matrix 0 in Eq. (2.92) is L by 1M - L2 , whereas in Eq. (2.93) it is 1M - L2  
by L; we naturally have M 7 L. We now define the M-by-M partitioned matrix

 U = 3C    Ca4 (2.94)

whose columns span the entire M-dimensional signal space. The inverse matrix U-1 
exists by virtue of the fact that the determinant of matrix U is nonzero.

Next, let the M-by-1 weight vector of the beamformer be written in terms of the 
matrix U as

 w = Uq . (2.95)

Equivalently, the M-by-1 vector q is defined by

 q = U-1w . (2.96)

Let q be partitioned in a manner compatible with that in Eq. (2.94), as shown by

 q = c v
-wa

d , (2.97)

where v is an L-by-1 vector and the 1M - L2 -by-1 vector wa is that portion of the 
weight vector w that is not affected by the constraints. We may then use the definitions 
of Eqs. (2.94) and (2.97) in Eq. (2.95) to write

  w = 3C    Ca4 c v
-wa

d  
  = Cv - Cawa.  (2.98)
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We may now apply the multiple linear constraints of Eq. (2.91), obtaining

 CHCv - CHCawa = g . (2.99)

But, from Eq. (2.92), we know that CHCa is zero; hence, Eq. (2.99) reduces to

 CHCv = g. (2.100)

Solving for the vector v, we thus get

 v = 1CHC2-1g, (2.101)

which shows that the multiple linear constraints do not affect wa.
Next, we define a fixed beamformer component represented by

 wq = Cv = C1CHC2-1g, (2.102)

which is orthogonal to the columns of matrix Ca by virtue of the property described 
in Eq. (2.93); the rationale for using the subscript q in wq will become apparent later. 
From this definition, we may use Eq. (2.98) to express the overall weight vector of the 
beamformer as

 w = wq - Cawa. (2.103)

Substituting Eq. (2.103) into Eq. (2.91) yields

 CHwq - CHCawa = g, 

which, by virtue of Eq. (2.92), reduces to

 CHwq = g . (2.104)

Equation (2.104) shows that the weight vector wq is that part of the weight vector w 
which satisfies the constraints. In contrast, the vector wa is unaffected by the constraints; 
it therefore provides the degrees of freedom built into the design of the beamformer. 
Thus, in light of Eq. (2.103), the beamformer may be represented by the block diagram 
shown in Fig. 2.11(a). The beamformer described herein is referred to as a generalized 
sidelobe canceller (GSC).7

In light of Eq. (2.102), we may now perform an unconstrained minimization of 
the mean-square value of the beamformer output y(n) with respect to the adjustable 
weight vector wa. According to Eq. (2.75), the beamformer output is defined by the 
inner product

 y1n2 = wHu1n2, (2.105)

where

 u1n2 = u0 1n2 31, e-ju0, c, e-j1M - 12u04T (2.106)

7The essence of the GSC may be traced back to a method for solving linearly constrained quadratic 
minimization problems originally proposed by Hanson and Lawson (1969). The term “generalized sidelobe 
canceller” was coined by Griffiths and Jim (1982). For a discussion of this canceller, see Van Veen and Buckley 
(1988) and Van Veen (1992).
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is the input signal vector, in which the electrical angle u0 is defined by the direction of 
arrival of the incoming plane wave and u0(n) is the electrical signal picked up by antenna 
element 0 of the linear array in Fig. 2.10 at time n. Hence, substituting Eq. (2.103) into 
Eq. (2.105) yields

 y1n2 = wH
q u1n2 - wH

a CH
a u1n2. (2.107)

g
+

–

y(n)

wa

d(n)

x(n)

g
+

–

y(n)

wq

wa

u(n)

Ca

(a)

(b)

Figure 2.11 (a) Block diagram of generalized sidelobe canceller. (b) Reformulation of the 
generalized sidelobe cancelling problem as a standard optimum filtering problem.
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If we now define

 wH
q u1n2 = d1n2  (2.108)

and

 CH
a u1n2 = x1n2, (2.109)

we may rewrite Eq. (2.107) in a form that resembles the standard Wiener filter exactly, 
as shown by

 y1n2 = d1n2 - wH
a x1n2, (2.110)

where d(n) plays the role of a “desired response” for the GSC and x(n) plays the role 
of input vector, as depicted in Fig. 2.11(b). We thus see that the combined use of vector 
wq and matrix Ca has converted the linearly constrained optimization problem into a 
standard optimum filtering problem. In particular, we now have an unconstrained opti-
mization problem involving the adjustable portion wa of the weight vector, which may 
be formally written as

 min
wa

 𝔼3 ∙ y1n2 ∙24 = min
wa

1s2
d - wH

a px - pH
x wa + wH

a Rxwa2, (2.111)

where the 1M - L2-by-1 cross-correlation vector

 px = 𝔼3x1n2d*1n24 (2.112)

and the 1M - L2@by@1M - L2 correlation matrix

 Rx = 𝔼3x1n2xH1n24. (2.113)

The cost function of Eq. (2.111) is quadratic in the unknown vector wa, which, as previ-
ously stated, embodies the available degrees of freedom in the GSC. Most importantly, 
this cost function has exactly the same mathematical form as that of the standard Wiener 
filter defined in Eq. (2.50). Accordingly, we may readily use our previous results to 
obtain the optimum value of wa as

 wao = R-1
x px. (2.114)

Using the definitions of Eqs. (2.108) and (2.109) in Eq. (2.112), we may express 
the vector px as

  px = 𝔼3CH
a u1n2uH

 1n2wq4 

  = CH
a 𝔼3u1n2uH

 1n24wq (2.115)

  = CH
a Rwq,  

where R is the correlation matrix of the incoming data vector u(n). Similarly, using the 
definition of Eq. (2.109) in Eq. (2.113), we may express the matrix Rx as

  Rx = 𝔼3CH
a u1n2uH

 1n2Ca4 

  = CH
a RCa.  (2.116)
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The matrix Ca has full rank, and the correlation matrix R is positive definite, since the 
incoming data always contain some form of additive sensor noise, with the result that 
Rx is nonsingular. Accordingly, we may rewrite the optimum solution of Eq. (2.114) as

 wao = 1CH
a RCa2-1CH

a Rwq. (2.117)

Let Po denote the minimum output power of the GSC attained by using the opti-
mum solution wao. Then, adapting the previous result derived in Eq. (2.49) for the stan-
dard Wiener filter and proceeding in a manner similar to that just described, we may 
express Po as

  Po = s2
d - pH

x R-1
x px  

  = wH
q Rwq - wH

q RCa1CH
a RCa2-1CH

a Rwq. (2.118)

Now consider the special case of a quiet environment, for which the received sig-
nal consists of white noise acting alone. Let the corresponding value of the correlation 
matrix R be written as

 R = s2I, (2.119)

where I is the M-by-M identity matrix and s2 is the noise variance. Under this condition, 
we readily find, from Eq. (2.117), that

 wao = 1CH
a Ca2-1CH

a wq. 

By definition, the weight vector wq is orthogonal to the columns of matrix Ca. It follows, 
therefore, that the optimum weight vector wao is identically zero for the quiet environ-
ment described by Eq. (2.119). Thus, with wao equal to zero, we find from Eq. (2.103) 
that w = wq. It is for this reason that wq is often referred to as the quiescent weight 
 vector—hence the use of subscript q to denote it.

Filtering interpretations of wq and Ca

The quiescent weight vector wq and matrix Ca play critical roles of their own in the 
operation of the GSC. To develop physical interpretations of them, consider an MVDR 
spectrum estimator (formulated in temporal terms) for which we have

  C = s1v02  

  = 31, e-jv0, c, e-j1M - 12v04T (2.120)

and

 g = 1. 

Hence, the use of these values in Eq. (2.102) yields the corresponding value of the qui-
escent weight vector, viz.,

  wq = C1CHC2-1g  

  =
1
M

 31, e-jv0, c, e-j1M - 12v04T, (2.121)
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which represents an FIR filter of length M. The frequency response of this filter is given by

  wH
q s1v2 =

1
M

 a
M - 1

k = 0
ejk1v0 -v2 

  =
1 - ejM1v0 -v2

1 - ej1v0 -v2  

 = ±
sin aM

2
1v0 - v2b

 sin a1
2
1v0 - v2b

≤ exp a j1M - 12
2

 1v0 - v2b .      

(2.122)

Figure 2.12(a) shows the amplitude response of this filter for M =  4 and v0 =  1. 
From this figure, we clearly see that the FIR filter representing the quiescent weight 
vector wq acts like a bandpass filter tuned to the angular frequency v0, for which the 
MVDR spectrum estimator is constrained to produce a distortionless response.

Consider next a physical interpretation of the matrix Ca. The use of Eq. (2.120) 
in Eq. (2.92) yields

 sH
 1v02Ca = 0. (2.123)

According to Eq. (2.123), each of the1M - L2 columns of matrix Ca represents an 
FIR filter with an amplitude response that is zero at v0, as illustrated in Fig. 2.12(b) for 
v0 = 1, M = 4, L = 1, and

 Ca = ≥
-1 -1 -1

e-jv0 0 0
0 e-j2v0 0
0 0 e-j3v0

¥ . 

In other words, the matrix Ca is represented by a bank of band-rejection filters, each of 
which is tuned to v0. Thus, Ca is referred to as a signal-blocking matrix, since it blocks 
(rejects) the received signal at the angular frequency v0. The function of the matrix Ca is 
to cancel interference that leaks through the sidelobes of the bandpass filter represent-
ing the quiescent weight vector wq.

2.10 Summary and diSCuSSiOn

The discrete-time version of Wiener filter theory, as described in this chapter, has evolved 
from the pioneering work of Norbert Wiener on linear optimum filters for continuous-
time signals. The importance of the Wiener filter lies in the fact that it provides a frame 
of reference for the linear filtering of stochastic signals, assuming wide-sense stationarity.

The Wiener filter has two important properties from a practical perspective:

 1. Principle of orthogonality: The error signal (estimation error) produced by the 
Wiener filter is orthogonal to its tap inputs.

 2. Statistical characterization of the error signal as white noise: This condition is 
attained when the filter length matches the order of the multiple regression model 
describing the generation of the observable data (i.e., the desired response).
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Figure 2.12 (a) Interpretation of wH
q s1v2  as the response of an FIR filter.  

(b) Interpretation of each column of matrix Ca as a band-rejection filter. In both  
parts of the figure it is assumed that v0 = 1.
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The filtering structures that fall under the umbrella of Wiener filter theory are of 
two different physical types:

	 •	 FIR filters, which are characterized by an impulse response of finite duration.
	 •	 Narrowband beamformers, which consist of a finite set of uniformly spaced antenna 

elements with adjustable weights.

These two structures share a common feature: They are both examples of a linear system 
whose output is defined by the inner product of its weight vector and the input vector. 
The optimum filter involving such a structure is embodied in the Wiener–Hopf equa-
tions, the solution of which involves two ensemble-average parameters:

	 •	 The correlation matrix of the input vector.
	 •	 The cross-correlation vector between the input vector and desired response.

The standard formulation of Wiener filtering requires the availability of a desired 
response. There are, however, applications in which it is not feasible to provide such a 
response. For these applications, we may use a class of linear optimum filters known as lin-
early constrained minimum variance (LCMV) filters or LCMV beamformers, depending on 
whether the application is temporal or spatial in nature. The essence of the LCMV approach 
is that it minimizes the average output power, subject to a set of linear constraints on the 
weight vector. The constraints are imposed so as to prevent the weight vector from cancelling 
the signal of interest. To satisfy the requirement of multiple constraints, we may use the gen-
eralized sidelobe canceller (GSC) whose weight vector is separated into two components:

	 •	 A quiescent weight vector, which satisfies the prescribed constraints.
	 •	 An unconstrained weight vector, the optimization of which, in accordance with 

Wiener filter theory, minimizes the effects of receiver noise and interfering signals.

prObLemS

 1. The correlation matrix R of the tap-input vector u(n) of a Wiener filter is

 R = c 1.1 0.5
0.5 1.1

d  

The cross-correlation vector between the tap-input vector u(n) and the desired 
response d(n) is

 p = 30.5, 0.24T 

 Evaluate the tap weights of the filter.

 2. The correlation matrix R of the tap-input vector u(n) of a Wiener filter is 

 R = c 1.1 0.5
0.5 1.1

d  

The cross-correlation vector between the tap-input vector u(n) and the desired 
response d(n) is

 p = 30.5, 0.24T 

 Evaluate the minimum mean-square error.
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 3. Repeat steps (a), (b), and (c) of Problem 2, given the following values for the correlation 
matrix R and cross-correlation vector p:

  R = £
1 0.5 0.25
0.5 1 0.5
0.25 0.5 1

§ ; 

  p = 30.5, 0.25, 0.1254 .  

Note that these values require the use of a Wiener filter with three tap inputs.

 4. Suppose you are given the two time series u102 , u112 , c, u1N2  and d102 , d112 , c , d1N2 , 
both of which are realizations of two jointly wide-sense stationary processes. The series are 
used to supply the tap inputs of an FIR filter of length M and the desired response, respec-
tively. Assuming that both of these processes are jointly ergodic, derive an estimate for the 
tap-weight vector of the Wiener filter by using time averages.

 5. The tap-weight vector of an FIR filter is defined by

 u1n2 = a1n2s1n2 + n1n2, 
where

 s1v2 = 31, e-jv, c, e-jv1M - 12 4T 

and
 n1n2 = 3n1n2 , n1n - 12 , c, n1n - M - 12 4T. 

The complex amplitude of the sinusoidal vector s(v) is a random variable with zero mean 
and variance s2

a = 𝔼3 ∙a1n2 ∙24.
 (a) Determine the correlation matrix of the tap-input vector u(n).
 (b) Suppose that the desired response d(n) is uncorrelated with u(n). What is the value of the 

tap-weight vector of the corresponding Wiener filter?
 (c) Suppose that the variance s2

a is zero and the desired response is defined by

 d1n2 = n1n - k2, 
  where 0 … k … M - 1. What is the new value of the tap-weight vector of the Wiener filter?
 (d) Determine the tap-weight vector of the Wiener filter for a desired response defined by

 d1n2 = a1n2e-jvt, 

  where t is a prescribed delay.

 6. Show that the Wiener–Hopf equations (2.34), defining the tap-weight vector wo of the Wiener 
filter, and Eq. (2.49), defining the minimum mean-square error Jmin, may be combined into 
the single matrix relation

 A c 1
-wo

d = c Jmin

0
d . 

  The matrix A is the correlation matrix of the augmented vector

 cd1n2
u1n2 d , 

  where d(n) is the desired response and u(n) is the tap-input vector of the Wiener filter.
 7. The minimum mean-square error is defined by [see Eq. (2.49)]

 Jmin = s2
d - pHR-1p, 
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where s2
d is the variance of the desired response d(n), R is the correlation matrix of the tap-

input vector u(n), and p is the cross-correlation vector between u(n) and d(n). By applying 
eigendecompositions to the inverse of the correlation matrix, (i.e., R-1), show that

 Jmin = s2
d - a

M

k = 1

∙ qH
k p ∙2

lk
, 

where λk is the kth eigenvalue of the correlation matrix R and qk is the corresponding eigen-
vector. Note that qH

k  p is a scalar.

 8. Compute the canonical form of the error-performance surface for

 R = c 1. 0.5
0.5 1

d . 

 9. Consider a linear regression model whose input–output behavior is defined by

 d1n2 = aH
MuM1n2 + n1n2, 

where

 aM = 3am 0M - m4T 

and
 uM 1n2 = 3um 1n2 uM - m 1n - m2 4T. 

Assume that M is greater than the model order m. The correlation matrix of the input vector 
uM(n) is partitioned as follows:

 RM = c Rm rM - m

rH
M - m RM - m, M - m

d . 

The cross-correlation vector between the observable data d(n) and the input vector u(n) is 
correspondingly partitioned as follows:

 pM = c pm

pM - m
d . 

 (a) Find the condition that the 1M - m2 -by-1 vector pM - m must satisfy for am, Rm, and pm 
to satisfy the Wiener–Hopf equation.

 (b) Applying the result derived in part (a) to the Example in Section 2.7, show that for M = 4, 
the last entry in the cross-correlation vector p has the value

 p(3) =  -0.0126. 

 10. The statistical characterization of a multiple linear regression model of order four is as 
follows:

	 	 •	 The correlation matrix of the input vector u(n) is

 R4 = ≥
1.1 0.5 0.1 -0.1
0.5 1.1 0.5 0.1
0.1 0.5 1.1 0.5

-0.1 0.1 0.5 1.1

¥ . 
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	 	 •	 The cross-correlation vector between the observable data and the input vector is

 p4 = 30.5, -0.4, -0.2, -0.14T. 

	 	 •	 The variance of the observable data d(n) is

 s2
d = 1.0. 

	 	 •	 The variance of the additive white noise is

 s2
n = 0.1. 

  A Wiener filter of varying length M operates on the input vector u(n) as input and on the 
observable data d(n) as the desired response. Compute and plot the mean-square error pro-
duced by the Wiener filter for M =  0, 1, 2, 3, 4.

 11. Parts (a) and (b) of Fig. P2.1 show the autoregressive model of desired response d(n) and the 
model of a noisy communication channel, respectively. In Fig. P2.1(a), n11n2  is a white-noise  
process of zero mean and variance s2

1 = 0.27. In Fig. P2.1(b), n21n2  is another white- 
noise source of zero mean and variance s2

2 = 0.1. The two noise sources n11n2  and n21n2  
are statistically independent.

(a)

(b)

g g
z–1

x(n – 1)

d(n) u(n)

n2(n)

x(n)

0.9458

g
z–1

0.8458 d(n – 1)

d(n )
+

–

n1(n)

Figure P2.1 
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 (a) Show that the channel output is

 u1n2 = x1n2 + n21n2, 

  where

 x1n2 = 0.1x1n - 12 + 0.8x1n - 22 + n11n2. 
 (b) Assuming the use of a Wiener filter of length two, determine the correlation matrix R of 

the 2-by-1 tap-input vector and the cross-correlation vector between the tap-input vector 
and the desired response of the filter.

 (c) Using the results of parts (a) and (b), determine the optimum weight vector of the Wiener 
filter and minimum mean-square error produced by the Wiener filter.

 12. In this problem, we explore the extent of the improvement that may result from using a more 
complex Wiener filter for the environment described in Problem 11. To be specific, the new 
formulation of the Wiener filter has three taps.

 (a) Find the 3-by-3 correlation matrix of the tap inputs of this filter and the 3-by-1 cross-
correlation vector between the desired response and the tap inputs.

 (b) Compute the 3-by-1 tap-weight vector of the Wiener filter, and also compute the new 
value for the minimum mean-square error.

 13. In this problem, we explore an application of Wiener filtering to radar. The sampled form of 
the transmitted radar signal is A0  

ejv0n where v0 is the transmitted angular frequency and A0 
is the transmitted complex amplitude. The received signal is

 u1n2 = A1e
-jv1n + n1n2, 

where ∙A1 ∙ 6 ∙A0 ∙  and v1 differs from v0 by virtue of the Doppler shift produced by the 
motion of a target of interest and n1n2  is a sample of white noise.

 (a) Show that the correlation matrix of the time series u(n), made up of M elements, may be 
written as

 R = s2
nI + s2

1s1v12sH
 1v12, 

  where s2
n is the variance of the zero-mean white noise n1n2 ,

 s2
1 = 𝔼3 ∙ A1 ∙24, 

  and

 s1v12 = 31, e-jv1, c, e-jv11M - 124T. 

 (b) The time series u(n) is applied to an M-tap Wiener filter, with the cross-correlation vector 
between u(n) and a desired response d(n) preset to

 p = s2
0 s1v02, 

  where

 s2
0 = 𝔼3 ∙ A0 ∙24 

 and

 s1v02 = 31, e-jv0, c, e-jv01M - 124T. 

 Derive an expression for the tap-weight vector of the Wiener filter.
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 14. An array processor consists of a primary sensor and a reference sensor interconnected with 
each other. The output of the reference sensor is weighted by w and then subtracted from 
the output of the primary sensor. Show that the mean-square value of the output of the array 
processor is minimized when the weight w attains the optimum value

 wo =
𝔼3u1 1n2u*2 1n24

𝔼3 ∙ u2 1n2 ∙24 , 

where u1(n) and u2(n) are, respectively, the primary- and reference-sensor outputs at time n.
 15. Consider a discrete-time stochastic process u(n) that consists of K (uncorrelated) complex 

sinusoids, plus additive white noise of zero mean and variance s2. That is,

 u1n2 = a
K

k = 1
Akejvkn + n1n2, 

where the terms Ak exp 1jvkn2 and n1n2  refer to the kth sinusoid and noise, respectively. The 
process u(n) is applied to an FIR filter with M taps, producing the output

 e1n2 = wHu1n2. 
Assume that M 7 K. The requirement is to choose the tap-weight vector w so as to minimize 
the mean-square value of e(n), subject to the multiple signal-protection constraint

 SHw = D1 >  21, 

where S is the M-by-K signal matrix whose kth column has 1, exp1 jvk2 , c, exp3 jvk1M - 124  
for its elements, D is the K-by-K diagonal matrix whose nonzero elements equal the average 
powers of the individual sinusoids, and the K-by-1 vector 1 has 1’s for all its K elements. Using 
the method of Lagrange multipliers, show that the value of the optimum weight vector that 
results from this constrained optimization is

 wo = R-1S1SHR-1S2-1D1>21, 

where R is the correlation matrix of the M-by-1 tap-input vector u(n). This formula represents 
a temporal generalization of the MVDR formula.

 16. The weight vector wo of the LCMV beamformer is defined by Eq. (2.85). In general, the 
LCMV beamformer so defined does not maximize the output signal-to-noise ratio. To be 
specific, let the input vector be written as

 u1n2 = s1n2 + N1n2, 

where the vector s(n) represents the signal component and the vector N(n) represents the addi-
tive noise component. Show that the weight vector w does not satisfy the condition

 max
w

 
wHRsw

wHRnw
, 

where Rs is the correlation matrix of s(n) and Rn is the correlation matrix of N(n).
 17. In this problem, we explore the design of constraints for a beamformer using a nonuniformly 

spaced array of antenna elements. Let ti denote the propagation delay to the ith element for 
a plane wave impinging on the array from the actual look direction f; the delay ti is measured 
with respect to the zero-time reference.

 (a) Find the response of the beamformer with elemental weight vector w to a signal of angular 
frequency v that originates from the actual look direction f.

 (b) Hence, specify the linear constraint imposed on the array to produce a response equal to 
g along the direction f.
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 18. Consider the problem of detecting a known signal in the presence of additive noise. The 
noise is assumed to be Gaussian, to be independent of the signal, and to have zero mean and 
a positive definite correlation matrix Rn. The aim of the problem is to show that, under these 
conditions, the three criteria, namely, minimum mean-square error, maximum signal-to-noise 
ratio, and likelihood ratio test, yield identical designs for the FIR filter.

   Let u1n2 , n = 1, 2, c, M, denote a set of M complex-valued data samples. Let 
n1n2 , n = 1, 2, c, M, denote a set of samples taken from a Gaussian noise process of zero 
mean. Finally, let s1n2 , n = 1, 2, c, M, denote samples of the signal. The detection problem 
is to determine whether the input consists of the signal plus noise or noise alone. That is, the 
two hypotheses to be tested for are as follows:

  hypothesis H1: u1n2 = s1n2 + n1n2 ,  n = 1, 2, c, M; 

  hypothesis H0: u1n2 = n1n2,  n = 1, 2, c, M. 

 (a) The Wiener filter minimizes the mean-square error. Show that this criterion yields an opti-
mum tap-weight vector for estimating sk, the kth component of signal vector s, which equals

 wo =
sk

1 + sHR-1
n s

 R-1
n s. 

  (Hint: To evaluate the inverse of the correlation matrix of u(n) under hypothesis H1, you 
may use the matrix inversion lemma.) Let

 A = B-1 + CD-1CH, 

 where A, B, and D are positive-definite matrices. Then

 A-1 = B - BC1D + CHBC2-1CHB . 

 (b) The maximum signal-to-noise-ratio filter maximizes the ratio

  r =
average power of filter output due to signal

average power of filter output due to noise
 

  =
𝔼31wHs224
𝔼31wHn224 .  

  Show that the tap-weight vector for which the output signal-to-noise ratio r is a maxi-
mum equals

 wSN = R-1
n s. 

 (Hint: Since Rv is positive definite, you may use Rn = R1 >  2
n R1 >  2

n .)
 (c) The likelihood ratio processor computes the log-likelihood ratio and compares it with a 

threshold. If the threshold is exceeded, it decides in favor of hypothesis H1 ; otherwise, it 
decides in favor of the null hypothesis H0. The likehood ratio is defined by

 Λ =
fU 1u ∙  H12
fU 1u ∙  H02

, 

  where fU(u|Hi) is the conditional joint probability density function of the observation 
vector u, given that hypothesis Hi is true, where i = 0, 1. Show that the likelihood ratio 
test is equivalent to the test

 wH
ml u ≶

H1

H0

h, 

  where h is the threshold and
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 wml = R-1
n s. 

  (Hint: Refer to Section 1.11 for the joint probability function of the M-by-1 Gaussian 
noise vector n with zero mean and correlation matrix Rn.)

 19. The formulation of the Wiener–Hopf equations presented in Section 2.4 applies to a filter of 
infinitely long impulse response. However, this formulation is subject to the causality con-
straint, namely, that the impulse response of the filter is zero for negative time. In this problem, 
we extend the theory presented therein by removing the constraint; that is, we permit the filter 
to be noncausal.

 (a) Let

 S1z2 = a
∞

k = -∞
r1k2z-k 

  denote the two-sided z-transform of the autocorrelation sequence of the tap inputs. 
Likewise, let

 P1z2 = a
∞

k = -∞
p1k2z-k 

  denote the two-sided z-transform of the cross-correlation between the tap inputs and 
desired response. (Note that for z = ejv, these two formulas reduce to the definitions 
of power spectral densities.) Starting with Eq. (2.27) with the lower limit replaced by 
i = - ∞ , show that the transfer function of the unrealizable Wiener filter is defined by

 Hu  1z2 =
P11 >  z2

S1z2 , 

  where

 Hu  1z2 = a
∞

k = -∞
wu, kz-k. 

 (b) Suppose you are given

 P1z2 =
0.36

11 - 0.2z-12 11 - 0.2z2  

  and

 S1z2 =
1.3711 - 0.146z-12 11 - 0.146z2

11 - 0.2z-12 11 - 0.2z2 . 

  Determine the transfer function of the unrealizable Wiener filter, and plot the impulse 
response of the filter.

 (c) Assuming the use of a delay in the impulse response of the filter, suggest a suitable value 
for this delay for which the filter is essentially realizable.
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C h a p t e r  3

Linear prediction

One of the most celebrated problems in time-series analysis is that of predicting the future  
value of a stationary discrete-time stochastic process, given a set of past samples of the 
process. To be specific, consider the time series u1n2, u1n - 12, c, u1n - M2, repre - 
senting 1M + 12  samples of such a process up to and including time n. The operation of 
 prediction may, for example, involve using the past samples u1n - 12, u1n - 22, c, 
u1n - M2 to make an estimate of u(n). Let un - 1 denote the M-dimensional space spanned 
by the samples u1n - 12, u1n - 22, c, u1n - M2, and use un1n ∙ un - 12 to denote the 
predicted value of u1n2, given this set of samples. In linear prediction, we express this pre-
dicted value as a linear combination of the samples u1n - 12, u1n - 22, c, u1n - M2. 
The operation corresponds to one-step prediction of the future, measured with respect 
to time n - 1. Accordingly, we refer to this form of prediction as one-step linear predic-
tion in the forward direction or, simply, forward linear prediction. In another form of 
prediction, we use the samples u1n2, u1n - 12, c, u1n - M + 12 to make a prediction 
of the past sample 1n - M2. We refer to this second form of prediction as backward 
linear prediction.1

In this chapter, we study forward linear prediction (FLP) as well as backward 
linear prediction (BLP). In particular, we use the Wiener filter theory of Chapter 2 to 
optimize the design of a forward or backward predictor in the mean-square-error sense 
for the case of a wide-sense stationary discrete-time stochastic process. As explained in 
that chapter, the correlation matrix of such a process has a Toeplitz structure. We will put 
this structure to good use in developing algorithms that are computationally efficient.

3.1 Forward Linear prediCtion

Figure 3.1(a) shows a forward predictor that consists of a finite-duration impulse response 
(FIR) filter with M tap weights wf, 1, wf, 2, c, wf, M and tap inputs u1n - 12, c,
u1n - M2, respectively. We assume that these tap inputs are drawn from a wide-sense 
stationary stochastic process of zero mean. We further assume that the tap weights 

1The term “backward prediction” is somewhat of a misnomer. A more appropriate description for this 
operation is “hindsight.” Correspondingly, the use of “forward” in the associated operation of forward pre-
diction is superfluous. Nevertheless, the terms “forward prediction” and “backward prediction” have become 
deeply embedded in the literature on linear prediction.
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are optimized in the mean-square-error sense in accordance with Wiener filter theory.  
The predicted value is

 un1n ∙ un - 12 = a
M

k = 1
w*f, ku1n - k2, (3.1)

where the asterisk indicates complex conjugation. For the situation described herein, the 
desired response d(n) equals u(n), representing the actual sample of the input process 
at time n. We may thus write

Figure 3.1 (a) One-step predictor; (b) prediction-error filter; (c) relationship between the 
predictor and the prediction-error filter.
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 d1n2 = u1n2. (3.2)

The forward prediction error equals the difference between the input sample u(n) 
and its predicted value un1n ∙ un - 12. We denote the forward prediction error by fM(n) 
and thus write

 fM 1n2 = u1n2 - un1n ∙ un - 12. (3.3)

The subscript M in the symbol for the forward prediction error signifies the order of 
the predictor, defined as the number of unit-delay elements needed to store the given set 
of samples used to make the prediction. The reason for using the subscript will become 
apparent later in the chapter.

Let
 PM = 𝔼3 ∙ fM1n2 ∙24, for all n, (3.4)

denote the minimum mean-square prediction error. With the tap inputs assumed to have 
zero mean, the forward prediction error fM(n) will likewise have zero mean. Under this 
condition, PM will also equal the variance of the forward prediction error. Yet another 
interpretation for PM is that it may be viewed as the ensemble-average forward predic-
tion error power, assuming that fM(n) is developed across a 1-Ω load. We shall use the 
latter description to refer to PM.

Let wf denote the M-by-1 optimum tap-weight vector of the forward predictor in 
Fig. 3.1(a). In expanded form,

 wf = 3wf, 1, wf, 2, c, wf, M4T, (3.5)

where the superscript T denotes transposition. To solve the Wiener–Hopf equations for 
the weight vector wf , we require knowledge of two quantities: (1) the M-by-M correla-
tion matrix of the tap inputs u1n - 12, u1n - 22, c, u1n - M2 and (2) the M-by-1 
cross-correlation vector between these tap inputs and the desired response u(n). To 
evaluate PM, we require a third quantity: the variance of u(n). We now consider these 
three quantities, one by one:

 1. The tap inputs u1n - 12, u1n - 22, c, u1n - M2 define the M-by-1 tap-input 
vector

 u1n - 12 = 3u1n - 12, u1n - 22, c, u1n - M24T. (3.6)

  Hence, the correlation matrix of the tap inputs equals

  R = 𝔼3u1n - 12uH
 1n - 124  

  = ≥
r102 r112 g r1M - 12
r*112 r102 g r1M - 22
f f  f f
r*1M - 12 r*1M - 22 g r102

¥ , (3.7)

  where r(k) is the autocorrelation function of the input process for lag k, where 
lag k = 0, 1, c, M - 1 and the superscript H denotes Hermitian transposition 
(i.e., transposition combined with complex conjugation). Note that the symbol 
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used for the correlation matrix of the tap inputs in Fig. 3.1(a) is the same as that 
for the correlation matrix of the tap inputs in the Wiener filter. We are justified 
in using this symbol here, since the input process in both cases is assumed to 
be wide-sense stationary, so the correlation matrix of the process is invariant 
to a time shift.

 2. The cross-correlation vector between the tap inputs  u1n - 12, c, u1n - M2 and 
the desired response u(n) is

  r = 𝔼3u1n - 12u*1n24  

  = ≥
r*112
r*122
f

r*1M2
¥ = ≥

r1-12
r1-22
f

r1-M2
¥. (3.8)

 3. The variance of u(n) equals r(0), since u(n) has zero mean.

In Table 3.1, we summarize the various quantities pertaining to the Wiener filter and 
the corresponding quantities pertaining to the forward predictor of Fig. 3.1(a). The 
last column of this table pertains to the backward predictor, about which more will 
be said later.

Thus, using the correspondences shown in the table, we may adapt the Wiener–
Hopf equations (2.45) to solve the forward linear prediction (FLP) problem for stationary 
inputs and so write

 Rwf = r. (3.9)

Similarly, the use of Eq. (2.49), together with Eq. (3.8), yields the following expression 
for the forward prediction-error power:

 PM = r102 - rHwf . (3.10)

TabLe 3.1 Summary of Wiener Filter Variables

 
 
Quantity

 
 

Wiener filter

Forward  
predictor  

of Fig. 3.1(a)

Backward  
predictor  

of Fig. 3.2(a)

Tap-input vector u(n) u1n - 12 u(n)
Desired response d(n) u(n) u1n - M2
Tap-weight vector wo wf wb

Estimation error e(n) fM(n) bM(n)
Correlation matrix of tap inputs R R R
Cross-correlation vector between  
 tap inputs and desired response

p r rB*

Minimum mean-square error Jmin PM PM
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From Eqs. (3.8) and (3.9), we see that the M-by-1 tap-weight vector of the forward 
predictor and the forward prediction-error power are determined solely by the set of 
1m + 12 autocorrelation function values of the input process for lags 0, 1, . . . , M.

relation between Linear prediction and autoregressive Modeling

It is highly informative to compare the Wiener–Hopf equations (3.9) for linear pre-
diction with the Yule–Walker equations (1.66) for an autoregressive (AR) model. We 
see that these two systems of simultaneous equations are of exactly the same math-
ematical form. Furthermore, Eq. (3.10) defining the average power (i.e., variance) 
of the forward prediction error is also of the same mathematical form as Eq. (1.71) 
defining the variance of the white-noise process used to excite the autoregressive 
model. For the case of an AR process for which we know the model order M, we may 
thus state that when a forward predictor is optimized in the mean-square-error sense, 
in theory, its tap weights take on the same values as the corresponding parameters 
of the process. This relationship should not be surprising, since the equation defining 
the forward prediction error and the difference equation defining the autoregressive 
model have the same mathematical form. When the process is not autoregressive, 
however, the use of a predictor provides an approximation to the process.

Forward prediction-error Filter

The forward predictor of Fig. 3.1(a) consists of M unit-delay elements and M 
tap weights wf, 1, wf, 2, . . . , wf, M that are fed with the respective samples u1n - 12, 
u1n - 22, c, u1n - M2 as inputs. The resulting output is the predicted value of u(n), 
which is defined by Eq. (3.1). Hence, substituting Eq. (3.1) into Eq. (3.3), we may express 
the forward prediction error as

 fM 1n2 = u1n2 - a
M

k = 1
w*f, k u1n - k2. (3.11)

Let aM, k, k = 0, 1, c, M, denote the tap weights of a new FIR filter, which are related 
to the tap weights of the forward predictor as follows:

 aM , k = e1, k = 0
-wf , k, k = 1, 2, c, M.

 (3.12)

Then we may combine the two terms on the right-hand side of Eq. (3.11) into the single 
summation

 fM 1n2 = a
M

k = 0
a*M, ku1n - k2. (3.13)

This input–output relation is represented by the FIR filter shown in Fig. 3.1(b). A fil-
ter that operates on the set of samples u1n2 , u1n - 12 , u1n - 22 , c, u1n - M2  to 
 produce the forward prediction error fM(n) at its output is called a forward prediction-
error filter.
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The relationship between the forward prediction-error filter and the forward pre-
dictor is illustrated in block diagram form in Fig. 3.1(c). Note that the length of the 
prediction-error filter exceeds the length of the one-step prediction filter by 1. However, 
both filters have the same order, M, as they both involve the same number of delay ele-
ments for the storage of past data.

augmented wiener–hopf equations for Forward prediction

The Wiener–Hopf equations (3.9) define the tap-weight vector of the forward predic-
tor, while Eq. (3.10) defines the resulting forward prediction-error power PM. We may 
combine these two equations into the single matrix relation

 c r102 rH

r R
d   c 1

-wf
d = cPM

0
d , (3.14)

where 0 is the M-by-1 null vector. The M-by-M correlation matrix R is defined in  
Eq. (3.7), and the M-by-1 correlation vector r is defined in Eq. (3.8). The partitioning of 
the 1M + 12-by-1M + 12 correlation matrix on the left-hand side of Eq. (3.14) into the 
form shown therein was discussed in Section 1.3. Note that this 1M + 12-by-1M + 12 
matrix equals the correlation matrix of the tap inputs u1n2 , u1n - 12, c, u1n - M2 in 
the prediction-error filter of Fig. 3.1(b). Moreover, the 1M + 12-by-1 coefficient vector 
on the left-hand side of Eq. (3.14) equals the forward prediction-error filter vector; that is,

 aM = c 1
-wf

d . (3.15)

We may also express the matrix relation of Eq. (3.14) as the following system of 
1M + 12  simultaneous equations:

 a
M

l = 0
aM, l r1l - i2 = ePM, i = 0

0 i = 1, 2, c, M.
 (3.16)

We refer to Eq. (3.14) or Eq. (3.16) as the augmented Wiener–Hopf equations of a 
forward prediction-error filter of order M.

exaMpLe 1

For the case of a prediction-error filter of order M = 1, Eq. (3.14) yields a pair of simultaneous 
equations described by

 c r102 r112
r*112 r102 d   c a1, 0

a1, 1
d = cP1

0
d . 

Solving for a1, 0 and a1, 1, we get

 a1, 0 =
P1

∆r
 r102 

and

 a1, 1 = -  
P1

∆r
 r*112 , 
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where

  ∆r = ` r102 r112
r*112 r102 `  

  = r 2102 - ∙ r112 ∙2 

is the determinant of the correlation matrix. But a1, 0 equals 1; hence,

 P1 =
∆r

r(0)
 

and

 a1, 1 = -  
r*112
r102 . 

Consider next the case of a prediction-error filter of order M = 2. Equation (3.14) yields a 
system of three simultaneous equations:

 £
r102 r112 r122

r*112 r102 r112
r*122 r*112 r102

§   £
a2, 0

a2, 1

a2, 2

§ = £
P2

0
0
§ . 

Solving for a2, 0, a2, 1, and a2, 2, we get

  a2, 0 =
P2

∆r
 3r 2

 102 - ∙ r112 ∙24,  

  a2, 1 = -  
P2

∆r
 3r*112r102 - r112r*1224, 

and

 a2, 2 = -  
P2

∆r
 31r*11222 - r102r*1224, 

where

 ∆r = 3 r102 r112 r122
r*112 r102 r112
r*122 r*112 r102

3  
is the determinant of the correlation matrix. The coefficient a2, 0 equals 1; accordingly, we may 
express the prediction-error power as

 P2 =
∆r

r 2
 102 - ∙ r112 ∙2 

and the prediction-error filter coefficients as

 a2, 1 =
r*112r102 - r112r*122

r 2
 102 - ∙ r112∙2

 

and

 a2, 2 =
1r*11222 - r102r*122

r 2
 102 - ∙ r112 ∙2 . 
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3.2 BaCkward Linear prediCtion

The form of linear prediction considered in Section 3.1 is said to be in the forward direc-
tion. That is, given the time series u1n2, u1n - 12 , c, u1n - M2 , we use the subset 
of M past samples u1n - 12, u1n - 22, c, u1n - M2  to make a prediction of the 
current sample u(n). This operation corresponds to one-step linear prediction into the 
future, measured with respect to time n – 1. Naturally, we may also operate on the same 
time series in the backward direction; that is, we may use the subset of M samples 
u1n2, u1n - 12 , c, u1n - M +  12  to make a prediction of the sample u1n - M2. 
This second operation corresponds to backward linear prediction by one step, measured 
with respect to time n - M + 1.

Let un denote the M-dimensional space spanned by u1n2, u1n - 12, c, 
u1n - M + 12, which are used in making the backward prediction. Then, using this 
set of samples as tap inputs, we make a linear prediction of the sample u1n - M2, as 
shown by

 un1n - M ∙𝒰n2 = a
M

k = 1
w*b, ku1n - k + 12, (3.17)

where wb, 1, wb, 2, c, wb, M are the tap weights. Figure 3.2(a) shows a representa-
tion of the backward predictor as described by Eq. (3.17). We assume that these tap 
weights are optimized in the mean-square-error sense in accordance with Wiener 
filter theory.

In the case of backward prediction, the desired response is

 d1n2 = u1n - M2. (3.18)

The backward prediction error equals the difference between the actual sample value 
u1n - M2 and its predicted value un1n - M∙un2. We denote the backward prediction 
error by bM(n) and thus write

 bM 1n2 = u1n - M2 - un1n - M∙un2. (3.19)

Here, again, the subscript M in the symbol for the backward prediction error bM1n2 
signifies the number of unit-delay elements needed to store the given set of samples 
used to make the prediction; that is, M is the order of the predictor.

Let
 PM = 𝔼3 ∙ bM 1n2 ∙24,  for all n, (3.20)

denote the minimum mean-square prediction error. We may also view PM as the ensemble- 
average backward prediction-error power, assuming that bM(n) is developed across a 
1-Ω load.

Let wb denote the M-by-1 optimum tap-weight vector of the backward predictor 
in Fig. 3.2(a). In expanded form,

 wb = 3wb, 1, wb, 2, c, wb, M4T
 . (3.21)

To solve the Wiener–Hopf equations for the weight vector wb, we require knowl-
edge of two quantities: (1) the M-by-M correlation matrix of the tap inputs u1n2,  
u1n - 12, c, u1n - M + 12 and (2) the M-by-1 cross-correlation vector between the 
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Figure 3.2 (a) Backward one-step predictor; (b) backward prediction-error filter;  
(c) backward prediction-error filter defined in terms of the tap weights of the corresponding  
forward prediction-error filter.
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desired response u1n - M2 and these tap inputs. To evaluate PM, we need a third quan-
tity: the variance of u1n - M2. We consider these three quantities in turn:

 1. Let u(n) denote the M-by-1 tap-input vector in the backward predictor of  
Fig. 3.2(a). In expanded form,

 u1n2 =  3u1n2, u1n - 12, c, u1n - M + 124T. (3.22)

  The M-by-M correlation matrix of the tap inputs in Fig. 3.2(a) is thus

 R = 𝔼3u1n2uH1n24. 

  The expanded form of the correlation matrix R is given in Eq. (3.7).
 2. The M-by-1 cross-correlation vector between the tap inputs u1n2, u1n - 12, c, 

u1n - M + 12 and the desired response u1n - M2 is

  rB* = 𝔼3u1n2u*1n - M2 4  

  = ≥
r1M2
r1M - 12
 f
r112

¥ .  (3.23)

  The expanded form of the correlation vector r is given in Eq. (3.8). As usual, the 
superscript B denotes the backward arrangement.

 3. The variance of the desired response u1n - M2 equals r(0).

The last column of Table 3.1 summarizes the various quantities pertaining to the back-
ward predictor of Fig. 3.2(a).

Accordingly, using the correspondences shown in the table, we may adapt the 
Wiener–Hopf equations (2.34) to solve the backward linear prediction (BLP) problem 
for stationary inputs and so write

 Rwb = rB*. (3.24)

Similarly, the use of Eq. (2.49), together with Eq. (3.24), yields the following expression 
for the backward prediction-error power:

 PM = r102 - rBTwb. (3.25)

Here, again, we see that the M-by-1 tap-weight vector wb of a backward predictor and 
the backward prediction-error power PM are uniquely defined by knowledge of the set 
of autocorrelation function values of the process for lags 0, 1, . . . , M.

relations between Backward and Forward predictors

In comparing the two sets of Wiener–Hopf equations (3.9) and (3.24) pertaining to 
forward prediction and backward prediction, respectively, we see that the vector on 
the right-hand side of Eq. (3.24) differs from that of Eq. (3.9) in two respects: (1) Its 
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elements are arranged backward, and (2) they are complex conjugated. To correct for 
the first difference, we reverse the order in which the elements of the vector on the 
right-hand side of Eq. (3.24) are arranged. This operation has the effect of replacing 
the left-hand side of Eq. (3.24) by RTwB

b , where RT is the transpose of the correlation 
matrix R and wB

b  is the backward version of the tap-weight vector wb. (See Problem 3.) 
We may thus write

 RTwB
b = r*. (3.26)

To correct for the remaining difference, we complex-conjugate both sides of Eq. (3.26), 
obtaining

 RHwB*b = r. 

Since the correlation matrix R is Hermitian (i.e., RH = R), we may reformulate the 
Wiener–Hopf equations for backward prediction as

 RwB*b = r. (3.27)

Now we compare Eq. (3.27) with Eq. (3.9) and thus deduce the following fundamental 
relationship between the tap-weight vectors of a backward predictor and the corre-
sponding forward predictor:

 wB*b = wf. (3.28)

Equation (3.28) states that we may modify a backward predictor into a forward predic-
tor by reversing the sequence in which its tap weights are positioned and also taking the 
complex conjugates of them.

Next, we wish to show that the ensemble-average error powers for backward pre-
diction and forward prediction have exactly the same value. To do this, we first observe 
that the product rBTwb equals rTwB

b , so we may rewrite Eq. (3.25) as

 PM = r102 - rTwB
b . (3.29)

Taking the complex conjugate of both sides of Eq. (3.29) and recognizing that both PM 
and r(0) are unaffected by this operation, since they are real-valued scalars, we get

 PM = r102 - rHwB*b . (3.30)

Comparing this result with Eq. (3.10) and using the equivalence of Eq. (3.28), we find 
that the backward prediction-error power has exactly the same value as the forward 
prediction-error power. Indeed, it is in anticipation of this equality that we have used 
the same symbol PM to denote both quantities. Note, however, that this equality holds 
only for linear prediction applied to a wide-sense stationary process.

Backward prediction-error Filter

The backward prediction error bM(n) equals the difference between the desired 
response u1n - M2  and the linear prediction of that response, given the samples 
u1n2, u1n - 12, c, u1n - M + 12 . This prediction is defined by Eq. (3.17). Therefore, 
substituting that equation into Eq. (3.19), we get

 bM 1n2 = u1n - M2 - a
M

k = 1
w*b ku1n - k + 12 . (3.31)
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Now we define the tap weights of the backward prediction-error filter in terms of the 
corresponding backward predictor as follows:

 cM, k = e -wb, k + 1, k = 0, 1, c, M - 1.
1, k = M

 (3.32)

Hence, we may rewrite Eq. (3.31) as [see Fig. 3.2(b)]

 bM 1n2 = a
M

k = 0
c*M, ku1n - k2. (3.33)

Equation (3.28) defines the tap-weight vector of the backward predictor in terms 
of that of the forward predictor. We may express the scalar version of this relation as

 w*b, M - k + 1 = wf, k,  k = 1, 2, c, M, 

or, equivalently,

 wb, k = w*f, M - k + 1,  k = 1, 2, c, M. (3.34)

Hence, substituting Eq. (3.34) into Eq. (3.32), we get

 cM, k = e -w*f, M - k, k = 0, 1, c, M - 1
1, k = 0

. (3.35)

Thus, using the relationship between the tap weights of the forward prediction-error 
filter and those of the forward predictor as given in Eq. (3.12), we may write

 cM, k = a*M, M - k,  k = 0, 1, c, M. (3.36)

Accordingly, we may express the input–output relation of the backward prediction-error 
filter in the equivalent form

 bM 1n2 = a
M

k = 0
aM, M - ku1n - k2. (3.37)

The input–output relation of Eq. (3.37) is depicted in Fig. 3.2(c). A comparison 
of this representation for a backward prediction-error filter with that of Fig. 3.1(b) 
for the corresponding forward prediction-error filter reveals that these two forms of a 
prediction-error filter for stationary inputs are uniquely related to each other. In par-
ticular, we may change a forward prediction-error filter into the corresponding backward 
prediction-error filter by reversing the sequence in which the tap weights are positioned 
and taking the complex conjugate of them. Note that in both figures the respective tap 
inputs have the same values.

augmented wiener–hopf equations for Backward prediction

The set of Wiener–Hopf equations for backward prediction is defined by Eq. (3.24), and 
the resultant backward prediction-error power is defined by Eq. (3.25). We may combine 
these two equations into the single relation

 c R rB*

rBT r102 d   c
-wb

1
d = c 0

PM
d , (3.38)
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where 0 is the M-by-1 null vector. The M-by-M matrix R is the correlation matrix of 
the M-by-1 tap-input vector u(n); it has the expanded form shown in the second line 
of Eq. (3.7) by virtue of the assumed wide-sense stationarity of the input process. The 
M-by-1 vector rB* is the cross-correlation vector between the input vector u(n) and 
the desired response u(n - M); here, again, the assumed wide-sense stationarity of the 
input process means that the vector r has the expanded form shown in the second line of  
Eq. (3.8). The 1M + 12-by-1M + 12  matrix on the left-hand side of Eq. (3.38) equals 
the correlation matrix of the tap inputs in the backward prediction-error filter of  
Fig. 3.2(c). The partitioning of this 1M + 12-by-1M + 12  matrix into the form shown in 
Eq. (3.38) was discussed in Section 1.3.

We may also express the matrix relation of Eq. (3.38) as a system of 1M + 12  
simultaneous equations:

 a
M

l = 0
a*M, M - lr1 l - i2 = e0, i = 0, c, M - 1

PM, i = M
. (3.39)

We refer to Eq. (3.38) or (3.39) as the augmented Wiener–Hopf equations of a backward 
prediction-error filter of order M.

Note that in the matrix form of the augmented Wiener–Hopf equations for back-
ward prediction defined by Eq. (3.38), the correlation matrix of the tap inputs is equiva-
lent to that in the corresponding Eq. (3.14). This is merely a restatement of the fact that 
the tap inputs in the backward prediction-error filter of Fig. 3.2(c) are exactly the same 
as those in the forward prediction-error filter of Fig. 3.1(b).

3.3 Levinson–durBin aLgorithM

We now describe a direct method for computing the prediction-error filter coefficients 
and prediction-error power by solving the augmented Wiener–Hopf equations. The 
method is recursive in nature and makes particular use of the Toeplitz structure of the 
correlation matrix of the tap inputs of the filter. It is known as the Levinson–Durbin 
algorithm, so named in recognition of its use first by Levinson (1947) and then its inde-
pendent reformulation at a later date by Durbin (1960). Basically, the procedure utilizes 
the solution of the augmented Wiener–Hopf equations for a prediction-error filter of 
order m - 1 to compute the corresponding solution for a prediction-error filter of order 
m (i.e., one order higher). The order m = 1, 2, c, M, where M is the final order of 
the filter. The important virtue of the Levinson–Durbin algorithm is its computational 
efficiency, in that its use results in a big saving in the number of operations (multiplica-
tions or divisions) and storage locations compared with standard methods such as the 
Gauss elimination method (Makhoul, 1975). To derive the Levinson–Durbin recursive 
procedure, we will use the matrix formulation of both forward and backward predictions 
in an elegant way (Burg, 1968, 1975).

Let the 1m + 12-by-1 vector am denote the tap-weight vector of a forward predic-
tion-error filter of order m. The 1m + 12-by-1 tap-weight vector of the corresponding 
backward prediction-error filter is obtained by backward rearrangement of the elements 
of vector am and their complex conjugation. We denote the combined effect of these 
two operations by aB*m . Let the m-by-1 vectors am - 1 and aB*m - 1 denote the tap-weight 
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vectors of the corresponding forward and backward prediction-error filters of order  
m - 1, respectively. The Levinson–Durbin recursion may be stated in one of two 
equivalent ways:

 1. The tap-weight vector of a forward prediction-error filter may be order-updated 
by the equation

 am = cam - 1

0
d + km c 0

aB*m - 1
d , (3.40)

  where km is a constant. The scalar version of this order update is

 am, l = am - 1, l + kma*m - 1, m - l,    l = 0, 1, c, m, (3.41)

  where am, l is the lth tap weight of a backward prediction-error filter of order m, 
and likewise for a*m - 1, l. The element a*m - 1, m - l is the lth tap weight of a backward 
prediction-error filter of order m - 1. In Eq. (3.41), note that am - 1, 0 = 1 and 
am - 1, m = 0.

 2. The tap-weight vector of a backward prediction-error filter may be order-updated 
by the equation

 aB*m = c 0
aB*m - 1

d + k*m cam - 1

0
d . (3.42)

  The scalar version of this order update is

 a*m, m - l = a*m - 1, m - l + k*mam - 1, l,    l = 0, 1, c, m, (3.43)

  where a*m, m - l is the lth tap weight of the backward prediction-error filter of order 
m and the other elements are as defined previously.

The Levinson–Durbin recursion is usually formulated in the context of forward 
prediction, in vector form as in Eq. (3.40) or scalar form as in Eq. (3.41). The formu-
lation of the recursion in the context of backward prediction, in vector form as in  
Eq. (3.42) or scalar form as in Eq. (3.43), follows directly from that of Eqs. (3.40) and 
(3.41), respectively, through a combination of backward rearrangement and complex 
conjugation. (See Problem 8.)

To establish the condition that the constant km has to satisfy in order to justify the 
validity of the Levinson–Durbin algorithm, we proceed in four stages:

1. We premultiply both sides of Eq. (3.40) by Rm + 1, the 1m + 12-by-1m + 12 
 correlation matrix of the tap inputs u1n2, u1n - 12, c, u1n - M2 in the forward 
 prediction-error filter of order m. For the left-hand side of Eq. (3.40), we thus get [see 
Eq. (3.14) for comparison]

 Rm + 1am = cPm

0m
d , (3.44)

where Pm is the forward prediction-error power and 0m is the m-by-1 null vector. The 
subscripts in the matrix Rm + 1 and the vector 0m refer to their dimensions, whereas the 
subscripts in the vector am and the scalar Pm refer to the prediction order.
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2. For the first term on the right-hand side of Eq. (3.40), we use the following 
partitioned form of the correlation matrix Rm + 1 [see Eq. (1.32) for comparison]:

 Rm + 1 = cRm rB
m*

rBT
m r102 d . 

Here, Rm is the m-by-m correlation matrix of the tap inputs u1n2 , u1n - 12 , c, 
u1n - m + 12 , and rB*m  is the cross-correlation vector between these tap inputs and 
u1n - m2 . We may thus write

  Rm + 1 c am - 1

0
d = cRm rB*m

rBT
m r102 d   c am - 1

0
d  

  = cRmam - 1

rBT
m am - 1

d .  

(3.45)

The set of augmented Wiener–Hopf equations for the forward prediction-error filter 
of order m - 1 is

 Rmam - 1 = cPm - 1

0m - 1
d , (3.46)

where Pm - 1 is the prediction-error power for this filter and 0m - 1 is the 1m - 12-by-1 
null vector. We next define the scalar

  ∆m - 1 = rBT
m am - 1  

  = a
m - 1

l = 0
r1 l - m2am - 1, l. (3.47)

Substituting Eqs. (3.46) and (3.47) into Eq. (3.45), we may therefore write

 Rm + 1 c am - 1

0
d = £

Pm - 1

0m - 1

∆m - 1

§ . (3.48)

3. For the second term on the right-hand side of Eq. (3.40), we use the following 
partitioned form of the correlation matrix Rm + 1:

 Rm + 1 = c r102 rH
m

rm Rm
d . 

In this equation, Rm is the m-by-m correlation matrix of the tap inputs u1n - 12, 
u1n - 22, c, u1n - m2, and rm is the m-by-1 cross-correlation vector between these 
tap inputs and u(n). We may thus write

  Rm + 1 c 0
aB*m - 1

d = c r102 rH
m

rm Rm
d   c 0

aB*m - 1
d  

  = c rH
maB*m - 1

RmaB*m - 1
d .  

(3.49)
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The scalar

  rH
maB*m - 1 = a

m

k = 1
r  *1-k2a*m - 1, m - k 

  = a
m - 1

l = 0
r*1l - m2a*m - 1, l (3.50)

  = ∆*m - 1.  

Also, the set of augmented Wiener–Hopf equations for the backward prediction-error 
filter of order m - 1 is

 RmaB*m - 1 = c 0m - 1

Pm - 1
d . (3.51)

Substituting Eqs. (3.50) and (3.51) into Eq. (3.49), we may therefore write

 Rm + 1 c 0
aB*m - 1

d = £
∆*m - 1

0m - 1

Pm - 1

§ . (3.52)

4. Summarizing the results obtained in stages 1, 2, and 3 and, in particular, using 
Eqs. (3.44), (3.48), and (3.52), we now see that the premultiplication of both sides of  
Eq. (3.40) by the correlation matrix Rm + 1 yields

 cPm

0m
d = £

Pm - 1

0m - 1

∆m - 1

§ + km£
∆*m - 1

0m - 1

Pm - 1

§ . (3.53)

We conclude, therefore, that if the order-update recursion of Eq. (3.40) holds, the 
results described by Eq. (3.53) are direct consequences of that recursion. Conversely, if 
the conditions described by Eq. (3.53) apply, the tap-weight vector of a forward predic-
tion-error filter may be order-updated as in Eq. (3.40).

From Eq. (3.53), we may make two important deductions:

 1. By considering the first elements of the vectors on the left- and right-hand sides 
of Eq. (3.53), we have

 Pm = Pm - 1 + km∆*m - 1. (3.54)

 2. By considering the last elements of the vectors on the left- and right-hand sides of 
Eq. (3.53), we have

 0 = ∆m - 1 + kmPm - 1. (3.55)

  From Eq. (3.55), we see that the constant

 km = -  
∆m - 1

Pm - 1
, (3.56)

  where ∆m - 1 is itself defined by Eq. (3.47). Furthermore, eliminating ∆m - 1 between 
Eqs. (3.54) and (3.55), we get the following relation for the order update of the 
prediction-error power:

 Pm = Pm - 111 - ∙km ∙22 . (3.57)
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As the order m of the prediction-error filter increases, the corresponding value of 
the prediction-error power Pm normally decreases or else remains the same. Of course, 
Pm can never be negative; hence, we always have

 0 … Pm … Pm - 1,    m Ú 1. (3.58)

For the elementary case of a prediction-error filter of order zero, we naturally have

 P0 = r102 , 

where r(0) is the autocorrelation function of the input process for zero lag.
Starting with m = 0 and increasing the filter order by one at a time, we find that, 

through the repeated application of Eq. (3.57), the prediction-error power for a predic-
tion-error filter of final order M equals

 PM = P0 q
M

m = 1
11 - ∙km ∙22. (3.59)

interpretations of the parameters Km and 𝚫m - 1

The parameters km, 1 …  m …  M, resulting from the application of the Levinson–
Durbin recursion to a prediction-error filter of final order M are called reflec-
tion coefficients. The use of this term comes from the analogy of Eq. (3.57) with  
transmission-line theory, where (in the latter context) km may be considered as the 
reflection coefficient at the boundary between two sections with different character-
istic impedances. Note that the condition on the reflection coefficient corresponding 
to that of Eq. (3.58) is

 ∙km ∙  … 1,  for all m. 

From Eq. (3.41), we see that for a prediction-error filter of order m, the reflection coef-
ficient km equals the last tap-weight am, m of the filter. That is,

 km = am, m. 

As for the parameter ∆m - 1, it may be interpreted as a cross-correlation between 
the forward prediction error fm - 11n2  and the delayed backward prediction error 
bm - 11n - 12 . Specifically, we may write (see Problem 9)

 ∆m - 1 = 𝔼3bm - 11n - 12f *m - 1 1n24, (3.60)

where fm - 11n2 is produced at the output of a forward prediction-error filter of 
order m - 1 in response to the tap inputs u1n2, u1n - 12, c, u1n - m + 12 and 
bm - 11n - 12 is produced at the output of a backward prediction-error filter of order 
m - 1 in response to the tap inputs u1n - 12, u1n - 22, c, u1n - m2.

Note that

 f01n2 = b01n2 = u1n2, 

where u(n) is the prediction-error filter input at time n. Accordingly, from Eq. (3.60), we 
find that this cross-correlation parameter has the zero-order value
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2Consider the two sets of complex-valued numbers 5an6N
n = 1 and 5bn6N

n = 1. According to the Cauchy–
Schwarz inequality,

` a
N

n = 1
 anbn* `

2

… a
N

n = 1
 ∙ an∙2a

N

n = 1
∙ bn∙2.

Substituting the expectation operation for summation, we may also express the Cauchy–Schwarz inequality as

∙ 𝔼3anb*n 4 ∙2 … 𝔼3 ∙ an ∙24 3𝔼∙ bn ∙24 .

Putting an = fm - 11n2and bn = bm-1(n-1) in Eq. (3.61) and using the Cauchy–Schwarz inequality, we readily 
see that ∙rm ∙ … 1.

  ∆0 = 𝔼3b01n - 12f * 0 1n24 
  = 𝔼3u1n - 12u*1n24  

  = r*112,  

where r(1) is the autocorrelation function of the input u(n) for unity lag.

relationship between reflection Coefficients  
and partial Correlation Coefficients

The partial correlation (PARCOR) coefficient between the forward prediction error 
fm - 11n2  and the delayed backward prediction error bm - 11n - 12 is defined as 
(Makhoul, 1977)

 rm =
𝔼3bm - 1 1n - 12f *m - 1 1n24

1𝔼3 ∙ bm - 1 1n - 12 ∙24𝔼3 ∙ fm - 1 1n2 ∙2421 >  2
. (3.61)

According to this definition, we always have

 ∙rm ∙ … 1,  for all m. 

This upper bound on the magnitude of rm follows readily from the Cauchy–Schwarz 
inequality, which, for the problem at hand, is2

 ∙ 𝔼3bm - 11n - 12f *m - 1 1n24 ∙2 … 𝔼3 ∙ 3bm - 1 1n - 124 ∙24𝔼3 ∙ fm - 1 1n2 ∙24. 
Using Eqs. (3.56) and (3.60), we may express the mth reflection coefficient as

 km = -  
𝔼3bm - 11n - 12 f *m - 11n24

Pm - 1
. (3.62)

In light of Eqs. (3.4) and (3.20), we may write

 Pm - 1 = 𝔼3 ∙ fm - 1 1n2 ∙24 = 𝔼3 ∙ bm - 1 1n - 12 ∙24. 
Hence, comparing Eqs. (3.61) and (3.62), we may now state that the reflection coefficient 
km is the negative of the PARCOR coefficient rm. However, this relationship holds just 
under the assumption of wide-sense stationarity, for it is only then that we may equate 
the forward prediction-error power to the backward prediction-error power for a pre-
scribed prediction error.
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3In practice, the biased estimate of Eq. (3.63) is preferred over an unbiased estimate because it yields 
a much lower variance for the estimate rn1k2  for values of the lag k close to the data length N. (For more 
details, see Box & Jenkins, 1976.) For a more refined estimate of the autocorrelation function r(k), we may 
use the multiple-window method described in McWhorter and Scharf (1995). This method uses a multiplicity 
of special windows, resulting in the most general Hermitian, nonnegative-definite, and modulation-invariant 
estimate. The Hermitian and nonnegative-definite properties were described in Chapter 1. To define the 
modulation-invariant property, let  Rn  denote an estimate of the correlation matrix, given the input vector u. 
The estimate is said to be modulation invariant if D(ejf)u has a correlation matrix equal to D1ejf2 Rn D1e-jf2, 
where D1ejf2 = diag1c1ejf22 is a modulation matrix and c1ejf2 = 31, ejf, c, ejf1M - 124T.

application of the Levinson–durbin algorithm

There are two possible ways of applying the Levinson–Durbin algorithm to compute the 
prediction-error filter coefficients aM, k, k = 0, 1, . . . , M, and the prediction-error power 
PM for a final prediction order M:

 1. Suppose we have explicit knowledge of the autocorrelation function of the input 
process; in particular, suppose we have r(0), r(1), . . . , r(M), denoting the values of 
the autocorrelation function for lags 0, 1, . . . , M, respectively. For example, we may 
compute biased estimates of these parameters by means of the time-average formula

 rn1k2 =
1
N

 a
N

n = 1 + k
u1n2u*1n - k2 ,    k = 0, 1, c, M, (3.63)

  where N W M is the total length of the input time series. There are, of course, 
other estimators that we may use.3 In any event, given r(0), r(1), . . . , r(M), the 
computation proceeds by using Eq. (3.47) for ∆m - 1 and Eq. (3.57) for Pm. The 
recursion is initiated with m = 0, for which we have P0 = r102  and Δ0 = r*(1). Note 
also that am, 0 is unity for all m and am, k is zero for all k 7 m. The computation is 
terminated when m = M. The resulting estimates of the prediction-error filter coef-
ficients and prediction-error power obtained by using this procedure are known 
as the Yule–Walker estimates.

 2. Suppose next we have explicit knowledge of the reflection coefficients k1, k2, . . . , kM 
and the autocorrelation function r(0) for a lag of zero. In this second application of 
the Levinson–Durbin recursion, we only need the pair of relations

 am, k = am - 1, k + kma*m - 1, m - k ,    k = 0, 1, c, m, 

  and
 Pm = Pm - 1 11 - ∙km ∙22 . 

  Here, again, the recursion is initiated with m = 0 and stopped when the order m 
reaches the final value M.

exaMpLe 2

To illustrate the second method for the application of the Levinson–Durbin recursion, suppose we 
are given the reflection coefficients k1, k2, and k3 and the average power P0. The problem we wish 
to solve is to use these parameters to determine the corresponding tap weights a3, 1, a3, 2, and a3, 3 
and the prediction-error power P3 for a prediction-error filter of order three. Application of the 
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Levinson–Durbin recursion, described by Eqs. (3.41) and (3.57), yields the following results for 
m = 1, 2, 3:

 1. For a prediction-error filter of order m = 1,

 a1, 0 = 1,
 a1, 1 = k1,

  and

 P1 = P0 11 - ∙k1 ∙22 .

 2. Next, for a prediction-error filter of order m = 2,

 a2, 0 = 1,

 a2, 1 = k1 + k2k* 1,

 a2, 2 = k2,

  and
 P2 = P111 - ∙k2 ∙22 ,

  where P1 is as defined for m = 1.

 3. Finally, for a prediction-error filter of order m = 3,

 a3, 0 = 1,

 a3, 1 = a2, 1 + k3k*2 ,

 a3, 2 = k2 + k3a*2, 1,
 a3, 3 = k3,

  and

 P3 = P211 - ∙k3 ∙22 ,

where a2, 1 and P2 are as defined for m = 2.

The interesting point to observe from this example is that the Levinson–Durbin 
recursion yields not only the values of the tap weights and prediction-error power for 
the prediction-error filter of final order M, but also the corresponding values of these 
parameters for the prediction-error filters of intermediate orders M - 1, c, 1.

inverse Levinson–durbin algorithm

In the normal application of the Levinson–Durbin recursion, as illustrated in Example 
2, we are given the set of reflection coefficients k1, k2, . . . , kM, and the requirement 
is to compute the corresponding set of tap weights aM, 1, aM, 2, . . . , aM, M for a predic-
tion-error filter of final order M. Of course, the remaining coefficient of the filter,  
aM, 0 = 1. Frequently, however, the need arises to solve the following inverse problem: 
Given the set of tap weights aM, 1, aM, 2, . . . , aM, M, solve for the  corresponding set 
of reflection coefficients k1, k2, . . . , kM. We may solve this problem by applying the 
inverse form of the Levinson–Durbin recursion, which we refer to simply as the inverse 
recursion.
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To derive the inverse recursion, we first combine Eqs. (3.41) and (3.43), represent-
ing the scalar versions of the Levinson–Durbin recursion for forward and backward 
prediction-error filters, respectively, in matrix form as

 cam, k

a*m, m - k
d = c1 km

k*m 1
d  c am - 1, k

a*m - 1, m - k
d ,    k = 0, 1, c, m, (3.64)

where the order m = 1, 2, . . . , M. Then, assuming that ∙km ∙  6 1 and solving Eq. (3.64) 
for the tap weight am - 1, k, we get

 am - 1, k =
am, k - am, ma*m, m - k

1 - ∙ am, m ∙2 ,    k = 0, 1, c, m, (3.65)

where we have used the fact that km = am, m. We may now describe the procedure: 

 1. Starting with the set of tap weights {aM, k} for which the prediction-error filter 
order equals M, use the inverse recursion, Eq. (3.65), with decreasing filter order 
m = M, M - 1, c, 2  to compute the tap weights of the corresponding predic-
tion-error filters of order M - 1, M - 2 ,c, 1, respectively. 

 2. Finally, knowing the tap weights of all the prediction-error filters of interest (whose 
order ranges all the way from M down to 1), use the fact that

 km = am, m, m = M, M - 1, c, 1, 

 to determine the desired set of reflection coefficients kM, kM - 1, c, k1. 

Example 3 illustrates the application of the inverse recursion.

exaMpLe 3

Suppose we are given the tap weights a3, 1, a3, 2, a3, 3 of a prediction-error filter of order three and 
the requirement is to determine the corresponding reflection coefficients k1, k2, k3. Application 
of the inverse recursion, described by Eq. (3.65), for filter order m = 3, 2 yields the following set 
of tap weights:

 1. For a prediction-error filter of order two [corresponding to m = 3 in Eq. (3.65)],

a2, 1 =
a3, 1 - a3, 3a*3, 2

1 - ∙ a3, 3 ∙2

  and

a2, 2 =
a3, 2 - a3, 3a*3, 1

1 - ∙ a3, 3 ∙2 .

 2. For a prediction-error filter of order one [corresponding to m = 2 in Eq. (3.65)],

a1, 1 =
a2, 1 - a2, 2a*2, 1

1 - ∙ a2, 2 ∙2 ,

  where a2, 1 and a2, 2 are as defined for a filter of order two. Thus, the required reflection 
coefficients are given by

 k3 = a3, 3,
 k2 = a2, 2,
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  and
k1 = a1, 1,

where a3, 3 is given and a2, 2 and a1, 1 are as just computed.

3.4 properties oF prediCtion-error FiLters

Property 1. Relations between the autocorrelation function and the reflection 
coefficients It is customary to represent the second-order statistics of a stationary time 
series in terms of its autocorrelation function or, equivalently, the power spectrum. The 
autocorrelation function and power spectrum form a discrete-time Fourier-transform 
pair. (See Chapter 1.) Another way of describing the second-order statistics of a station-
ary time series is to use the set of numbers P0, k1, k2, c, kM, where P0 = r102  is the 
value of the autocorrelation function of the process for a lag of zero and k1 , k2 , c, kM,  
are the reflection coefficients for a prediction-error filter of final order M. This is a conse-
quence of the fact that the set of numbers P0, k1, k2, c, kM uniquely determines the cor-
responding set of autocorrelation function values r102 , r112 , c, r1M2  and vice versa.

To prove this property, we first eliminate ∆m - 1 between Eqs. (3.47) and (3.55), 
obtaining

 a
m - 1

k = 0
am - 1, kr1k - m2 = -kmPm - 1. (3.66)

Solving Eq. (3.66) for r(m) = r*(-m) and recognizing that am - 1, 0 = 1, we get

 r1m2 = -k*mPm - 1 - a
m - 1

k = 1
a*m - 1, kr1m - k2 . (3.67)

This is the desired recursive relation for order-updating of the autocorrelation func-
tion of a wide-shape stationary process. If we are given the set of numbers r(0), 
k1, k2, c, kM, then, by using Eq. (3.67), together with the Levinson–Durbin recursive 
equations (3.41) and (3.57), we may recursively generate the corresponding set of 
numbers r(0), r(1), . . . , r(M).

For ∙km ∙ … 1, we find from Eq. (3.67) that the permissible region for r(m), the 
value of the autocorrelation function of the input signal for a lag of m, is the interior 
(including the circumference) of a circle of radius Pm - 1 and center at the complex- 
valued quantity

 - a
m - 1

k = 1
a*m - 1, kr1m - k2 . 

This region is illustrated in Fig. 3.3.
Suppose now that we are given the set of autocorrelation function values  

r(1), . . . , r(M). Then we may recursively generate the corresponding set of numbers  
k1, k2 , . . . , kM by using the relation

 km = -  
1

Pm - 1
 a

m - 1

k = 0
am - 1, kr1k - m2 , (3.68)
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which is obtained by solving Eq. (3.66) for Km. In Eq. (3.68), it is assumed that Pm - 1 
is nonzero. If Pm - 1 is zero, this would have been the result for ∙km - 1 ∙ = 1, and the 
sequence of reflection coefficients k1, k2, c, km - 1 would terminate.

We may therefore make the following statement:

There is a one-to-one correspondence between the two sets of quantities 
5P0, k1, k2, c, kM6  and { r(0), r(1), r(2), . . . , r(M) } in that if we are given the one, 
we may uniquely determine the other in a recursive manner.

exaMpLe 4

Suppose that we are given P0, k1, k2, and k3 and the requirement is to compute r(0), r(1), r(2), and 
r(3). We start with m = 1, for which Eq. (3.67) yields

 r112 = -P0 k* 1, 
where

 P0 = r102 . 

Next, for m = 2, Eq. (3.67) yields

 r122 = -P1k*2 - r112k* 1, 

where
 P1 = P011 - ∙k1 ∙22 . 

Finally, for m = 3, the use of Eq. (3.67) yields

 r132 = -P2k*3 - 3a*2, 1r122 + k*2r1124 , 

where
 P2 = P111 - ∙k2 ∙22  

and
 a2, 1 = k1 + k2k* 1. 

Figure 3.3 Permissible region for r(m), shown shaded, for the case when ∙km ∙ … 1.
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Property 2. Transfer function of a forward prediction-error filter Let Hf, m(z) 
denote the transfer function of a forward prediction-error filter of order m and whose 
impulse response is defined by the sequence of numbers a*m, k, k = 0, 1, c, m, as illus-
trated in Fig. 3.1(b) for m = M. From discrete-time (digital) signal processing, we know 
that the transfer function of a discrete-time filter equals the z-transform of its impulse 
response. We may therefore write

 Hf, m 1z2 = a
m

k = 0
a*m, kz-k, (3.69)

where z is a complex variable. Based on the Levinson–Durbin recursion—in particular, 
Eq. (3.41)—we may relate the coefficients of this filter of order m to those of a corre-
sponding prediction-error filter of order m - 1 (i.e., one order smaller). In particular, 
substituting Eq. (3.41) into Eq. (3.69), we get

  Hf, m 1z2 = a
m

k = 0
a*m - 1, kz-k + k*m a

m

k = 0
am - 1, m - kz-k  

  = a
m - 1

k = 0
a*m - 1, kz-k + k*mz-1 a

m - 1

k = 0
am - 1, m - 1 - kz-k, 

(3.70)

where, in the second line, we have used the fact that am - 1, m = 0. The sequence of num-
bers a*m - 1, k, k = 0, 1, c, m - 1, defines the impulse response of a forward prediction-
error filter of order m - 1. Hence, we may write

 Hf, m - 1 1z2 = a
m - 1

k = 0
a*m - 1, kz-k. (3.71)

The sequence of numbers am - 1, m - 1 - k, k = 0, 1, c, m - 1, defines the impulse response 
of a backward prediction-error filter of order m - 1; this is illustrated in Fig. 3.2(c) for 
the case of prediction order m = M. Thus, the second summation on the right-hand side 
of Eq. (3.70) represents the transfer function of this backward prediction-error filter. Let 
Hb, m - 1 1z2  denote that transfer function, as shown by

 Hb, m - 1 1z2 = a
m - 1

k = 0
am - 1, m - 1 - kz-k. (3.72)

Then, substituting Eqs. (3.71) and (3.72) into Eq. (3.70), we may write

 Hf, m 1z2 = Hf, m - 1 1z2 + k*mz-1Hb, m - 1 1z2 . (3.73)

On the basis of the order-update recursion of Eq. (3.73), we may now state the following:

Given the reflection coefficient km and the transfer functions of the forward and 
backward prediction-error filters of order m - 1, the transfer function of the cor-
responding forward prediction-error filter of order m is uniquely determined.

Property 3. A forward prediction-error filter is minimum phase On the unit 
circle in the z-plane (i.e., for  ∙ z ∙ = 1), we find that

 ∙ Hf, m - 1 1z2 ∙ = ∙ Hb, m - 1 1z2 ∙ ,   ∙ z ∙ = 1. 
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This equality is readily proved by substituting z = exp1jv2, -p 6 v … p, in Eqs. (3.71) 
and (3.72). Suppose that the reflection coefficient km satisfies the requirement ∙km ∙ 6 1 
for all m. Then we find that on the unit circle in the z-plane, the magnitude of the second 
term in the right-hand side of Eq. (3.73) satisfies the condition

 ∙k*mz-1Hb, m - 1 1z2 ∙ 6 ∙ Hb, m - 1 1z2 ∙ = ∙ Hf, m - 1 1z2 ∙ ,   ∙ z ∙ = 1. (3.74)

At this stage in our discussion, it is useful to recall Rouché’s theorem from the theory of 
complex variables. Rouché’s theorem states the following:

If a function F(z) is analytic upon a contour 𝒞 in the z-plane and within the region 
enclosed by that contour, and if a second function G(z), in addition to satisfying 
the same analyticity conditions, also fulfills the condition ∙ G1z2 ∙ 6 F1z2 on the 
contour 𝒞, then the function F1z2 + G1z2  has the same number of zeros within 
the region enclosed by the contour 𝒞 as does the function F(z).

(For a review of complex-variable theory, including Rouché’s theorem, see the material 
presented in Appendix A.)

Ordinarily, the enclosed contour 𝒞 is transversed in the counterclockwise direction, 
and the region enclosed by the contour lies to the left of it, as illustrated in Fig. 3.4. We 
say that a function is analytic upon the contour 𝒞 and within the region enclosed by 𝒞 
if the function has a continuous derivative everywhere upon the contour 𝒞 and within 
the region enclosed by 𝒞. For this requirement to be satisfied, the function must have 
no poles upon the contour 𝒞 or inside the region enclosed by the contour.

Let the contour 𝒞 be the unit circle in the z-plane, which is traversed in the clock-
wise direction, as in Fig. 3.5. According to the convention just described, this requirement 

Figure 3.4 Contour 𝒞 (traversed  
in the counterclockwise direction)  
in the z-plane and the region  
enclosed by it.
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implies that the region enclosed by the contour 𝒞 is represented by the entire part of 
the z-plane that lies outside the unit circle.

Let the functions F(z) and G(z) be identified, in order, with the two terms on the 
right-hand side of Eq. (3.73); that is,

 F1z2 = Hf, m - 1 1z2  (3.75)

and
 G1z2 = k*mz-1Hb, m - 1 1z2 . (3.76)

We observe that:

 1. The functions F(z) and G(z) have no poles inside the contour 𝒞 defined in  
Fig. 3.5. Indeed, their derivatives are continuous throughout the region enclosed 
by this contour. Therefore, F(z) and G(z) are both analytic everywhere upon the 
unit circle and the region outside it.

 2. In view of Eq. (3.74) and the fact that ∙km∙ 6 1, we have ∙ G1z2 ∙ 6 ∙ F1z2 ∙  on the 
unit circle.

Accordingly, the functions F(z) and G(z) defined by Eqs. (3.75) and (3.76), respectively, 
satisfy all the conditions required by Rouché’s theorem with respect to the contour 𝒞 
defined as the unit circle in Fig. 3.5.

Suppose now that Hf, m - 1 1z2  and therefore F(z) are known to have no zeros 
outside the unit circle in the z-plane. Then, by applying Rouché’s theorem, we find that 
F1z2 + G1z2 , or, equivalently, Hf, m 1z2  also has no zeros on or outside the unit circle 
in the z-plane.

Figure 3.5 Unit circle 
(traversed in the clockwise 
direction) used as contour 𝒞.
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In particular, for m = 0, the transfer function Hf, 0 1z2  is a constant equal to unity; 
therefore, it has no zeros at all. Using the result just derived, we may state that, since  
Hf, 0(z) has no zeros outside the unit circle, Hf, 1(z) will also have no zeros in this region of the 
z-plane, provided that ∙k1 ∙ 6 1. Indeed, we can easily prove the latter result by noting that

  Hf, 1 1z2 = a* 1, 0 + a* 1, 1z
-1 

  = 1 + k* 1z-1.  

Hence, Hf, 1(z) has a single zero located at z = -k* 1 and a pole at z = 0. With the reflec-
tion coefficient k1 constrained by the condition ∙k1 ∙ 6 1, it follows that this zero must 
lie inside the unit circle. In other words, Hf, 1(z) has no zeros on or outside the unit circle. 
In that case, Hf, 2(z) will also have no zeros on or outside the unit circle, provided that 
∙k2 ∙ 6 1 and so on.

We may thus state that, for all values of m, the transfer function Hf, m(z) of a for-
ward prediction-error filter of order m has no zeros on or outside the unit circle in the 
z-plane if and only if the reflection coefficients satisfy the condition ∙km ∙ 6 1 for all m. 
Such a filter is said to be minimum phase in the sense that, for a specified amplitude 
response, it has the minimum phase response possible for all values of z on the unit 
circle. Moreover, the amplitude response and phase response of the filter are uniquely 
related to each other. On the basis of these findings, we may now make the following 
statement:

For all values of m, the transfer function Hf, m(z) of a forward prediction-error filter of 
order m has no zeros on or outside the unit circle in the z-plane if and only if the reflec-
tion coefficients satisfy the condition ∙km ∙ 6 1. In other words, a forward prediction-
error filter is minimum phase in the sense that, for a specified amplitude response, it has 
the minimum phase response possible for all values of z on the unit circle.

Property 4. A backward prediction-error filter is maximum phase The transfer 
functions of backward and forward prediction-error filters of the same order are related 
in that if we are given one, we may uniquely determine the other. To find this relation-
ship, we first evaluate H*f, m 1z2 , the complex conjugate of the transfer function of a 
forward prediction-error filter of order m, and so write [see Eq. (3.69)]

 H*f, m 1z2 = a
m

k = 0
am, k 1z*2-k. (3.77)

Replacing z by the reciprocal of its complex conjugate z*, we may rewrite Eq. (3.77) as

 H*f, m a 1
z*

b = a
m

k = 0
am, kzk. 

Next, replacing k by m - k, we get

 H*f, m a 1
z*

b = zma
m

k = 0
am, m - kz-k. (3.78)

The summation on the right-hand side of Eq. (3.78) constitutes the transfer function of 
a backward prediction-error filter of order m, as shown by

 Hb, m 1z2 = a
m

k = 0
am, m - kz-k. (3.79)
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We thus find that Hb, m(z) and Hf, m(z) are related by the formula

 Hb, m 1z2 = z-mH*f, m a 1
z*

b , (3.80)

where H*f, m11 >  z*2  is obtained by taking the complex conjugate of Hf, m(z), the transfer 
function of a forward prediction-error filter of order m, and replacing z by the recip-
rocal of z*. Equation (3.80) states that multiplication of the new function obtained in 
this way by z-m yields Hb, m(z), the transfer function of the corresponding backward 
prediction-error filter.

Let the transfer function Hf, m(z) be expressed in its factored form as

 Hf, m 1z2 = q
m

i = 1
11 - ziz

-12 , (3.81)

where the zi, i = 1, 2, . . . , m, denote the zeros of the forward prediction-error filter. Hence, 
substituting Eq. (3.81) into Eq. (3.80), we may express the transfer function of the cor-
responding backward prediction-error filter in the factored form

  Hb, m 1z2 = z-mq
m

i = 1
11 - z* i  z2  

  = q
m

i = 1
1z-1 - z* i 2 .  (3.82)

The zeros of this transfer function are located at 1 >  z* i , i = 1, 2, c m. That is, the zeros 
of the backward and forward prediction-error filters are the inverse of each other with 
respect to the unit circle in the z-plane. The geometric nature of this relationship is illus-
trated for m = 1 in Fig. 3.6. The forward prediction-error filter has a zero at z = -k* 1, 
as in Fig. 3.6(a), and the backward prediction-error filter has a zero at z = -1>k1, as in 
Fig. 3.6(b). In both parts of the figure, it is assumed that the reflection coefficient k1 has 
a complex value. Consequently, a backward prediction-error filter has all of its zeros 
located outside the unit circle in the z-plane, because ∙km ∙ 6 1 for all m.

We may therefore formally make the following statement:

A backward prediction-error filter is maximum phase in the sense that, for a speci-
fied amplitude response, it has the maximum phase response possible for all values 
of z on the unit circle.

Property 5. A forward prediction-error filter is a whitening filter By definition, 
a white-noise process consists of a sequence of uncorrelated random variables. Thus, 
assuming that such a process, denoted by n(n), has zero mean and variance s2

n, we may 
write (see Section 1.5)

 𝔼3n1k2n* 1n24 = es
2
n, k = n

0, k ≠ n
. (3.83)

Accordingly, we say that white noise is unpredictable in the sense that the value of the 
process at time n is uncorrelated with all past values of the process up to and including 
time n - 1 (and, indeed, with all future values of the process, too).
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We may now state another important property of prediction-error filters:

A prediction-error filter is capable of whitening a stationary discrete-time stochastic 
process applied to its input, provided that the order of the filter is high enough.

Basically, prediction relies on the presence of correlation between adjacent samples of 
the input process. The implication of this correlation is that, as we increase the order 
of the prediction- error filter, we successively reduce the correlation between adjacent 
samples of the input process, until ultimately we reach a point at which the filter has a 
high enough order to produce an output process that consists of a sequence of uncor-
related samples. The whitening of the original process applied to the filter input will 
have thereby been accomplished.

Property 6. Eigenvector representation of forward prediction-error filters The 
representation of a forward prediction-error filter is naturally related to eigenvalues (and 
associated eigenvectors) of the correlation matrix of the tap inputs in the filter. To develop 
such a representation, we first rewrite the augmented Wiener–Hopf equations (3.14), per-
taining to a forward prediction-error filter of order M, in the compact matrix form

 RM + 1aM = PMiM + 1, (3.84)

where RM + 1 is the 1M + 12-by-1M + 12 correlation matrix of the tap inputs u1n2, 
u1n - 12, c, u1n - M2 in the filter of Fig. 3.1(b), aM is the 1M + 12-by-1 tap-weight 
vector of the filter, and the scalar PM is the prediction-error power. The 1M + 12-by-1 
vector iM + 1, called the first coordinate vector, has unity for its first element and zero for 
all the others. We define this vector as

Figure 3.6 (a) Zero of forward prediction-error filter at z = -k* 1; (b) corresponding zero of 
backward prediction-error filter at z = -1>k1.
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 iM + 1 = 31, 0, c, 04T. (3.85)

Solving Eq. (3.84) for aM, we get

 aM = PMR-1
M + 1 iM + 1, (3.86)

where R-1
M + 1 is the inverse of the correlation matrix RM + 1. (The matrix RM + 1 is assumed 

to be nonsingular, so that its inverse exists.) Using the eigenvalue–eigenvector rep-
resentation of a correlation matrix, we may express the inverse matrix R-1

M + 1 as (see 
Appendix E):

 R-1
M + 1 = Q𝚲-1QH, (3.87)

where Λ is an 1M + 12-by-1M + 12 diagonal matrix consisting of the eigenvalues of the 
correlation matrix RM + 1 and Q is an 1M + 12-by-1M + 12 matrix whose columns are 
the associated eigenvectors. That is,

 𝚲 = diag3l0, l1, c, lM4  (3.88)

and

 Q = 3q0, q1, c, qM4, (3.89)

where l0, l1, . . . , lM are the real-valued eigenvalues of the correlation matrix RM + 1 and 
q0, q1, . . . , qM are the respective eigenvectors. Thus, substituting Eqs. (3.87), (3.88), and 
(3.89) into Eq. (3.86), we get

  aM = PMQΛ-1QH iM + 1 

  = PM3q0, q1, c, qM4 diag3l-1
 0 , l-1

 1 , c, l-1
M 4 ≥

qH
0

qH
1

f
qH

M

¥   ≥
1
0
f
0

¥    (3.90)

 = PMa
M

k = 0
aq*k0

lk
bqk,   

where q*k0 is the first element of the kth eigenvector of the correlation matrix RM + 1. We 
now note that the first element of the forward prediction-error filter vector aM is unity; 
therefore, solving Eq. (3.90), for the prediction-error power, we get

 PM =
1

a
M

k = 0
∙ qk0 ∙2

 l-1
 k

. (3.91)

Thus, on the basis of Eqs. (3.90) and (3.91), we may make the following statement:

The tap-weight vector of a forward prediction-error filter of order M and the resul-
tant prediction-error power are uniquely defined by specifying the 1M + 12 eigen-
values and the corresponding 1M + 12 eigenvectors of the correlation matrix of the 
tap inputs of the filter.
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4The classical Schur–Cohn test is discussed in Marden (1949) and Tretter (1976). The origin of the 
test can be traced back to Schur (1917) and Cohn (1922)—hence the name. The test is also referred to as the 
Lehmer–Schur method (Ralston, 1965), in recognition of the application of Schur’s theorem by Lehmer (1961).

3.5 sChur–Cohn test

The test described under Property 3 in Section 3.4 for the minimum-phase condition of 
a forward prediction-error of order M is relatively simple to apply if we know the asso-
ciated set of reflection coefficients k1, k2, . . . , kM . For the filter to be minimum phase 
[i.e., for all the zeros of the transfer function Hf, m(z) of the filter to lie inside the unit 
circle], we simply require that ∙km ∙ 6 1 for all m. Suppose, however, that instead of these 
reflection coefficients we are given the tap weights of the filter, aM, 1, aM, 2, c, aM, M. In 
that case, first we apply the inverse recursion [described by Eq. (3.65)] to compute the 
corresponding set of reflection coefficients k1, k2, . . . , kM, and then, as before, we check 
whether ∙km ∙ 6 1 for all m.

The method just described for determining whether Hf, m(z) has zeros inside the 
unit circle, given the coefficients aM, 1, aM, 2, c, aM, M, is essentially the same as the 
Schur–Cohn test.4

To formulate the Schur–Cohn test, let

 x(z) = aM, MzM + aM, M - 1z
M - 1 + g + aM, 0, (3.92)

which is a polynomial in z, with x(0) = aM, 0 = 1. Define

  x′1z2 = zM
 x*11 >  z*2  

  = a*M, M + a*M, M - 1z + g + a*M, 0zM, (3.93)

which is the reciprocal polynomial associated with x(z). The polynomial x¿(z) is so 
called because its zeros are the reciprocals of the zeros of x(z). For z = 0, we have 
x′102 = a*M, M. Next, define the linear combination

 T3x1z2 4 = a*M, 0 x1z2 - aM, Mx′1z2  (3.94)

so that, in particular, the value

  T3x102 4 = a*M, 0 x102 - aM, Mx′102  

  = 1 - ∙ aM, M ∙2  (3.95)

is real, as it should be. Note also that T [x(z)] has no term in zM. Repeat this operation 
as far as possible, so that if we define

 T i3x1z24 = T5T i- 13x1z246 , (3.96)

we generate a finite sequence of polynomials in z of decreasing order. The coefficient 
aM, 0 is equal to unity. Let it also be assumed that

 1. the polynomial x(z) has no zeros on the unit circle and
 2. the integer m is the smallest for which

 T m3x1z24 = 0,  where m … M + 1. 
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Then, we may state the Schur–Cohn theorem as follows (Lehmer, 1961):

If, for some i such that 1 … i … m, we have T i3x1024 6 0, then x(z) has at least one 
zero inside the unit circle. If, on the other hand, T i3x1024 7 0 for 1 … i 6 m and 
T m - 13x1z24 is a constant, then no zero of x(z) lies inside the unit circle.

To apply this theorem to determine whether the polynomial x(z) of Eq. (3.92), with  
aM, 0 ≠ 0, has a zero inside the unit circle, we proceed as follows (Ralston, 1965):

 1. Calculate T [x(z)]. Is T [x(0)] negative? If so, there is a zero inside the unit circle; 
if not, proceed to step 2.

 2. Calculate T i3x1z24, i = 1, 2, c, until T i3x1024 6 0 for i < m or until T i3x1024 7 0 
for i < m. If the former occurs, there is a zero inside the unit circle. If the latter 
occurs and if T m - 13x1z24 is a constant, then there is no zero inside the unit circle.

Note that when the polynomial x(z) has zeros inside the unit circle, this algorithm does 
not tell us how many there are; rather, it only confirms their existence.

The connection between the Schur–Cohn method and inverse recursion is readily 
established by observing that (see Problem 10)

 1. The polynomial x(z) is related to the transfer function of a backward  prediction- error 
filter of order M by the formula

 x(z) = zMHb,M(z). (3.97)

  Accordingly, if the Schur–Cohn test indicates that x(z) has one or more zeros 
inside the unit circle, we may conclude that the transfer function Hb, M(z) is not 
maximum phase.

 2. The reciprocal polynomial x¿(z) is related to the transfer function of the corre-
sponding forward prediction-error filter of order M by the formula

 x′(z) = zMHf,M(z). (3.98)

  Accordingly, if the Schur–Cohn test indicates that the original polynomial x(z) with 
which x¿(z) is associated has no zeros inside the unit circle, we may then conclude 
that the transfer function Hf, M(z) is not minimum phase.

 3. In general,

 T i3x1024 = q
i- 1

j = 0
11 - ∙ aM - j, M - j ∙22,    1 … i … M, (3.99)

  and

 Hb, M - i1z2 =
zi- MT i3x1z24

T i3x1024 , (3.100)

where Hb, M - i(z) is the transfer function of the backward prediction-error filter of 
order M - i.
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3.6  autoregressive ModeLing  
oF a stationary stoChastiC proCess

The whitening property of a forward prediction-error filter operating on a stationary 
discrete-time stochastic process is intimately related to the autoregressive modeling of 
the process. Indeed, we may view these two operations as complementary, as illustrated 
in Fig. 3.7. Part (a) of the figure depicts a forward prediction-error filter of order M, 
whereas part (b) depicts the corresponding autoregressive model. Based on these two 
parts of the figure, we may make the following observations:

 1. We may view the operation of prediction-error filtering applied to a stationary 
process u(n) as one of analysis. In particular, we may use such an operation to 
whiten the process u(n) by choosing the prediction-error filter order M sufficiently 
large, in which case the prediction error process fM(n) at the filter output consists 
of uncorrelated samples. When this unique condition has been established, the 
original stochastic process u(n) is represented by the set of tap weights of the filter, 
5aM, k6 , and the prediction error power PM.

 2. We may view the autoregressive (AR) modeling of the stationary process u(n) as 
one of synthesis. In particular, we may generate the AR process u(n) by applying 
a white-noise process n(n) of zero mean and variance s2

n to the input of an inverse 
filter whose parameters are set equal to the AR parameters wok, k = 1, 2, c, M. 
The resulting output of the model, denoted by u(n), is regressed on M past values 
of the input, namely, u1n - 12, c, u1n - M2—hence the name of the model.

The two filter structures of Fig. 3.7 constitute a matched pair, with their parameters 
related by

 aM, k = -wok, k = 1, 2, c, M, 

and

 PM = s2
n. 

The prediction-error filter of Fig. 3.7(a) is an all-zero filter with an impulse response of 
finite duration. On the other hand, the inverse filter in the AR model of Fig. 3.7(b) is an 
all-pole filter with an impulse response of infinite duration. The prediction-error filter 
is minimum phase, with the zeros of its transfer function located at exactly the same 
positions (inside the unit circle in the z-plane) as the poles of the transfer function of 
the inverse filter in part (b) of the figure. This assures the stability of the inverse filter in 
the bounded-input–bounded-output sense or, equivalently, the asymptotic stationarity 
of the AR process generated at the output of the filter.

The mathematical equivalence between forward prediction-error filtering and 
autoregressive modeling can be put to practical use in the following way: Suppose we 
have an autoregressive process of order M, but the regression coefficients of the process 
are unknown. In such a situation, we may use an adaptive form of linear prediction to 
estimate the regression coefficients. Adaptive algorithms for the design of linear predic-
tors or prediction-error filters are discussed in subsequent chapters.
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Figure 3.7 (a) Prediction-error (all-zero) filter. (b) Autoregressive (all-pole) model with wok = -aM, k, 
where k =  1, 2, c, M; the input n(n) is white noise.
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equivalence of the autoregressive  
and Maximum-entropy power spectra

Another way in which the mathematical equivalence between forward prediction-error 
filter modeling and autoregressive modeling manifests itself is in parametric power spec-
trum estimation. To explore this issue, consider the AR model of Fig. 3.7(b). The process 
n(n) applied to the model input consists of a white noise of zero mean and variance s2

n. 
To find the power spectral density of the AR process u(n) produced at the model output, 
we multiply the power spectral density of the model input n(n) by the squared amplitude 
response of the model. (See Chapter 1.) Let SAR(v) denote the power spectral density 
of u(n). We may then write

 SAR 1v2 =
s2
n

` 1 - a
M

k = 1
w*oke-jvk `

2 . (3.101)

Equation (3.101) is called the autoregressive power spectrum or, simply, the AR 
spectrum.

A power spectrum of closely related interest is obtained using the maximum-
entropy method (MEM). Suppose that we are given 2M + 1 values of the autocorrelation 
function of a wide-sense stationary process u(n). The essence of the maximum-entropy 
method is to determine the particular power spectrum of the process that corresponds 
to the most random time series whose autocorrelation function is consistent with the set 
of 2M + 1 known values (Burg, 1968, 1975). The result so obtained is referred to as the 
maximum-entropy power spectrum or, simply, the MEM spectrum. Let SMEM(v) denote 
this spectrum. The determination of SMEM(v) is linked with the characterization of a 
prediction-error filter of order M, as shown by

 SMEM 1v2 =
PM

` 1 + a
M

k = 1
a*M, ke-jkv `

2 , (3.102)

where the aM,k are the prediction-error filter coefficients and PM is the prediction-error 
power, all of which correspond to a prediction order M.

In view of the one-to-one correspondence that exists between the prediction-error 
filter of Fig. 3.7(a) and the AR model of Fig. 3.7(b), we have

 aM, k = -wok, k = 1, 2, c, M (3.103)

and

 PM = s2
n. (3.104)

Accordingly, the formulas given in Eqs. (3.101) and (3.102) are one and the same. In 
other words, for the case of a wide-sense stationary process, the AR spectrum (for model 
order M) and the MEM spectrum (for prediction order M) are indeed equivalent (Van 
den Bos, 1971).
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3.7  ChoLesky FaCtorization

Consider next a stack of backward prediction-error filters of orders 0 through M, which 
are connected in parallel as in Fig. 3.8. The filters are all excited at time n by the same 
input, denoted by u(n). Note that for the case of zero prediction order, we simply have 
a direct connection, as shown at the top end of Fig. 3.8. Let b01n2 , b11n2 , c, bM1n2  
denote the sequence of backward prediction errors produced by these filters. Building 
on Fig. 3.2(c), we may express these errors in terms of the respective filter inputs and 
filter coefficients as follows [see Fig. 3.2(c)]:

 b01n2 = u1n2 ,  

 b11n2 = a1, 1u1n2 + a1, 0u1n - 12 ,  

 b21n2 = a2, 2u1n2 + a2, 1u1n - 12 + a2, 0u1n - 22 ,  

 f
 bM1n2 = aM, Mu1n2 + aM, M - 1u1n - 12 + g + aM, 0u1n - M2 . 

Combining this system of 1M + 12 simultaneous linear equations into a compact matrix 
form, we have

 b1n2 = Lu1n2, (3.105)

where

 u1n2 = 3u1n2, u1n - 12, c, u1n - M24T 

is the 1M + 12-by-1 input vector;

 b1n2 = 3b01n2, b11n2, c, bM1n24T 

Figure 3.8 Parallel connection of stack of backward prediction-error filters (PEF) of 
orders 0 through M. (Note: The direct connection represents a PEF with a single coefficient 
equal to unity.)
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is the 1M + 12-by-1 output vector of backward prediction errors. The 1M + 12-by-
1M + 12 coefficient matrix, L, on the right-hand side of Eq. (3.105) is defined in terms 
of the backward prediction-error filter coefficients of orders 0 to M as

 L = ≥
1 0 g 0

a1, 1 1 g 0
f f  f f

aM, M aM, M - 1 g 1

¥ , (3.106)

which has three useful properties:

 1. The matrix L is a lower triangular matrix with 1’s along its main diagonal; all of its 
elements above the main diagonal are zero.

 2. The determinant of matrix L is unity; hence, it is nonsingular (i.e., its inverse exists).
 3. The nonzero elements of each row of the matrix L, except for complex conjugation, 

equal the weights of a backward prediction-error filter whose order corresponds 
to the position of that row in the matrix.

Equation (3.105) is known as the Gram–Schmidt orthogonalization algorithm.5 
According to this algorithm, there is a one-to-one correspondence between the input 
vector u(n) and the backward prediction-error vector b(n). In particular, given u(n), we 
may obtain b(n) by using Eq. (3.105). Conversely, given b(n), we may obtain the cor-
responding vector u(n) by using the inverse of Eq. (3.105), as shown by

 u1n2 = L-1b1n2 , (3.107)

where L-1 is the inverse of the matrix L.

orthogonality of Backward prediction errors

The backward prediction errors b01n2 , b11n2 , c, bM1n2  constituting the elements 
of the vector b(n) have an important property: They are all orthogonal to each other, as 
shown by

 𝔼3bm 1n2b* i 1n24 = ePm, i = m
0, i ≠ m

. (3.108)

To derive this property, we may proceed as follows: First of all, without loss of general-
ity, we may assume that m Ú  i. Then we express the backward prediction error bi(n) in 
terms of the input u(n) as the linear convolution sum

 bi 1n2 = a
i

k = 0
ai, i- ku1n - k2 , (3.109)

which is nothing more than Eq. (3.37) with prediction order i used in place of M. Hence, 
using this relation to evaluate the expectation of bm 1n2b* i  1n2 , we get

5For a full discussion of the Gram–Schmidt algorithm and the various methods for its implementation, 
see Haykin (2013).
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 𝔼3bm 1n2b* i 1n24 = 𝔼 cbm 1n2a
i

k = 0
a* i, i- ku*1n - k2 d . (3.110)

From the principle of orthogonality, we have

 𝔼3bm 1n2u*1n - k24 = 0,  0 … k … m - 1. (3.111)

For m 7 i and 0 … k … i, we therefore find that all the expectation terms inside the 
summation on the right-hand side of Eq. (3.110) are zero. Correspondingly,

 𝔼3bm 1n2b* i  1n24 = 0,    m ≠ i. 

When m = i, Eq. (3.110) reduces to

  𝔼3bm 1n2b* i 1n24 = 𝔼3bm 1n2b*m1n24 
  = Pm,   m = 1.  

Hence, Eq. (3.108) is obtained. It is important, however, to note that it does so only for 
wide-sense stationary input data.

We thus see that the Gram–Schmidt orthogonalization algorithm given by  
Eq. (3.105) transforms the input vector u(n) consisting of correlated samples into an 
equivalent vector b(n) of uncorrelated backward prediction errors.6

Factorization of the inverse of Correlation Matrix r

Having equipped ourselves with the knowledge that backward prediction errors are 
indeed orthogonal to each other, we may return to the transformation described by the 
Gram–Schmidt algorithm in Eq. (3.105). Specifically, using this transformation, we may 
express the correlation matrix of the backward prediction-error vector b(n) in terms of 
the correlation matrix of the input vector u(n) as follows:

  𝔼3b1n2bH
 1n24 = 𝔼3Lu1n2uH

 1n2LH4  

  = L𝔼3u1n2uH
 1n24LH. (3.112)

Let
 D = 𝔼3b1n2bH 1n24 (3.113)

6Two random variables X and Y are said to be orthogonal to each other if

𝔼3XY*4 = 0

and are said to be uncorrelated with each other if

𝔼3X - 𝔼3X42 1Y - 𝔼3Y42*4 = 0.

If one or both of X and Y have zero mean, then these two conditions become one and the same. For the 
 discussion presented herein, the input data, and therefore the backward predicted errors, are assumed to have 
zero mean. Under this assumption, we may interchange orthogonality with uncorrelatedness when we refer 
to backward prediction errors.
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denote the correlation matrix of the backward prediction-error vector b(n). As before, 
the correlation matrix of the input vector u(n) is denoted by R. We may therefore 
rewrite Eq. (3.112) as

 D = LRLH. (3.114)

We now make two observations:

 1. When the correlation matrix R of the input vector u(n) is positive definite and its 
inverse exists, the correlation matrix D of the backward prediction-error vector 
b(n) is also positive definite and, likewise, its inverse exists.

 2. The correlation matrix D is a diagonal matrix, because b(n) consists of elements 
that are all orthogonal to each other. In particular, we may express D in the 
expanded form

 D = diag1P0, P1, c, PM2, (3.115)

  where Pi is the average power of the ith backward prediction error bi(n); that is,

 Pi = 𝔼3 ∙ bi 1n2 ∙24,  i = 0, 1, c, M. (3.116)

 The inverse of matrix D is also a diagonal matrix; that is,

 D-1 = diag1P-1
 0 , P-1

 1 , c, P-1
M 2. (3.117)

Accordingly, we may use Eq. (3.114) to express the inverse of the correlation matrix R as

  R-1 = LHD-1L  

  = 1D-1 >  2L2H
 1D-1 >  2L2, (3.118)

which is the desired result.
The inverse matrix D-1, in the first line of Eq. (3.118), is a diagonal matrix defined 

by Eq. (3.117). The matrix D-1>2, the square root of D-1, in the second line of Eq. (3.118), 
is also a diagonal matrix, defined by

 D-1 >  2 = diag1P-1 >  2
 0 , P-1 >  2

 1 , c, P-1 >  2
M 2. 

The transformation expressed in Eq. (3.118) is called the Cholesky factorization of the 
inverse matrix R-1 (Stewart, 1973). Note that the matrix D-1>2L is a lower triangular 
matrix; however, it differs from the lower triangular matrix L of Eq. (3.106) in that its 
diagonal elements are different from unity. Note also that the Hermitian-transposed 
matrix product 1D-1>2L2H is an upper triangular matrix whose diagonal elements are 
different from unity. Thus: 

According to the Cholesky factorization, the inverse correlation matrix R-1 may 
be factored into the product of an upper triangular matrix and a lower triangular 
matrix that are the Hermitian transpose of each other.

3.8 LattiCe prediCtors

To implement the Gram–Schmidt algorithm of Eq. (3.105) for transforming an input 
vector u(n) consisting of correlated samples into an equivalent vector b(n) consisting of 
uncorrelated backward prediction errors, we may use the parallel connection of a direct 
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path and an appropriate number of backward prediction-error filters, as illustrated in 
Fig. 3.8. The vectors b(n) and u(n) are said to be “equivalent” in the sense that they con-
tain the same amount of information. (See Problem 21.) A much more efficient method 
of implementing the Gram–Schmidt orthogonalization algorithm, however, is to use 
an order-recursive structure in the form of a ladder, known as a lattice predictor. This 
system combines several forward and backward prediction-error filtering operations 
into a single structure. Specifically, a lattice predictor consists of a cascade connection of 
elementary units (stages), all of which have a structure similar to that of a lattice—hence 
the name. The number of stages in a lattice predictor equals the prediction order. Thus, for 
a prediction-error filter of order m, there are m stages in the lattice realization of the filter.

order-update recursions for the prediction errors

The input–output relations that characterize a lattice predictor may be derived in vari-
ous ways, depending on the particular form in which the Levinson–Durbin algorithm is 
utilized. For the derivation presented here, we start with the matrix formulations of this 
algorithm given by Eqs. (3.40) and (3.42) that pertain, respectively, to the forward and 
backward operations of a prediction-error filter. For convenience of presentation, we 
reproduce these two relations here:

  am = cam - 1

0
d + km c 0

aB*m - 1
d ; (3.119)

  aB*m = c 0
aB*m - 1

d + k*m cam - 1

0
d . (3.120)

The 1m + 12-by-1 vector am and the m-by-1 vector am - 1 refer to forward prediction-
error filters of order m and m - 1, respectively. The 1m + 12-by-1 vector aB*m  and the 
m-by-1 vector aB*m - 1 refer to the corresponding backward prediction-error filters of order 
m and m - 1, respectively. The scalar km is the associated reflection coefficient.

Consider first the forward prediction-error filter of order m, with its tap inputs denoted 
by u1n2, u1n - 12, c, u1n - m2. We may partition um + 11n2, the 1m + 12-by-1 tap-input 
vector of this filter, in the form

 um + 1 1n2 = c um 1n2
u1n - m2 d  (3.121)

or in the equivalent form

 um + 1 1n2 = c u1n2
um 1n - 12 d . (3.122)

Next, we form the inner product of the 1m + 12 -by-1 vectors am and um + 11n2  by pre-
multiplying um + 11n2  by the Hermitian transpose of am. Thus, using Eq. (3.119) for am, 
we may treat the terms resulting from this multiplication as follows:

 1. For the left-hand side of Eq. (3.119), premultiplication of um + 11n2  by aH
m yields

 fm 1n2 = aH
mum + 1 1n2, (3.123)

  where fm(n) is the forward prediction error produced at the output of the forward 
prediction-error filter of order m.
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 2. For the first term on the right-hand side of Eq. (3.119), we use the partitioned form 
of um + 11n2  given in Eq. (3.121). We write

  3aH
m - 1  04um + 1 1n2 = 3aH

m - 1  04 c um 1n2
u1n - m2 d  

  = aH
m - 1um 1n2  (3.124)

  = fm - 1 1n2,  

  where fm - 11n2  is the forward prediction error produced at the output of the for-
ward prediction-error filter of order m - 1.

 3. For the second matrix term on the right-hand side of Eq. (3.119), we use the par-
titioned form of um + 11n2  given in Eq. (3.122). We write

  30  aBT
m - 14um + 1 1n2 = 30  aBT

m - 14 c u1n2
um 1n - 12 d  

  = aBT
m - 1um 1n - 12  (3.125)

  = bm - 1 1n - 12,  

  where bm - 11n - 12  is the delayed backward prediction error produced at the 
output of the backward prediction-error filter of order m - 1.

Combining the results of the multiplications, described by Eqs. (3.123), (3.124), and 
(3.125), we may thus write

 fm 1n2 = fm - 1 1n2 + k*mbm - 1 1n - 12.  (3.126)

Consider next the backward prediction-error filter of order m, with its tap inputs 
denoted by u1n2, u1n - 12, c, u1n - m2. Here, again, we may express um + 11n2, the 
1m + 12-by-1 tap-input vector of this filter, in the partitioned form of Eq. (3.121) or that 
of Eq. (3.122). In this case, the terms resulting from the formation of the inner product 
of the vectors aB*m  and um + 11n2  are treated as follows:

 1. For the left-hand side of Eq. (3.120), premultiplication of um + 11n2  by the 
Hermitian transpose of aB*m  yields

 bm 1n2 = aBT
m um + 1 1n2, (3.127)

  where bm(n) is the backward prediction error produced at the output of the back-
ward prediction-error filter of order m.

 2. For the first term on the right-hand side of Eq. (3.120), we use the partitioned form 
of the tap-input vector um + 11n2  given in Eq. (3.122). Multiplying the Hermitian 
transpose of this first term by um + 11n2 , we get

  30  aBT
m - 14um + 1 1n2 = 30   aBT

m - 14 c u1n2
um 1n - 12 d  

  = aBT
m - 1um 1n - 12  (3.128)

  = bm - 1 1n - 12.  
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 3. For the second matrix term on the right-hand side of Eq. (3.120), we use the par-
titioned form of the tap-input vector um + 11n2  given in Eq. (3.121). Multiplying 
the Hermitian transpose of this second term by um + 11n2 , we get

  3aH
m - 1  04um + 1 1n2 = 3aH

m - 1  04 c um 1n2
u1n - m2 d  

  = aH
m - 1um 1n2  (3.129)

  = fm - 1 1n2.  

Combining the results of Eqs. (3.127), (3.128), and (3.129), we find that the inner product 
of aB*m  and um + 11n2  yields

 bm1n2 = bm - 11n - 12 + kmfm - 11n2.  (3.130)

Equations (3.126) and (3.130) are the sought-after pair of order-update recursions 
that characterize stage m of the lattice predictor. They are reproduced here in matrix 
form as

 c fm 1n2
bm 1n2 d = c 1 k*m

km 1
d  c fm - 1 1n2

bm - 11n - 12 d ,    m = 1, 2, c, M. (3.131)

We may view bm - 11n - 12  as the result of applying the unit-delay operator z–1 to the 
backward prediction error bm - 11n2 ; that is,

 bm - 11n - 12 = z-1 3bm - 11n24.  (3.132)

Thus, using Eqs. (3.131) and (3.132), we may represent stage m of the lattice predictor 
by the signal-flow graph shown in Fig. 3.9(a). Except for the branch pertaining to the 
block labeled z-1, this signal-flow graph has the appearance of a lattice—hence the name 
“lattice predictor.”7 Note that the parameterization of stage m of the lattice predictor 
is uniquely defined by the reflection coefficient km.

For the elementary case of m = 0, we get the initial conditions

 f01n2 = b01n2 = u1n2,  (3.133)

where u(n) is the input signal at time n. Therefore, starting with m = 0 and progres-
sively increasing the order of the filter by 1, we obtain the lattice equivalent model 

7The first application of lattice filters in on-line adaptive signal processing was apparently made by 
Itakura and Saito (1971) in the field of speech analysis. Equivalent lattice-filter models, however, were familiar 
in geophysical signal processing as “layered earth models” (Robinson, 1957; Burg, 1968). It is also of interest 
to note that such lattice filters have been well studied in network theory, especially in the cascade synthesis 
of multiport networks (Dewilde, 1969).

Actually, there is another structure for building a linear predictor that is based on the Schur algorithm 
(Schur, 1917). Like the Levinson–Durbin algorithm, the Schur algorithm provides a procedure for computing 
the reflection coefficients from a known autocorrelation sequence. The Schur algorithm, however, lends itself 
to parallel implemetation, with the result that it achieves a throughput rate higher than that obtained using 
the Levinson–Durbin algorithm. For a discussion of the Schur algorithm, including mathematical details and 
considerations revolving about its implementation, see Haykin (1989a).
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Figure 3.9 (a) Signal-flow graph for stage m of a lattice predictor; (b) lattice equivalent model of 
prediction-error (all-zero) filter of order M.
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shown in Fig. 3.9(b) for a prediction-error filter of final order M. In this figure, we 
merely require knowledge of the complete set of reflection coefficients k1, k2, c, kM, 
one for each stage of the filter.

The lattice filter, depicted in Fig. 3.9(b), offers the following attractive features:

 1. A lattice filter is a highly efficient structure for generating the sequence of forward 
prediction errors and the corresponding sequence of backward prediction errors 
simultaneously.

 2. The various stages of a lattice predictor are “decoupled” from each other. This 
decoupling property was indeed derived in Section 3.7, where it was shown that the 
backward prediction errors produced by the various stages of a lattice predictor 
are “orthogonal” to each other for wide-sense stationary input data.

 3. The lattice filter is modular in structure; hence, if we are required to increase the 
order of the predictor, we simply add one or more stages (as desired) without 
affecting earlier computations.

3.9 aLL-poLe, aLL-pass LattiCe FiLter

The multistage lattice predictor of Fig. 3.9(b) combines two all-zero prediction-error 
filters into a single structure. More specifically, invoking Properties 3 and 4 of prediction-
error filters presented in Section 3.4, we may respectively make the following statements:

	 •	 The path from the common input u(n) to the forward prediction error fM(n) is a 
minimum-phase all-zero filter.

	 •	 The alternative path from the common input u(n) to the backward prediction error 
bM(n) is a maximum-phase all-zero filter.

The multistage lattice predictor of Fig. 3.9(b) may be rewired to operate as a combined 
all-pole, all-pass lattice filter. To do this rewiring, we first rearrange terms in Eq. (3.126) 
to obtain

 fm - 1 1n2 = fm 1n2 - k*mbm - 1 1n - 12,  (3.134)

where the forward prediction error fm(n) is now treated as an input variable for the mth 
stage of the rewired lattice filter. However, Eq. (3.130) is left intact and reproduced here 
for convenience of presentation:

 bm 1n2 = bm - 1 1n - 12 + km fm - 1 1n2.  (3.135)

Equations (3.134) and (3.135) define the input–output relations of the mth stage in the 
rewired lattice filter. Thus, starting with the initial conditions of Eq. (3.133) correspond-
ing to order m = 0 and progressively increasing the order of the filter, we obtain the 
rewired multistage lattice filter of Fig. 3.10. Note, however, that the signal u(n) produced 
at the common terminal in Fig. 3.10 is the output, whereas u(n) acts as the input signal 
in Fig. 3.9(b). By the same token, fm(n) acts as the input signal in Fig. 3.10, whereas it is 
an output signal in Fig. 3.9(b).
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To excite the multistage lattice filter of Fig. 3.10, a sequence of samples taken from 
white noise n(n) is used as the input signal fM(n). The path from the input fm(n) to the 
output u(n) in Fig. 3.10 is an all-pole filter of order M. Hence, in light of the discussion 
presented in Section 3.6 on the autoregressive modeling of a stationary process, we may 
view this all-pole filter as a synthesizer and the corresponding all-zero lattice predictor 
of Fig. 3.9(b) as an analyzer.

The backward prediction error bM(n) constitutes the second output of the filter in 
Fig. 3.10. The path from the input fM(n) to the output bM(n) is an all-pass filter of order 
M. The poles and zeros of this filter are the inverse of each other with respect to the 
unit circle in the z-plane. (See Problem 18.) Thus, the rewired multistage lattice filter of  
Fig. 3.10 combines an all-pole filter and an all-pass filter in a single structure.

exaMpLe 5

Consider the two-stage all-pole lattice filter of Fig. 3.11. There are four possible paths that can 
contribute to the makeup of the output u(n), as illustrated in Fig. 3.12. In particular, we have

  u1n2 = n1n2 - k* 1u1n - 12 - k1k*2u1n - 12 - k*2u1n - 22  

  = n1n2 - 1k* 1 + k1k*2 2u1n - 12 - k*2u1n - 22 .  

From Example 2, we recall that

 a2, 1 = k1 + k* 1k2 

Figure 3.10 All-pole, all-pass lattice filter of order M.
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and

 a2, 2 = k2. 

We may therefore express the mechanism governing the generation of process u(n) as

 u1n2 + a*2, 1u1n - 12 + a*2, 2u1n - 22 = n1n2,  

which is recognized as the difference equation of a second-order AR process.

3.10 Joint-proCess estiMation

In this section, we use the lattice predictor as a subsystem to solve a joint-process estima-
tion problem that is optimal in the mean-square-error sense (Griffiths, 1978; Makhoul, 
1978). In particular, we consider the minimum mean-square-error estimation of a pro-
cess d(n), termed the desired response, by using a set of observables derived from a 
related process u(n). We assume that the processes d(n) and u(n) are jointly stationary. 
This estimation problem is similar to that considered in Chapter 2, with one basic dif-
ference: There we directly used samples of the process u(n) as the observables, whereas 
our approach here is different in that, for the observables, we use the set of backward 
prediction errors obtained by feeding the input of a multistage lattice predictor with 
samples of the process u(n). The fact that the backward prediction errors are orthogonal 
to each other simplifies the solution to the problem significantly.

The structure of the joint-process estimator is shown in Fig. 3.13. This system per-
forms two optimum estimations jointly:

Figure 3.11 All-pole lattice filter of order 2.
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Figure 3.12 The four possible paths that contribute to the makeup of the output u(n) in the all-pole  
lattice inverse filter of Fig. 3.11.
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 1. The lattice predictor, consisting of a cascade of M stages characterized individu-
ally by the reflection coefficients k1, k2, . . . , kM, performs predictions (of vary-
ing orders) on the input. In particular, it transforms the sequence of (correlated) 
input samples u1n2, u1n - 12, c, u1n - M2  into a corresponding sequence of 
(uncorrelated) backward prediction errors b0(n), b1(n), . . . , bM(n).

 2. The multiple regression filter, characterized by the set of weights h0, h1, . . . , hM, 
operates on the sequence of backward prediction errors b0(n), b1(n), . . . , bM(n) 
as inputs, respectively, to produce an estimate of the desired response d(n). The 
resulting estimate is defined as the sum of the respective scalar inner products of 
these two sets of quantities; that is,

 dn1n ∙𝒰n2 = a
M

i = 0
h* i bi 1n2,  (3.136)

Figure 3.13 Lattice-based structure for joint-process estimation.
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  where 𝒰n is the space spanned by the inputs u1n2 , u1n - 12 , c, u1n - M2. 
We may rewrite Eq. (3.136) in matrix form as

 dn1n ∙𝒰n2 = hHb1n2,  (3.137)

  where

 h = 3h0, h1, c, hM4T (3.138)

  is an 1M + 12-by-1 vector. We refer to h0, h1, . . . , hM as the regression coefficients 
of the estimator and to h as the regression-coefficient vector.

Let D denote the 1M + 12-by-1M + 12 correlation matrix of b(n), the 1M + 12-by-1  
vector of backward prediction errors b0(n), b1(n), . . . , bM(n). Let z denote the 1M + 12- 
by-1 cross-correlation vector between the backward prediction errors and the desired 
response. Then

 z = 𝔼3b1n2d*1n24 . (3.139)

Therefore, applying the Wiener–Hopf equations to our present situation, we find that 
the optimum regression-coefficient vector ho is defined by

 Dho = z. (3.140)

Solving for ho, we get

 ho = D-1z, (3.141)

where the inverse matrix D-1 is a diagonal matrix defined in terms of various prediction-
error powers, as in Eq. (3.117). Note that, unlike the ordinary FIR filter realization of 
the Wiener filter, the computation of ho in the joint-process estimator of Fig. 3.12 is 
relatively simple to accomplish.

relationship between the optimum regression-Coefficient vector  
and the wiener solution

From the Cholesky factorization given in Eq. (3.118), we deduce that

 D-1 = L-HR-1L-1. (3.142)

Hence, substituting Eq. (3.142) into Eq. (3.141) yields

 ho = L-HR-1L-1z. (3.143)

Moreover, from Eq. (3.105), we note that

 b1n2 = Lu1n2.  (3.144)

Therefore, substituting Eq. (3.144) into Eq. (3.139) yields

  z = L𝔼3u1n2d*1n24 
  = Lp,  (3.145)
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where p is the cross-correlation vector between the tap-input vector u(n) and the desired 
response d(n). Thus, using Eq. (3.145) in Eq. (3.143), we finally obtain

  ho = L-HR-1L-1Lp 

  = L-HR-1p  

  = L-Hwo,  (3.146)

where L is a lower triangular matrix defined in terms of the equivalent forward pre-
diction-error filter coefficients, as in Eq. (3.106). Equation (3.146) is the sought-after 
relationship between the optimum regression-coefficient vector ho and the Wiener solu-
tion wo = R-1p.

3.11 prediCtive ModeLing oF speeCh

The linear prediction theory developed in this chapter finds application in the linear 
predictive coding of speech and video signals. In this section, we confine the discussion 
to the coding of speech.

Linear predictive coding of speech exploits the special properties of a classical model 
of the speech-production process. Figure 3.14 shows a simplified block diagram of this 
model. The model assumes that the sound-generating mechanism (i.e., the source of excita-
tion) is linearly separable from the intelligence-modulating vocal-tract filter. The precise 
form of the excitation depends on whether the speech sound is voiced or unvoiced:

	 •	 A voiced speech sound (such as /i/ in eve) is generated from a quasi-periodic exci-
tation of the vocal tract. (The symbol /·/ is used to denote the phoneme as a basic 

Figure 3.14 Block diagram of simplified model for the speech-production process.
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8The short-time spectrum, or more precisely, the short-time Fourier transform, of a continuous-time 
signal x(t) is obtained by first multiplying the signal by a window function h(t), centered at time t, to produce 
the modified signal

xt1t2 = x1t2h1t - t2
which is a function of two variables:

 • The fixed time t that we are interested in.

 • The running time denoted by t.

The window function h(t) is chosen in such a way that the signal x(t) is left essentially unchanged 
around the time t, but the signal is suppressed for times distant from the time of interest (Cohen, 1995). The 
short-time Fourier transform of the signal x(t) is thus defined as

 xt 1v2 = L
∞

-∞
xt 1t2exp1- jvt2dt

 = L
∞

-∞
x1t2h1t - t2exp1- jvt2dt

which emphasizes the distribution of frequency around time t.

linguistic unit.) In the model of Fig. 3.14, the impulse-train generator produces a 
sequence of impulses (i.e., very short pulses) that are spaced by a fundamental 
period equal to the pitch period. This signal, in turn, excites a linear filter whose 
frequency response determines the identity of the sound.

	 •	 An unvoiced speech sound (such as /f/ in fish) is generated from random sounds 
produced by turbulent airflow through a constriction along the vocal tract. In 
this second scenario, the excitation consists simply of a white-noise source (i.e., a 
source with a broad spectrum). The probability distribution of the noise samples 
does not seem to be of critical importance.

The short-time spectrum8 of the speech signal is obtained by multiplying the spectrum 
of the source, be it voiced or unvoiced, by the frequency response of the vocal-tract filter. 
Whether the source is a periodic sequence of pulses or white noise, its spectral envelope 
is flat. Therefore, the short-time spectral envelope of the speech signal is determined by 
the frequency response of the vocal-tract filter.

The method of linear predictive coding (LPC) is a model-dependent form of 
source coding that is widely used for the digital representation of speech at low bit rates  
(2.4 kb/s or less). LPC also provides a procedure for producing accurate estimates of 
basic speech parameters. The development of LPC relies on the model of Fig. 3.14, in 
which the vocal-tract filter is represented by the all-pole transfer function

 H1z2 =
G

1 + a
M

k = 1
akz-k

, (3.147)

where G is a gain factor. The form of excitation applied to this filter is changed by 
switching between voiced and unvoiced sounds. Thus, the filter with transfer function 
H(z) is excited by a sequence of impulses to generate voiced sounds or a white-noise 
sequence to generate unvoiced sounds. In this application, the data are real valued; 
hence, the filter coefficients ak are likewise real valued.
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Figure 3.15 shows the block diagram of an LPC system for the digital transmis-
sion and reception of speech signals over a communication channel. The transmitter 
first applies a window (typically, 10 to 30 ms long) to the input speech signal, thereby 
identifying a block of speech samples for processing. This window is short enough 
for the vocal-tract shape to be viewed as quasi-stationary, so that the parameters of 
the speech-production model of Fig. 3.14 may be treated as essentially constant for 
the duration of the window. The transmitter then analyzes the input speech signal, 
block by block, by performing two operations: linear prediction and pitch detection. 
Finally, the following parameters are encoded for transmission over the communica-
tion channel:

	 •	 The set of coefficients computed by the LPC analyzer.
	 •	 The pitch period.
	 •	 The gain parameter.
	 •	 The voiced–unvoiced parameter.

The receiver performs the inverse operations on the channel output by first decoding 
the incoming parameters and then using those parameters to synthesize a speech signal 
that sounds like the original speech signal by utilizing the model of Fig. 3.14.

itakura–saito distance Measure

In the use of an all-pole model for speech, there are two separate issues that need to 
be considered:

 1. The appropriateness of the all-pole filter to model the spectral envelope of a 
speech signal.

 2. The method that is used to estimate the coefficients of the all-pole filter.

Figure 3.15 Block diagram of LPC vocoder: (a) transmitter; (b) receiver.
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If the “true” spectral envelope has only poles, then the all-pole model is the right model. If, 
however, the spectral envelope has both poles and zeros, then the all-pole model is not the 
right model. Nevertheless, the all-pole model does an adequate job for many applications.

Suppose now that the all-pole model is a good model for whatever envelope we 
are trying to estimate. If the sound is unvoiced, then the usual (linear prediction) method 
of computing the all-pole filter’s coefficients leads to a good estimate. If, however, the 
sound is voiced, then the usual method of computing the all-pole filter’s coefficients pro-
duces a “biased estimate,” with the estimate worsening as the pitch frequency increases. 
El-Jaroudi and Makhoul (1991) overcame this problem by using the Itakura–Saito 
distance measure, which is discussed below. In particular, if the spectral envelope of 
the original speech signal is all-pole and the sound is voiced, El-Jaroudi and Makhoul 
showed that it is possible to recover the true envelope, which cannot be accomplished 
by the usual method based on linear prediction.

The example of Fig. 3.16 illustrates the limitations of standard all-pole modeling 
of periodic waveforms. The specifications of this example are as follows:

 1. All-pole filter order, M = 12.
 2. Input signal: periodic pulse sequence with N = 32 points in each period.

Figure 3.16 Example of the limitations of linear prediction spectral analysis. The solid 
line is the original 12-pole envelope, which goes through all the points. The dashed line is the 
12-pole linear predictive model for N = 30 spectral lines. (Reproduced from El-Jaroudi & 
Makhoul, 1991; with permission of the IEEE.)
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The solid line in the figure is the original 12-pole spectral envelope that passes through 
all the frequency points. The dashed envelope is the corresponding result obtained 
through linear predictive modeling performed on the periodic pulse train. This figure 
clearly illustrates the failure of the linear prediction method used to compute the all-
pole model’s coefficients.

The source of the problem cited here is traceable to the choice of the minimum 
mean-square error as the criterion for the linear predictive modeling of periodic wave-
forms. To overcome the problem, we need an error criterion that provides the basis for 
recovering the correct envelope from discrete spectral samples. A criterion that achieves 
this objective is the discrete version of the Itakura–Saito distance measure.9

To proceed with a derivation of this new error criterion, consider a real-valued, 
stationary stochastic process denoted by u(n) that is periodic with period N. Expanding 
u(n) into a Fourier series, we may write

 u1n2 =
1
N a

N - 1

k = 0
Uk exp1jnvk2,    n = 0, 1, c, N - 1, (3.148)

where vk = 2pk/N and

 Uk = a
N - 1

n = 0
un exp1- jnvk2,    k = 0, 1, c, N - 1. (3.149)

That is, u(n) and Uk form a discrete Fourier transform (DFT) pair. Likewise, the autocor-
relation function of u(n) for lag m is expanded into the Fourier series

 r1m2 =
1
N

 a
N - 1

k = 0
Sk exp1jmvk2,    m = 0, 1, c, N - 1, (3.150)

where

 Sk = a
N - 1

m = 0
r1m2exp1- jmvk2,    k = 0, 1, c, N - 1 (3.151)

9Itakura and Saito (1970) were the first to show that the maximum-likelihood procedure provides a 
fundamental theoretic basis for the estimation of the spectral envelope of a stochastic process using linear 
predictive coding. In doing so, they introduced the Itakura–Saito distance measure as the error criterion for 
a spectral matching evaluation of speech signals viewed as sample functions of an autoregressive process. 
This new error criterion was originally formulated for continuous spectra, which is an appropriate model for 
unvoiced sounds. Subsequently, McAulay (1984) generalized the Itakura–Saito distance measure to periodic 
processes having arbitrary model spectra. Then, El-Jaroudi and Makhoul (1991) used the discrete version of 
the Itakura–Saito distance measure to develop a “discrete” all-pole model that overcomes the limitations of 
linear prediction in the modeling of voiced sounds.

In Section 3.11, we have focused on the discrete version of the Itakura–Saito distance measure. The 
continuous version of this error criterion follows from the negative of the log-likelihood function L(a) in  
Eq. (3.156), presented on page 205. Specifically, if the number of frequency points, N, is permitted to 
approach infinity, then the summation in Eq. (3.156) is replaced by an integral. The negative of the resulting 
formula is indeed the continuous version of the Itakura–Saito distance measure.
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is a spectral sample. That is, r(m) and Sk also form a discrete Fourier transform pair 
of their own. The complex-valued random variables U0, U1, c, UN - 1 defined in  
Eq. (3.149) are uncorrelated with each other, as shown by (see Problem 18, Chapter 1)

 𝔼3UkUj*4 = eSk for j = k
0 otherwise

. (3.152)

With a parametric model of the stochastic process u(n) in mind, we note that, 
in general, the spectrum of u(n) depends functionally on a set of spectral parameters 
denoted by the vector

 a = 3a1, a2, c, aM4T, 

where M is the order of the model. The problem of interest is to estimate the spectral 
parameter vector a by using the statistical information contained in the observed ran-
dom variables u102, u112, c, u1N - 12, or, equivalently, the complex random vari-
ables U0, U1, c, UN - 1. For this estimation, we propose to use the maximum-likelihood 
procedure, which is known to have several optimality properties of an asymptotic kind 
(Van Trees, 1968; McDonough & Whalen, 1995; Quatieri, 2001). (A brief description of 
maximum-likelihood estimation is presented in Appendix D.)

To formulate this estimation procedure, we naturally need a probabilistic model 
for the stochastic process u(n), and to make the formulation mathematically tractable, 
we assume a Gaussian distribution with zero mean. Thus, in light of the first line of  
Eq. (3.152), we express the “complex” probability density function of the random vari-
able Uk, given the parameter vector a, as (see Problem 18, Chapter 1)

 fU 1Uk ∙a2 =
1

pSk 1a2 exp a-  
∙ Uk ∙2

Sk 1a2 b ,    k = 0, 1, c, N - 1, (3.153)

where we have used Sk(a) to denote the kth spectral sample of the process to empha-
size its functional dependence on the parameter vector a. Since these random vari-
ables are uncorrelated by virtue of the second line of Eq. (3.152), the Gaussian 
assumption implies that they are also statistically independent. Hence, the joint 
probability density function of the random variables U0, U1, c, UN - 1, given the 
parameter vector a, is

  fU 1U0, U1 c, UN ∙a2 = q
N - 1

k = 0
 fU 1Uk ∙  a2  

  = q
N - 1

k = 0
 

1
pSk 1a2 exp a-  

∙ Uk ∙2

Sk 1a2 b . (3.154)

By definition, the likelihood function, denoted by l(a) and viewed as a function of the 
parameter vector a, is equal to the joint probability density function of Eq. (3.154). 
Hence, we write

 l1a2 = q
N - 1

k = 0
 

1
pSk 1a2 exp a-  

∙ Uk ∙2

Sk 1a2 b . (3.155)
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To simplify matters, we take logarithms and so express the log-likelihood function as

  L1a2 = ln l1a2  

  = - a
N - 1

k = 0
a ∙ Uk ∙2

Sk 1a2 + ln Sk 1a2b , (3.156)

where we have ignored the constant -N ln p, as it has no bearing on the problem.
For the unconstrained problem (i.e., in the absence of a parametric model), there 

are N unknown parameters Sk, k = 0, 1, c, N - 1. From Eq. (3.156), we readily see 
that the maximum-likelihood estimate of Sk is ∙ Uk ∙2. Hence, the use of  Sk = ∙ Uk ∙2 in 
Eq. (3.156) yields the maximum value of the log-likelihood function:

 Lmax = - a
N - 1

k = 0
11 + ln ∙ Uk ∙22. (3.157)

Accordingly, we define the “differential” log-likelihood function for the parameter vec-
tor a as

  DIS 1a2 = Lmax - L1a2  

  = a
N - 1

k = 0
a ∙ Uk ∙2

Sk1a2 - ln a ∙ Uk ∙2

Sk1a2 b - 1b . (3.158)

Equation (3.158) is the discrete version of the Itakura–Saito distance measure 
(McAulay, 1984); the subscripts in DIS(a) refer to the originators of the continuous ver-
sion of the measure. Note that DIS(a) is always nonnegative and is equal to zero only 
when Sk1a2 = ∙ Uk ∙2 for all k.

discrete all-pole Model

Using the error criterion of Eq. (3.158), El-Jaroudi and Makhoul (1991) derived a 
 parametric model of a spectral envelope, given a set of discrete spectral points. The 
new model is called a discrete all-pole model. The derivation of the model is based on a 
matching condition that equates the autocorrelation function r(i)  corresponding to the 
given discrete spectrum to the autocorrelation function rn1 i2  corresponding to an all-pole 
model that is sampled at the same discrete frequencies of the given  spectrum—hence the 
name of the model. This matching condition, in turn, results in a set of  nonlinear equa-
tions relating the model parameters to the autocorrelation function of the given discrete 
spectrum. To simplify the solution of the nonlinear problem, the following property of 
sampled all-pole filters is used:

 a
M

k = 0
akrn1i - k2 = hn1- i2 for all i. (3.159)

In Eq. (3.159), a0 = 1 and

 hn1- i2 =
1
N

 a
N

m = 1°
exp1- jvmi2

a
M

k = 0
ak exp1- jvmk2 ¢

. (3.160)
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The term hn1- i2  is the time-reversed impulse response of the discrete frequency-sampled 
all-pole filter. By substituting the all-pole property of Eq. (3.159) into the minimizing 
condition

 
0DIS 1a2

0ak
= 0  for  k = 1, 2, c, M, 

we obtain the following set of equations relating the all-pole predictor coefficients to 
the given autocorrelation sequence:

 a
M

k = 0
akr1 i - k2 = hn1- i2 ,  0 … i … M. (3.161)

[For the derivation of Eqs. (3.159) through (3.161), see Problem 30.]
To compute the all-pole model parameters ak, k = 1, 2, c, M, a two-step itera-

tive algorithm is used (El-Jaroudi and Makhoul, 1991):

	 •	 Given an estimate of the model, evaluate hn1- i2  using Eq. (3.160).
	 •	 Given the new estimate hn1- i2 , solve the linearized equations (3.161) for a new 

estimate of the model parameters.

According to El-Jaroudi and Makhoul, the algorithm converges to a unique global mini-
mum. It is also of interest to note that this algorithm results in the correct all-pole enve-
lope for the problem depicted in Fig. 3.16. In general, the El-Jaroudi–Makhoul algorithm 
is less biased than the corresponding solution based on linear prodiction.

3.12 suMMary and disCussion

Linear prediction is basic to the model-building problem, given a set of physical data. In 
this chapter, we presented a detailed study of the linear prediction problem pertaining 
to wide-sense stationary stochastic processes. In particular, we used Wiener filter theory 
to develop optimum solutions for the two basic forms of linear prediction:

	 •	 Forward linear prediction, in which we are given the input sequence u1n - 12, 
u1n - 22, c, u1n - M2 and the requirement is to make an optimum prediction 
of the current sample u(n) at time n.

	 •	 Backward linear prediction, in which we are given the input sequence u1n2, 
u1n - 12, c, u1n - M + 12 and the requirement is to make an optimum pre-
diction of the old sample u1n - M2 at time n - m.

In both cases, the desired response is derived from the time series itself. In forward linear 
prediction, u1n2 acts as the desired response, whereas in backward linear prediction, 
u1n - M2 acts as the desired response.

The prediction process may be described in terms of a predictor or, equivalently, a 
prediction-error filter. These two linear systems differ from each other in their respec-
tive outputs. The output of a forward predictor is a one-step prediction of the input; the 
output of a forward prediction-error filter is the prediction error. In a similar way, we 
may distinguish between a backward predictor and a backward prediction-error filter.
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The two structures most commonly used for building a prediction-error filter are 
as follows:

	 •	 An FIR filter, about which the issue of concern is the determination of the tap 
weights.

	 •	 A lattice filter, about which the issue of concern is the determination of the reflec-
tion coefficients.

These two sets of parameters are in fact uniquely related to each other via the Levinson–
Durbin recursion.

The important properties of prediction-error filters may be summarized as follows:

	 •	 The forward prediction-error filter is minimum phase, which means that all the 
zeros of its transfer function lie inside the unit circle in the z-plane. The corre-
sponding inverse filter, representing an autoregressive model of the input process, 
is therefore stable.

	 •	 The backward prediction-error filter is maximum phase, which means that all the 
zeros of its transfer function lie outside the unit circle in the z-plane. In this case, 
the inverse filter is unstable and therefore of no practical value.

	 •	 The forward prediction-error filter is a whitening filter, whereas the backward 
prediction-error filter is an anticausal whitening filter. (See Problem 14.)

The lattice predictor offers some highly desirable properties:

	 •	 An order-recursive structure, which means that the prediction order may be 
increased by adding one or more stages to the structure without destroying the 
previous calculations.

	 •	 Modularity, which is exemplified by the fact that all the stages of the lattice predic-
tor have exactly the same physical structure.

	 •	 Simultaneous computation of forward and backward prediction errors, which pro-
vides for computational efficiency.

	 •	 Statistical decoupling of the individual stages, which is another way of saying that 
the backward prediction errors of varying orders produced by the different stages 
of the lattice predictor are uncorrelated with each other. This property, embodied in  
the Cholesky factorization, is exploited in the joint-estimation process, wherein the 
backward prediction errors are used to provide an estimate of some desired response.

proBLeMs

 1. The augmented Wiener–Hopf equations (3.14) of a forward prediction-error filter were 
derived by first optimizing the linear prediction filter in the mean-square-error sense and 
then combining the two resultants: the Wiener–Hopf equations for the tap-weight vector 
and the minimum mean-square prediction error. This problem addresses the issue of deriving 
those equations directly by proceeding as follows:

 (a) Formulate the expression for the mean-square value of the forward prediction error as a 
function of the tap-weight vector of the forward prediction-error filter.

 (b) Minimize this mean-square prediction error, subject to the constraint that the leading 
element of the tap-weight vector of the forward prediction-error filter is equal to unity.
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  [Hint: Use the method of Lagrange multipliers to solve the constrained optimization problem. 
For details of this method, see Appendix C. This hint also applies to part (b) of Problem 2.]

 2. The augmented Wiener–Hopf equations (3.38) of a backward prediction-error filter were 
derived indirectly in Section 3.2. This problem addresses the issue of deriving those equations 
directly by proceeding as follows:

 (a) Formulate the expression for the mean-square value of the backward prediction error in 
terms of the tap-weight vector of the backward prediction-error filter.

 (b) Minimize this mean-square prediction error, subject to the constraint that the last element 
of the tap-weight vector of the backward prediction-error filter is equal to unity. [Hint: 
See the hint for Problem 1.]

 3. (a)  Equation (3.24) defines the Wiener–Hopf equations for backward linear prediction. This 
system of equations is reproduced here for convenience as

 Rwb = rB*, 

where wb is the tap-weight vector of the predictor, R is the correlation matrix of the 
tap inputs u1n2 , u1n - 12 , c, u1n - M + 12 , and rB* is the cross-correlation vector 
between these tap inputs and the desired response u1n - M2. Show that if the elements 
of the column vector rB* are rearranged in reverse order, the effect of this reversal is to 
modify the Wiener–Hopf equations as

 RTwB
b = r*. 

 (b) Show that the inner products rBT wb and rTwB
b  are equal.

 4. Consider a wide-sense stationary process u(n) whose autocorrelation function has the follow-
ing values for different lags:

  r102 = 1;  

  r112 = 0.8; 

  r122 = 0.6; 

  r132 = 0.4. 

 (a) Use the Levinson–Durbin recursion to evaluate the reflection coefficients k1, k2, and k3.
 (b) Set up a three-stage lattice predictor for this process, using the values for the reflection 

coefficients found in part (a).
 (c) Evaluate the average power of the prediction error produced at the output of each of the 

three stages in this lattice predictor. Hence, make a plot of prediction-error power versus 
prediction order. Comment on your results.

 5. Consider the filtering structure described in Fig. P3.1, where the delay Δ is an integer greater 
than unity. The requirement is to choose the weight vector w so as to minimize the mean-
square value of the estimation error e(n). Find the optimum value of w(n).

 6. Consider the linear prediction of a stationary autoregressive process u(n) generated from the 
first-order difference equation

 u1n2 = 0.9u1n - 12 + n1n2, 
where n(n) is white noise of zero mean and unit variance.

 (a) Determine the tap weights a2, 1 and a2, 2 of the forward prediction-error filter.
 (b) Determine the reflection coefficients k1 and k2 of the corresponding lattice predictor.
 Comment on your results in parts (a) and (b).
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 7. (a)  A process u1(n) consists of a single sinusoidal process of complex amplitude a and 
angular frequency v in additive white noise of zero mean and variance s2

n, as given by

 u11n2 = aejvn + n1n2, 

  where

 𝔼3 ∙a ∙24 = s2
a 

  and

 𝔼3 ∙n1n2 ∙24 = s2
n. 

  The process u1(n) is applied to a linear predictor of order M, optimized in the mean-
square-error sense. Do the following:

    (i)  Determine the tap weights of the prediction-error filter of order M and the final 
value of the prediction-error power PM.

   (ii)  Determine the reflection coefficients k1, k2, . . . , kM of the corresponding lattice 
predictor.

  (iii)  How are the results in parts (i) and (ii) modified when we let the noise variance 
s2
n approach zero?

  (b) Consider next an AR process described by

 u21n2 = -aejvu21n - 12 + n1n2, 
where, as before, n(n) is additive white noise of zero mean and variance s2

n. Assume 
that 0 6 ∙a ∙ 6 1, but very close to unity. The process u2(n) is also applied to a linear 
predictor of order M, optimized in the mean-square-error sense.

      (i) Determine the tap weights of the new prediction-error filter of order M.
  (ii)  Determine the reflection coefficients k1, k2, . . . , kM of the corresponding lattice 

predictor.
  (c)  Use your results in parts (a) and (b) to compare the similarities and differences 

between the linear prediction of u1(n) and that of u2(n).

 8. Equation (3.40) defines the Levinson–Durbin recursion for forward linear prediction. 
By rearranging the elements of the tap-weight vector am backward and then taking their 
complex conjugate, reformulate the Levinson–Durbin recursion for backward linear pre-
diction as in Eq. (3.42).

 9. Starting with the definition of Eq. (3.47) for ∆m - 1, show that ∆m - 1 equals the cross-cor-
relation between the delayed backward prediction error bm - 11n - 12  and the forward 
prediction error fm - 11n2 .

Figure P3.1 
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 10. Develop in detail the relationship between the Schur–Cohn method and the inverse recursion 
as outlined by Eqs. (3.97) through (3.100).

 11. Consider an autoregressive process u(n) of order two described by the difference equation

 u1n2 = u1n - 12 - 0.5u1n - 22 + n1n2 , 

where n(n) is a white-noise process of zero mean and variance 0.5.
 (a) Find the average power of u(n).
 (b) Find the reflection coefficients k1 and k2.
 (c) Find the average prediction-error powers P1 and P2.

 12. Using the one-to-one correspondence between the two sequences of numbers 5P0, k1, k26  and 
{r(0), r(1), r(2)} , compute the autocorrelation function values r(1) and r(2) that correspond to 
the reflection coefficients k1, and k2 found in Problem 11 for the second-order autoregressive 
process u(n).

 13. In Section 3.4, we presented a derivation of the minimum-phase property of a prediction-
error filter by using Rouché’s theorem. In this problem, we explore another derivation of this 
 property—one based on proof by contradiction. Consider Fig. P3.2, which shows a prediction-
error filter (of order M) represented as the cascade of two functional blocks, one with transfer 
function Ci(z) and the other with its transfer function equal to the zero factor 11 - ziz

-12. Let 
S(v) denote the power spectral density of the process u(n) applied to the input of the predic-
tion-error filter.

 (a) Show that the mean-square value of the forward prediction error fM(n) equals

 e = L
p

-p
S1v2 ∙ Ci 1ejv2 ∙231 - 2ri cos1v - vi2 + r2

i 4  dv, 

 where zi = rie
jvi. Hence, evaluate the derivative 0e>0ri.

Figure P3.2 

 (b) Suppose that ri > 1, so that the complex zero lies outside the unit circle. Show that, under 
this condition, 0e>0ri 7 0. Is such a condition possible when the filter operates optimally? 
What conclusion can you draw from your answers?

 14. When an autoregressive process of order M is applied to a forward prediction-error filter of 
the same order, the output consists of white noise. Show that when such a process is applied to 
a backward prediction-error filter of order M, the output consists of an anticausal realization 
of white noise.

 15. Consider a forward prediction-error filter characterized by a real-valued set of coefficients 
am, 1, am, 2, c, am, m. Define a polynomial fm(z) as

 2Pmfm 1z2 = zm + am, 1 zm - 1 + g+ am, m, 

where Pm is the average prediction-error power of order m and z-1 is the unit-delay operator. 
[Note the difference between the definition of fm(z) and that of the corresponding transfer 
function Hf, m(z) of the filter.] The filter coefficients bear a one-to-one correspondence with 
the sequence of autocorrelations r(0), r(1), . . . , r(m). Now define
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 S1z2 = a
m

i = -m
r1 i2z-i, 

and show that

 
1

2pj
 Cc

fm1z2fk  1z-12S1z2 dz = dmk, 

where

 dmk = e1, k = m
0, k ≠ m

 

is the Kronecker delta and the contour 𝒞 is the unit circle. The polynomial fm is referred to 
as a Szegö polynomial. (See Appendix A for a review of contour integration.)

 16. In a lattice-based structure for joint-process estimation, explain why the backward error pre-
diction method is preferable to forward prediction.

 17. For m = 2, compute r(2) for the autocorrelation function and the reflection coefficients given 
P0, k1, k2, and k3.

 18. Find the inverse recursion using Levinson–Durbin recursion for the tap weights a3,1, a3,2, a3,3, 
and a4,4 of a prediction-error filter of order 3. Determine the corresponding reflection coef-
ficient k1, k2, k3, and k4 for the order 4.

 19. (a)  Consider the matrix product LR that appears in the decomposition of Eq. (3.114), where 
the 1M + 12@by@1M + 12 lower triangular matrix L is defined in Eq. (3.106) and R is the 
1M + 12@by@1M + 12 correlation matrix. Let Y denote this matrix product, and let ymk 
denote the mkth element of Y. Show that

 ymm = Pm,    m = 0, 1, c, M, 

 where Pm is the prediction-error power for order m.
 (b) Show that the mth column of matrix Y is obtained by passing the autocorrelation sequence 

{r(0), r(1), . . . , r(m)} through a corresponding sequence of backward prediction-error fil-
ters represented by the transfer functions Hb, o(z), Hb,11z2, c, Hb, m1z2.

 (c) Suppose that we apply the autocorrelation sequence {r(0), r(1), . . . , r(m)} to the input 
of a lattice predictor of order m. Show that the variables appearing at the various points 
on the lower line of the predictor at time m equal the elements of the mth column of 
matrix Y.

 (d) For the situation described in part (c), show that the lower output of stage m in the pre-
dictor at time m equals Pm and that the upper output of this same stage at time m + 1 
equals ∆*m. How is the ratio of these two outputs related to the reflection coefficient of 
stage m + 1?

 (e) Use the results of part (d) to develop a recursive procedure for computing the sequence 
of reflection coefficients from the autocorrelation sequence.

 20. Prove the following correlation properties of lattice filters:
 (a) 𝔼3fm1n2u*1n - k24 = 0,  1 … k … m
  𝔼3bm1n2u*1n - k24 = 0,  0 … k … m - 1

 (b) 𝔼3fm 1n2u*1n24 = 𝔼3bm 1n2u*1n - m24 = Pm

 (c) 𝔼3bm1n2b* i 1n24 = ePm, m = i
0, m ≠ i
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212   Chapter 3  Linear Prediction

 (d) 𝔼3fm 1n2f * i 1n - l24 = 𝔼3fm 1n + l2 f * i 1n24 = 0, 1 … l … m - i
   m 7 i
  𝔼3bm 1n2b* i 1n - l24 = 𝔼3bm 1n + l2b* i 1n24 = 0, 0 … l … m - i - 1
   m 7 i

 (e) 𝔼3fm1n + m2f * i 1n + i24 = ePm, m = i
0, m ≠ i

  𝔼3bm 1n + m2b* i 1n + i24 = Pm,  m Ú i

 (f) 𝔼3fm 1n2b* i 1n24 = ek* i Pm, m Ú i
0, m 6 i

 21. In Levinson–Durbin recursion, given the set of reflection coefficients k1, k2, . . . , kM, compute 
the corresponding set of tap weights aM,1, aM,2, … , aM,M for a  prediction-error filter of final 
order M, where the remaining coefficient of the filter are 1. Given the set of tap weights aM,1, 
aM,2, … , aM,M solve for the corresponding set of reflection coefficients k1, k2, . . . , kM. [Hint: 
We may solve this problem by applying the inverse form of the Levinson–Durbin recursion.]

 22. Consider the problem of optimizing stage m of the lattice predictor. The cost function to be 
used in the optimization is described by

 Jm 1km2 = a𝔼3 ∙ fm1n2 ∙24 + 11 - a2𝔼3 ∙ bm 1n2∙24, 
where a is a constant that lies between zero and unity and fm(n) and bm(n) denote the forward 
and backward prediction errors at the output of stage m, respectively.

 (a) Show that the optimum value of the reflection coefficient km for which Jm is at minimum is

 km, o  1a2 = -  
𝔼3bm - 1 1n - 12f *m - 1 1n24

11 - a2𝔼3 ∙ fm - 1 1n2 ∙24 + a𝔼3bm - 1 1n - 12 ∙24
.  

 (b) Evaluate km, o(a) for each of the following three special conditions:

  112 a = 1; 
  122 a = 2; 

  132 a = 1
2.  

   Notes: When the parameter a = 1, the cost function reduces to

 Jm 1km2 = 𝔼3 ∙ fm 1n2 ∙24 . 

 We refer to this criterion as the forward method.
When the parameter a = 0, the cost function reduces to

 Jm 1km2 = 𝔼3 ∙ bm 1n2 ∙24 . 

We refer to this second criterion as the backward method.

   When the parameter a = 1
2, the formula for km, 0(a) reduces to the Burg formula:

 km, o = -  
2𝔼3bm - 1 1n - 12 f *m - 1 1n24

𝔼3 ∙ fm - 1 1n2∙2 + ∙ bm - 1 1n - 12∙24,    m = 1, 2, c, M. 
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 23. Let k(1)
m, o and k(0)

m, o denote the optimum values of the reflection coefficient km for stage m of the 
lattice predictor, using the forward method and backward method, respectively, as determined 
in Problem 22.

 (a) Show that the optimum value of km, o obtained from the Burg formula is the harmonic 
mean of the two values k(1)

m, o and k(0)
m, o; that is,

 
2

km, o
=

1

k(1)
m, o

+
1

k(0)
m, o

. 

 (b) Using the result of part (a), show that

 ∙km,o ∙ … 1, for all m. 

 (c) For the case of a lattice predictor using the Burg formula, show that the mean-square 
values of the forward and backward prediction errors at the output of stage m are related 
to those at the input; that is, show that

 𝔼3 ∙ fm 1n2∙24 = 11 - ∙km, o∙22𝔼3 ∙ fm - 1 1n2∙24 
   and
 𝔼3 ∙ bm 1n2 ∙24 = 11 - ∙km, o ∙22𝔼3 ∙ bm - 1 1n - 12 ∙24 . 

 24. Following the Levinson–Durbin algorithm presented in Section 3.3, we may express the reflec-
tion coefficient km of stage m of a lattice predictor in the following equivalent ensemble-
average forms:

  km = -  
𝔼3bm - 11n - 12f *m - 1 1n2 4

𝔼3 ∙ bm - 1 1n - 12 ∙24 = -  
𝔼3bm - 1 1n - 12  f *m - 1 1n2 4

𝔼3 ∙ fm - 11n2 ∙24  

  = -  
𝔼3bm - 1 1n - 12f *m - 1 1n24

1𝔼3 ∙ fm - 1 1n2 ∙24𝔼3 ∙ bm - 1 1n - 12 ∙2421 >  2
.  

As a result, ∙km ∙ … 1 for all m. However, we find that when the estimation of the reflection 
coefficient km is based on a finite number of data, only the temporal-average version of the 
last formula would maintain the property ∙km ∙ … 1 for all m. Demonstrate the validity of 
this statement.

 25. Determine the (a) correlation matrix, (b) prediction-error power, and (c) prediction-error 
filter coefficients of a prediction-error filter as given in Eq. (3.14) that yields the following 
pair of simultaneous equations:

 c r(0) r*(1)
r*(1) r(0)

d c a1,0

a1,1
d = cP1

0
d  

 26. In Section 3.9, we considered the use of an all-pole lattice filter as the generator of an 
autoregressive process. This filter may also be used to efficiently compute the autocorrela-
tion sequence r(1), r(2), . . . , r(m), normalized with respect to r(0). The procedure involves 
initializing the states (i.e., unit-delay elements) of the lattice inverse filter to 1, 0, . . . , 0 and 
then allowing the filter to operate with zero input. In effect, this procedure provides a lattice 
interpretation of Eq. (3.67) that relates the autocorrelation sequence {r(0), r(1), . . . , r(M)} to 
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 29. Continuing with Problem 28, determine the reflection coefficients and regression coefficients 
for the pole–zero lattice filter of Fig. P3.3 so as to realize the following transfer functions:

 (a) G1z2 =
1011 + z >  0.12 11 + z >  0.62
11 - z >  0.42 11 + z >  0.82 .

the augmented sequence of reflection coefficients 5P0, k1, c, kM6 . Demonstrate the validity 
of the procedure for the following values of final order M:

 (a) M = 1. (b) M = 2. (c) M = 3.

 27. Illustrate the second method for the application of the Levinson–Durbin recursion, the reflec-
tion coefficients k1, k2, and k3 and the average power P0. Use these parameters to determine 
the corresponding tap weights a3,1, a3,2, a3,3 and a4,4 and the prediction-error power P3 for a 
prediction-error filter of order 4.

 28. Figure P3.3 shows the block diagram of a pole-zero lattice filter, which is an extended version 
of the all-pole, all-pass lattice filter of Fig. 3.10. The rationale for the extension shown in the 
figure is to realize the M-pole, M-zero transfer function

 G1z2 = G0 
q
M

i = 1
11 - z >  zi2

q
M

i = 1
11 - z >  pi2

, 

  where G0 is a scaling factor. In light of the discussion presented in Section 3.9, the lattice filter 
rewired as in Fig. P3.3 can realize the prescribed poles of G(z) through a proper choice of the 
reflection coefficients k1, k2, . . . , kM . Do the following:

 (a) Given the pole locations p1, p2, . . . , pM of the transfer function G(z), discuss a procedure 
for determining the corresponding values of the reflection coefficients.

 (b) Given the scaling factor G0 and the zero locations z1, z2, . . . , zM of the transfer 
function G(z), develop a procedure for determining the regression coefficients  
h0, h1, . . . , hM.

 (c) Can the structure of Fig. P3.3 realize a non-minimum-phase transfer function? Justify 
your answer.

Figure P3.3 
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 (b) G1z2 =
1011 + z + z22

11 - z >  0.42 11 + z >  0.82 .

 (c) G1z2 =
1011 + z >  0.62 11 + z >  1.52
11 - z >  0.42 11 + z >  0.82 .

 (d) G1z2 =
1011 + z + 0.5z22

11 - z >  0.42 11 + z >  0.82 .

 30. In this problem, we derive Eqs. (3.159) through (3.161) for computing the discrete all-pole 
filter, as well as the correlation matching condition.

 (a) Let

 A1ejv2 = a
M

k = 0
ake-jvk 

 and

 Hn 1ejv2 = a
N

i = 1
hn1i2e-jvi. 

 Starting with the identity

 Hn 1ejvm2A1ejvm2 = 1 

 for v = vm, derive Eqs. (3.159) and (3.160).
 (b) Let r(i) denote the autocorrelation function corresponding to the given discrete spec-

trum and rn1 i2  denote the autocorrelation function corresponding to the all-pole model 
sampled at the same discrete frequencies as the given spectrum. Also, let

  D1v2 = ∙ A1ejv2 ∙2  

  = a
M

k = 0
dk cos1vk2, 

  where

 d0 = a
M

k = 0
a2

k 

  and

 di = 2 a
M - i

k = 0
akak + 1,   1 … i … M. 

  By setting

 
0DIS

0di
= 0  for  i = 0, 1, c, M, 

  where DIS is the discrete version of the Itakura–Saito distance measure, derive the cor-
relation matching condition

 rn1i2 = r1i2 for 0 … i … M. 

  Although the correlation matching condition provides insight into the application of the 
Itakura–Saito distance measure, from a computational point of view it is more useful to 
apply the minimizing condition (El-Jaroudi & Makhoul, 1991)
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0DIS

0ai
= 0 for i = 0, 1, c, M. 

  Hence, using the all-pole model characterized by

 Sk  1a2 =
1

` a
M

k = 0
ake-jvk `

2 

  in the formula of Eq. (3.158) for DIS(a), derive Eq. (3.161).
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C h a p t e r  4

Method of Steepest Descent

In this chapter, we begin the study of gradient-based adaptation by describing an old 
optimization technique known as the method of steepest descent. This method is basic 
to the understanding of the various ways in which gradient-based adaptation is imple-
mented in practice.

The method of steepest descent is recursive in the sense that its formulation is rep-
resented by a feedback system whereby the computation of a filter proceeds iteratively 
in a step-by-step manner. When the method is applied to the Wiener filter, it provides us 
with an algorithmic solution that allows for the tracking of time variations in the signal’s 
statistics without having to solve the Wiener–Hopf equations each time the statistics 
change. In the particular case of a stationary environment, we find that, starting from an 
arbitrary initial value of the tap-weight vector, the solution improves with the increased 
number of adaptation cycles. The important point to note is that, under the appropriate 
conditions, the solution so obtained converges to the Wiener solution (i.e., the minimum 
point of the ensemble-average error surface) without the analyst’s having to invert the 
correlation matrix of the input vector.

4.1 BaSiC iDea of the SteepeSt-DeSCent algorithM

Consider a cost function J(w) that is a continuously differentiable function of some 
unknown weight vector w. The function J(w) maps the elements of w into real numbers. 
We want to find an optimal solution wo that satisfies the condition

 J1wo2 … J1w2  for all w, (4.1)

which is a mathematical statement of unconstrained optimization.
A class of unconstrained optimization algorithms that is particularly well suited 

for adaptive filtering is based on the idea of local iterative descent:

Starting with an initial guess denoted by w(0), generate a sequence of weight vectors 
w112 , w122 , c, such that the cost function J(w) is reduced at each adaptation 
cycle of the algorithm; that is,

 J1w1n + 122 6 J1w1n22, (4.2)

where w(n) is the old value of the weight vector and w1n + 12  is its updated value.
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218   Chapter 4  Method of Steepest Descent

We hope that the algorithm will eventually converge onto the optimal value wo. 
[We say “hope” because there is a distinct possibility that the algorithm will diverge (i.e., 
become unstable), unless special precautions are taken.]

In a simple form of iterative descent known as the method of steepest descent, the 
successive adjustments applied to the weight vector w are in the direction of steepest 
descent—that is, in a direction opposite to the gradient vector of the cost function J(w), 
which is denoted by 𝛁J1w2. For convenience of presentation, we write

  g = 𝛁J1w2 

  =
0 J 1w2

0w
. (4.3)

Accordingly, the steepest-descent algorithm is formally described by

 w1n + 12 = w1n2 -
1
2
 mg1n2, (4.4)

where n denotes the adaptation cycle (i.e., the time step in the iterative process), m is a posi-
tive constant called the step-size parameter, and the factor 12 is introduced for mathematical 
convenience. (The reason for introducing this factor will become apparent in the next sec-
tion.) In going from adaptation cycle n to n + 1, the algorithm applies the weight adjustment

  dw1n2 = w1n + 12 - w1n2 

  = -  
1
2
 mg1n2.  

(4.5)

To show that the formulation of the steepest-descent algorithm satisfies the condition of  
Eq. (4.2), we use a first-order Taylor series expansion around w(n) to obtain the approximation

 J1w1n + 122 ≈ J1w1n22 + gH
 1n2dw1n2, (4.6)

the use of which is justified for small m and where the superscript H denotes Hermitian 
transposition. In Eq. (4.6), it is presumed that we are dealing with a complex-valued 
vector w, which makes the gradient vector g complex valued, too—hence the use of the 
Hermitian transpose. The use of Eq. (4.5) in Eq. (4.6) yields

 J1w1n + 122 ≈ J1w1n22 -
1
2
 m 7g1n2 7  

2, 

which shows that J1w1n + 122 is smaller than J1w1n22 provided that the step-size 
parameter m is positive. Hence, it follows that with increasing n, the cost function J(n) 
progressively decreases, approaching the minimum value Jmin as n approaches infinity. 

4.2 the SteepeSt-DeSCent algorithM applieD to the Wiener filter

Consider a finite-duration impulse response (FIR) filter with tap inputs u1n2, u1n - 12, c, 
u1n - M + 12 and a corresponding set of tap weights w01n2, w11n2, c, wM - 11n2. The 
tap inputs represent samples drawn from a wide-sense stationary stochastic process of 
zero mean and correlation matrix R. In addition to these inputs, the filter is supplied 
with a desired response d(n) that provides a frame of reference for the optimum filtering 
action. Figure 4.1 depicts the filtering action described herein.

M04_HAYK4083_05_SE_C04.indd   218 21/06/13   8:30 AM



Section 4.2 The Steepest-Descent Algorithm Applied to the Wiener Filter   219

The vector of tap inputs at time n is denoted by u(n), and the corresponding esti-
mate of the desired response at the filter output is denoted by dn1n∙un2, where un is the 
space spanned by the tap inputs u1n2, u1n - 12, c, u1n - M + 12. By comparing 
this estimate with the desired response d(n), we produce an estimation error denoted 
by e(n). We may thus write

  e1n2 = d1n2 - dn1n∙un2  

  = d1n2 - wH
 1n2u1n2, (4.7)

where the term wH1n2u1n2 is the inner product of the tap-weight vector w(n) and the 
tap-input vector u(n). The expanded form of the tap-weight vector is described by

 w1n2 = 3w01n2, w11n2, c, wM - 11n24T, 

where the superscript T denotes transposition, and that of the tap-input vector is 
 correspondingly described by

 u1n2 = 3u1n2, u1n - 12, c, 1n - M + 124T. 

If the tap-input vector u(n) and the desired response d(n) are jointly stationary, 
then the mean-square error or cost function J1w1n22, or simply J(n), at time n is a qua-
dratic function of the tap-weight vector, so we may write [see Eq. (2.50)]

 J1n2 = s2
d - wH

 1n2p - pHw1n2 + wH
 1n2Rw1n2, (4.8)

where s2
d = variance of the desired response d1n2,
p =  cross-correlation vector between the tap-input vector u1n2 and the desired 

response d1n2, and
R = correlation matrix of the tap-input vector u1n2.

Figure 4.1 Structure of an adaptive FIR filter. 
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From Chapter 2, we find that the gradient vector is given by

  ∇J1n2 = G 0J1n2
0a0 1n2 + j 

0J1n2
0b0 1n2

0J1n2
0a1 1n2 + j 

0J1n2
0b1 1n2

f
0J1n2

0aM - 11n2 + j 
0J1n2

0bM - 11n2

W
 (4.9)

  = -2p + 2Rw1n2,  

where, in the expanded column vector, 0J1n2>0ak1n2 and 0J1n2>0bk1n2 are the partial 
derivatives of the cost function J(n) with respect to the real part ak(n) and the imaginary 
part bk(n) of the kth tap weight wk(n), respectively, with k = 1, 2, c, M - 1. For the 
application of the steepest-descent algorithm, we assume that in Eq. (4.9) the correla-
tion matrix R and the cross-correlation vector p are known, so that we may compute the 
gradient vector 𝛁J1n2 for a given value of the tap-weight vector w(n). Thus, substituting 
Eq. (4.9) into Eq. (4.4), we may compute the updated value of the tap-weight vector 
w1n + 12 by using the simple recursive relation

 w1n + 12 = w1n2 + m3p - Rw1n24,   n = 0, 1, 2, c, (4.10)

which describes the mathematical formulation of the steepest-descent algorithm for 
Wiener filtering.

According to Eq. (4.10), the adjustment dw1n2 applied to the tap-weight vector at 
time n + 1 is equal to m3p - Rw1n24. The adjustment may also be expressed as μ times 
the expectation of the inner product of the tap-input vector u(n) and the estimation 
error e(n). (See Problem 7.) This suggests that we may use a bank of cross-correlators 
to compute the correction dw1n2 applied to the tap-weight vector w(n), as indicated 
in Fig. 4.2. In this figure, the elements of the correction vector dw1n2 are denoted by 
dw01n2, dw11n2, c, dwM - 11n2.

Another point of interest is that we may view the steepest-descent algorithm of 
Eq. (4.10) as a feedback model, as illustrated by the signal-flow graph shown in Fig. 4.3. 
This model is multidimensional in the sense that the “signals” at the nodes of the graph 
consist of vectors and that the transmittance of each branch of the graph is a scalar or 
a square matrix. For each branch of the graph, the signal vector flowing out equals the 
signal vector flowing in, multiplied by the transmittance matrix of the branch. For two 
branches connected in parallel, the overall transmittance matrix equals the sum of the 
transmittance matrices of the individual branches. For two branches connected in cas-
cade, the overall transmittance matrix equals the product of the individual transmittance 
matrices arranged in the same order as the pertinent branches. Finally, the symbol z-1 
is the unit-delay operator, and z-1I is the transmittance matrix of a unit-delay branch 
representing a delay of one adaptation cycle.
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Figure 4.2 Bank of cross-correlators for computing the corrections to the elements of the 
tap-weight vector at time n.
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4.3 StaBility of the SteepeSt-DeSCent algorithM

Since the steepest-descent algorithm involves the presence of feedback, as exemplified 
by the model of Fig. 4.3, the algorithm is subject to the possibility of becoming unstable. 
From the feedback model of that figure, we observe that the stability performance of 
the steepest-descent algorithm is determined by two factors: (1) the step-size parameter 
m and (2) the correlation matrix R of the tap-input vector u(n). These two parameters 
completely control the transfer function of the feedback loop. To determine the condi-
tion for the stability of the steepest-descent algorithm, we examine the natural modes of 
the algorithm (Widrow, 1970). In particular, we use the representation of the correlation 
matrix R in terms of its eigenvalues and eigenvectors to define a transformed version 
of the tap-weight vector.

We begin the analysis by defining a weight-error vector at time n as

 c1n2 = wo - w1n2, (4.11)

where wo is the optimum value of the tap-weight vector, as defined by the Wiener–Hopf 
equations (2.34). Then, eliminating the cross-correlation vector p between Eqs. (2.34) 
and  (4.10) and rewriting the result in terms of the weight-error vector c(n), we get

 c1n + 12 = 1I - mR2c1n2, (4.12)

where I is the identity matrix. Equation (4.12) is represented by the feedback model 
shown in Fig. 4.4. This diagram further emphasizes the fact that the stability performance 
of the steepest-descent algorithm is dependent exclusively on m and R.

Using eigendecomposition, we may express the correlation matrix R as (see 
Appendix E)

 R = Q𝚲QH. (4.13)

The matrix Q, called the unitary matrix of the transformation, has as its columns an 
orthogonal set of eigenvectors associated with the eigenvalues of the matrix R. The 

Figure 4.3 Signal-flow-graph representation of the steepest-descent algorithm based on 
Eq. (4.10).
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matrix 𝚲 is a diagonal matrix and has as its diagonal elements the eigenvalues of the cor-
relation matrix R. These eigenvalues, denoted by l1, l2, c, lM, are all positive and real. 
Each eigenvalue is associated with a corresponding eigenvector or column of matrix Q. 
Substituting Eq. (4.13) into Eq. (4.12), we get

 c1n + 12 = 1I - mQ𝚲QH2c1n2. (4.14)

Premultiplying both sides of this equation by QH and using the property of the unitary 
matrix Q that QH equals the inverse Q-1, we obtain

 QHc1n + 12 = 1I - m𝚲2QHc1n2. (4.15)

We now define a new set of coordinates, using the definition of Eq. (4.11):

  v1n2 = QHc1n2  

  = QH3wo - w1n24. (4.16)

Accordingly, we may rewrite Eq. (4.14) in the transformed form

 v1n + 12 = 1I - m𝚲2v1n2. (4.17)

The initial value of v(n) is

 v102 = QH3wo - w1024. (4.18)

Assuming that the initial tap-weight vector is zero, Eq. (4.18) reduces to

 v102 = QHwo. (4.19)

For the kth natural mode of the steepest-descent algorithm, we thus have

 yk1n + 12 = 11 - mlk2yk1n2,  k = 1, 2, c, M (4.20)

where lk is the kth eigenvalue of the correlation matrix R. Equation (4.20) is rep-
resented by the scalar-valued feedback model of Fig. 4.5, where z-1 is the unit-delay 

Figure 4.4 Signal-flow-graph 
representation of the steepest-descent 
algorithm based on the weight-error 
vector as shown in Eq. (4.12).
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operator. Clearly, the structure of this model is much simpler than that of the original 
matrix-valued feedback model of Fig. 4.3. These two models represent different, and yet 
equivalent, ways of viewing the steepest-descent algorithm.

Equation (4.20) is a homogeneous difference equation of the first order. Assuming 
that nk1n2 has the initial value nk102, we readily obtain the solution

 yk1n2 = 11 - mlk2nyk102,  k = 1, 2, c, M. (4.21)

Since all eigenvalues of the correlation matrix R are positive and real, the response nk1n2 
will exhibit no oscillations. Furthermore, as illustrated in Fig. 4.6, the numbers generated 
by Eq. (4.21) represent a geometric series with a geometric ratio equal to 11 - mlk2. 
For stability or convergence of the steepest-descent algorithm, the magnitude of this 
geometric ratio must be less than unity for all k. That is, provided that we have

 -1 6 1 - mlk 6 1  for all k, 

then, as the number of adaptation cycles, n, approaches infinity, all the natural modes 
of the steepest-descent algorithm die out, irrespective of the initial conditions. This is 

Figure 4.5 Signal-flow-graph 
representation of the kth natural 
mode of the steepest-descent 
algorithm based on Eq. (4.20).

Figure 4.6 Variation of the kth 
natural mode of the steepest-descent 
algorithm with time, assuming that the 
magnitude of 1 - mlk is less than unity.
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equivalent to saying that the tap-weight vector w(n) approaches the optimum Wiener 
solution wo as n approaches infinity.

Since the eigenvalues of the correlation matrix R are all real and positive, it fol-
lows that a necessary and sufficient condition for the convergence or stability of the 
steepest-descent algorithm is that the step-size parameter μ satisfy the double inequality

 0 6 m 6
2

lmax
, (4.22)

where lmax is the largest eigenvalue of the correlation matrix R.
Referring to Fig. 4.6, we see that an exponential envelope of the time constant tk 

can be fitted to the geometric series by assuming the unit of time to be the duration of 
one adaptation cycle and by choosing tk such that

 1 - mlk = exp a-  
1
tk
b . 

Hence, the kth time constant can be expressed in terms of the step-size parameter μ and 
the kth eigenvalue as

 tk =
-1

ln11 - mlk2. (4.23)

The time tk defines the number of adaptation cycles required for the amplitude of the 
kth natural mode nk1n2 to decay to 1>e of its initial value nk102, where e is the base of 
the natural logarithm. For the special case of slow adaptation, for which the step-size 
parameter m is small,

 tk ≈
1

mlk
,    m V 1. (4.24)

We may now formulate the transient behavior of the original tap-weight vector 
w(n). In particular, premultiplying both sides of Eq. (4.16) by Q, using the fact that 
QQH = I, and solving for w(n), we get

  w1n2 = wo - Qv1n2  

  = wo - 3q1, q2, c, qM4 ≥
v1 1n2
v2 1n2
f

vM 1n2
¥  (4.25)

  = wo - a
M

k = 1
qkvk 1n2,  

where q1, q2, c, qM are the eigenvectors associated, respectively, with the eigenvalues 
l1, l2, c, lM of the correlation matrix R and the kth natural mode nk1n2 is defined 
by Eq. (4.21). Thus, substituting Eq. (4.21) into Eq. (4.25), we find that the transient 
behavior of the ith tap weight is described by
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226   Chapter 4  Method of Steepest Descent

 wi 1n2 = woi - a
N

k = 1
qkivk 10211 - mlk2n,    i = 1, 2, c, M, (4.26)

where woi is the optimum value of the ith tap weight and qki is the corresponding ith 
element of the kth eigenvector qk.

Equation (4.26) shows that each tap weight in the steepest-descent algorithm con-
verges as the weighted sum of exponentials of the form 11 - mlk2n. The time tk required 
for each term to reach 1>e of its initial value is given by Eq. (4.23). However, the overall 
time constant ta, defined as the time required for the summation term in Eq. (4.26) to 
decay to 1>e of its initial value, cannot be expressed in a simple closed form similar  
to Eq. (4.23). Nevertheless, the slowest rate of convergence is attained when qkivk102 is 
zero for all k except that mode corresponding to the smallest eigenvalue lmin of matrix 
R, so the upper bound on ta is defined by -1>ln11 - mlmin2. The fastest rate of conver-
gence is attained when all the qkivk102 are zero except for that mode corresponding to 
the largest eigenvalue lmax, so the lower bound on ta is defined by -1>ln11 - mlmax2. 
Accordingly, the overall time constant ta for any tap weight of the steepest-descent 
algorithm is bounded as follows (Griffiths, 1975):

 
-1

ln11 - mlmax2 … ta …
-1

ln11 - mlmin2 . (4.27)

We see, therefore that when the eigenvalues of the correlation matrix R are widely 
spread (i.e., the correlation matrix of the tap inputs is ill conditioned), the settling time 
of the steepest-descent algorithm is limited by the smallest eigenvalues or, which is the 
same thing, the slowest modes.

transient Behavior of the Mean-Square error

We may develop further insight into the operation of the steepest-descent algorithm by 
examining the transient behavior of the mean-square error J(n). From Eq. (2.56), we have

 J1n2 = Jmin + a
M

k = 1
lk ∙ vk 1n2 ∙2, (4.28)

where Jmin is the minimum mean-square error. The transient behavior of the kth natural 
mode, nk1n2, is defined by Eq. (4.21). Hence, substituting Eq. (4.21) into Eq. (4.28), we get

 J1n2 = Jmin + a
M

k = 1
lk 11 - mlk22n ∙ vk 102 ∙2, (4.29)

where nk102 is the initial value of nk1n2. When the steepest-descent algorithm is con-
vergent [i.e., when the step-size parameter μ is chosen within the bounds defined by  
Eq. (4.22)], we see that, irrespective of the initial conditions,

 lim
nS∞

J1n2 = Jmin. (4.30)

The curve obtained by plotting the mean-square error J(n) versus the number of 
adaptation cycles, n, is called a learning curve. From Eq. (4.29), we may say:

 The learning curve of the steepest-descent algorithm consists of a sum of exponen-
tials, each of which corresponds to a natural mode of the algorithm. 
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In general, the number of natural modes equals the number of tap weights. In going from 
the initial value J(0) to the final value Jmin, the exponential decay for the kth natural 
mode has a time constant given by

 tk, mse ≈
-1

2ln11 - mlk2. (4.31)

For small values of the step-size parameter μ, we may approximate this time constant as

 tk, mse ≈
1

2mlk
. (4.32)

Equation (4.32) shows that the smaller we make the step-size parameter μ, the slower 
will be the rate of decay of each natural mode of the steepest-descent algorithm.

4.4 exaMple

In this example, we examine the transient behavior of the steepest-descent algorithm 
applied to a predictor that operates on a real-valued autoregressive (AR) process. Fig-
ure 4.7 shows the structure of the predictor, assumed to contain two tap weights that 
are denoted by w1(n) and w2(n); the dependence of these tap weights on the number of 
adaptation cycles, n, emphasizes the transient condition of the predictor. The AR process 
u(n) is described by the second-order difference equation

 u1n2 + a1u1n - 12 + a2u1n - 22 = n1n2, (4.33)

where the sample n1n2 is drawn from a white-noise process of zero mean and variance s2
n. 

The AR parameters a1 and a2 are chosen so that the roots of the characteristic equation

 1 + a1 z-1 + a2 z-2 = 0 

are complex; that is, a2
 1 6 4a2. The particular values assigned to a1 and a2 are determined 

by the desired eigenvalue spread x1R2, defined as the ratio of the largest eigenvalue of the 
correlation matrix R to the smallest eigenvalue. For specified values of a1 and a2, the vari-
ance s2

n of the white-noise n1n2 is chosen to make the process u(n) have variance s2
u = 1.

Figure 4.7 Two-tap predictor for real-valued input.
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The requirement is to evaluate the transient behavior of the steepest-descent algo-
rithm for the following conditions:

	 •	 Varying eigenvalue spread x1R2 and fixed step-size parameter m.
	 •	 Varying step-size parameter m and fixed eigenvalue spread x1R2.

Characterization of the ar process

Since the predictor of Fig. 4.7 has two tap weights and the AR process u(n) is real  
valued, it follows that the correlation matrix R of the tap inputs is a 2-by-2 symmetric 
matrix. That is,

 R = c r102 r112
r112 r102 d , 

where (see Chapter 1)

 r102 = s2
u 

and

 r112 = -  
a1

1 + a2
 s2

u, 

in each of which

 s2
u = a1 + a2

1 - a2
b  

s2
n

11 + a222 - a2
1
. 

The two eigenvalues of R are

 l1 = a1 -
a1

1 + a2
bs2

u 

and

 l2 = a1 +
a1

1 + a2
bs2

u. 

Hence, the eigenvalue spread equals (assuming that a1 is negative)

 x1R2 =
l1

l2
=

1 - a1 + a2

1 + a1 + a2
. 

The eigenvectors associated with the eigenvalues l1 and l2 are, respectively,

 q1 =
122

 c1
1
d  

and
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 q2 =
122

 c 1
-1

d , 

both of which are normalized to unit length.

experiMent 1 Varying eigenvalue Spread

In this experiment, the step-size parameter m is fixed at 0.3, and the evaluations are 
made for the four sets of AR parameters given in Table 4.1.

For a given set of parameters, we use a two-dimensional plot of the transformed 
tap-weight error v1(n) versus v2(n) to display the transient behavior of the steepest-
descent algorithm. In particular, the use of Eq. (4.21) yields

  v1n2 = cv1 1n2
v2 1n2 d  (4.34)

  = c 11 - ml12n
 v1 102

11 - ml22n
 v2 102 d ,   n = 1, 2, c. 

To calculate the initial value v(0), we use Eq. (4.19), assuming that the initial value w(0) 
of the tap-weight vector w(n) is zero. This equation requires knowledge of the optimum 
tap-weight vector wo. Now, when the two-tap predictor of Fig. 4.7 is optimized, with the 
second-order AR process of Eq. (4.33) supplying the tap inputs, we find that the opti-
mum tap-weight vector is

 wo = c -a1

-a2
d  

and the minimum mean-square error is

 Jmin = s2
n. 

TAble 4.1 Summary of Parameter Values Characterizing the Second-Order AR Modeling Problem

 AR parameters Eigenvalues Eigenvalue  
spread, 

x = l1>l2

Minimum mean- 
square error, 

Jmin = s2
nCase a1 a2 l1 l2

1 -0.1950 0.95 1.1 0.9 1.22 0.0965
2 -0.9750 0.95 1.5 0.5 3 0.0731
3 -1.5955 0.95 1.818 0.182 10 0.0322
4 -1.9114 0.95 1.957 0.0198 100 0.0038
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Accordingly, the use of Eq. (4.19) yields the initial value

  v102 = cv1 102
v2 102 d  

  =
122

 c1 1
1 -1

d  c -a1

-a2
d  (4.35)

  =
-122

 ca1 + a2

a1 - a2
d .  

Thus, for the specified parameters, we use Eq. (4.35) to compute the initial value v(0) 
and then use Eq. (4.34) to compute v(1), v(2), . . . . By joining the points defined by these 
values of v(n) for varying n, we obtain a trajectory that describes the transient behavior 
of the steepest-descent algorithm for the particular set of parameters.

It is informative to include in the two-dimensional plot of v1(n) versus v2(n) loci 
representing Eq. (4.28) for fixed values of n. For our example, Eq. (4.28) yields

 J1n2 - Jmin = l1 v2
1 1n2 + l2 v2

 2 1n2. (4.36)

When l1 = l2 and n is fixed, Eq. (4.36) represents a circle with center at the origin and 
radius equal to the square root of 3J1n2 - Jmin4  >  l, where l is the common value of the 
two eigenvalues. When, on the other hand, l1 ≠ l2, Eq. (4.36) represents (for fixed n) 
an ellipse with major axis equal to the square root of 3J1n2 - Jmin4  >  l2 and minor axis 
equal to the square root of 3J1n2 - Jmin4  >  l1, with l1 7 l2.

Case 1: Eigenvalue Spread X(R) = 1.22. For the parameter values given for 
Case 1 in Table 4.1, the eigenvalue spread x1R2 equals 1.22; that is, the eigenvalues 
l1 and l2 are approximately equal. The use of these parameter values in Eqs. (4.34) 
and (4.35) yields the trajectory of 3v1 1n2, v2 1n24 shown in Fig. 4.8(a), with n as running 
parameter. The use of the same parameter values in Eq. (4.36) yields the (approxi-
mately) circular loci shown for fixed values of J(n), corresponding to n =  0, 1, 2, 3, 4.

We may also display the transient behavior of the steepest-descent algorithm by 
plotting the tap weight w1(n) versus w2(n). In particular, for our example, the use of  
Eq. (4.25) yields the tap-weight vector

  w1n2 = cw1 1n2
w2 1n2 d  (4.37)

  = c -a1 - 1v1 1n2 + v2 1n22 >  22
-a2 - 1v1 1n2 - v2 1n22 >  22

d . 

The corresponding trajectory of 3w1 1n2, w2 1n24, with n as running parameter, 
obtained by using Eq. (4.28), is shown in Fig. 4.9(a) . Here, again, we have included the 
loci of 3w1 1n2, w2 1n24 for fixed values of J(n) corresponding to n =  0, 1, 2, 3, 4, 5. Note 
that these loci, unlike those of Fig. 4.8(a), are ellipsoidal.

Case 2: Eigenvalue Spread X(R) = 3. The use of the parameter values for Case 2  
of Table 4.1 in Eqs. (4.34) and (4.35) yields the trajectory of 3v1 1n2, v2 1n24 shown in 
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Figure 4.8 Loci of v1(n) versus v2(n) for the steepest-descent algorithm with step-size 
parameter m = 0.3 and varying eigenvalue spread: (a) x1R2 = 1.22; (b) x1R2 = 3;  
(c) x1R2 = 10; (d) x1R2 = 100.

231

M04_HAYK4083_05_SE_C04.indd   231 21/06/13   8:30 AM



Figure 4.8 (continued from page 231)
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Figure 4.9 Loci of w1(n) versus w2(n) for the steepest-descent algorithm with step-size 
parameter m =  0.3 and varying eigenvalue spread: (a) x1R2 = 1.22; (b) x1R2 = 3;  
(c) x1R2 = 10; (d) x1R2 = 100.
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Figure 4.9 (continued from page 233)
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Fig. 4.8(b), with n as running parameter, and the use of the same parameter values in  
Eq. (4.36) yields the ellipsoidal loci shown for the fixed values of J(n) for 
n =  0, 1, 2, 3, 4, 5. Note that, for this set of parameter values, the initial value v2(0) is 
approximately zero, so the initial value v(0) lies practically on the v1-axis.

The corresponding trajectory of 3w1 1n2, w2 1n24, with n as running parameter, is 
shown in Fig. 4.9b.

Case 3: Eigenvalue Spread X(R) = 10. For this case, the application of Eqs. (4.34) 
and (4.35) yields the trajectory of 3v1 1n2, v2 1n24 shown in Fig. 4.8(c), with n as running 
parameter, and the application of Eq. (4.36) yields the ellipsoidal loci included in the 
figure for fixed values of J(n) for n =  0, 1, 2, 3, 4, 5. The corresponding trajectory of 
3w1 1n2, w2 1n24, with n as running parameter, is shown in Fig. 4.9(c).

Case 4: Eigenvalue Spread X(R) = 100. For this case, the application of 
the preceding equations yields the results shown in Fig. 4.8(d) for the trajectory of 
3v1 1n2, v2 1n24 and the ellipsoidal loci for fixed values of J(n). The corresponding trajec-
tory of 3w1 1n2, w2 1n24 is shown in Fig. 4.9(d).

In Fig. 4.10, we have plotted the mean-square error J(n) versus n for the four 
eigenvalue spreads 1.22, 3, 10, and 100. We see that, as the eigenvalue spread increases 
(and the input process becomes more correlated), the minimum mean-square error Jmin 
decreases. This observation makes intuitive sense: The predictor should do a better job 
tracking a strongly correlated input process than a weakly correlated one.

Figure 4.10 Learning curves of steepest-descent algorithm with step-size parameter 
m = 0.3 and varying eigenvalue spread.
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experiMent 2 Varying Step-Size parameter

In this experiment, the eigenvalue spread is fixed at x1R2 = 10, and the step-size 
pa rameter m is varied. In particular, we examine the transient behavior of the steepest- 
descent algorithm for m = 0.3 and 1.0. The corresponding results in terms of the trans-
formed tap-weight errors v1(n) and v2(n) are shown in parts (a) and (b) of Fig. 4.11, 
respectively. The results included in part (a) of this figure are the same as those in  
Fig. 4.8(c). Note that, in accordance with Eq. (4.22), the critical value of the step-size 
parameter equals mmax =  2>lmax = 1.1, which is slightly in excess of the actual value 
m = 1 used in Fig. 4.11(b).

The results for m = 0.3 and 1.0 in terms of the tap weights w1(n) and w2(n) are 
shown in parts (a) and (b) of Fig. 4.12, respectively. Here again, the results included in 
part (a) of the figure are the same as those in Fig. 4.9(c).

observations

On the basis of the results presented for Experiments 1 and 2, we may make the fol-
lowing observations:

 1. The trajectory of 3v1 1n2, v2 1n24, with the number of adaptation cycles n as running 
parameter, is normal to the locus of 3v1 1n2, v2 1n24 for fixed J(n). This statement 
also applies to the trajectory of 3w1 1n2, w2 1n24 for fixed J(n).

 2. When the eigenvalues l1 and l2 are equal, the trajectory of 3v1 1n2, v2 1n24 or that 
of 3w1 1n2, w2 1n24, with n as running parameter, is practically a straight line. This 
situation is illustrated in Fig. 4.8(a) or 4.9(a), for which the eigenvalues l1 and l2 
are approximately equal.

 3. When the conditions are right for the initial value v(0) of the transformed tap- weight 
error vector v(n) to lie on the v1-axis or v2-axis, the trajectory of 3v1 1n2, v2 1n24, 
with n as running parameter, is a straight line. This situation is illustrated in  
Fig. 4.8(b), where v1(0) is approximately zero. Correspondingly, the trajectory of 
3w1 1n2, w2 1n24, with n as running parameter, is also a straight line, as illustrated 
in Fig. 4.9(b).

 4. Except for two special cases—(1) equal eigenvalues and (2) the right choice of 
initial conditions—the trajectory of 3v1 1n2, v2 1n24, with n as running parameter, 
follows a curved path, as illustrated in Fig. 4.8(c). Correspondingly, the trajectory 
of 3w1 1n2, w2 1n24, with n as running parameter, also follows a curved path, as 
illustrated in Fig. 4.9(c). When the eigenvalue spread is very high (i.e., the input 
data are very highly correlated), two things happen:

	 •	 The error-performance surface assumes the shape of a deep valley.
	 •	 The trajectories of 3v1 1n2, v2 1n24 and 3w1 1n2, w2 1n24 develop distinct bends.

Both of these points are well illustrated in Figs. 4.8(d) and 4.9(d), respectively, for 
the case of x1R2 = 100.

 5. The steepest-descent algorithm converges fastest when the eigenvalues l1 and l2 
are equal or the starting point of the algorithm is chosen properly, for which cases 
the trajectory formed by joining the points v(0), v(1), v(2), . . . , is a straight line, 
the shortest possible path.
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Figure 4.11 Loci of v1(n) versus v2(n) for the steepest-descent algorithm with eigenvalue 
spread x1R2 = 10 and varying step-size parameters: (a) overdamped, m = 0.3; (b) underdamped, 
m = 1.0.
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Figure 4.12 Loci of w1(n) versus w2(n) for the steepest-descent algorithm with eigenvalue 
spread x1R2 = 10 and varying step-size parameters: (a) overdamped, m = 0.3;  
(b) underdamped, m = 1.0.
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 6. For fixed step-size parameter m, as the eigenvalue spread x1R2 increases (i.e., the 
correlation matrix R of the tap inputs becomes more ill conditioned), the ellip-
soidal loci of 3v1 1n2, v2 1n24 for fixed values of J(n), for n =  0, 1, 2, c, become 
increasingly narrower (i.e., the minor axis becomes smaller) and more crowded.

 7. When the step-size parameter m is small, the transient behavior of the steepest-
descent algorithm is overdamped, in that the trajectory formed by joining the 
points v(0), v(1), v(2), . . . , follows a continuous path. When, on the other hand, μ 
approaches the maximum allowable value mmax =  2>lmax, the transient behavior 
of the steepest-descent algorithm is underdamped, in that this trajectory exhib-
its oscillations. These two different forms of transient behavior are illustrated in  
Fig. 4.11 in terms of v1(n) and v2(n). The corresponding results in terms of w1(n) 
and w2(n) are presented in Fig. 4.12.

The conclusion to be drawn from these observations is that the transient behavior 
of the steepest-descent algorithm is highly sensitive to variations in both the step-size 
parameter m and the eigenvalue spread of the correlation matrix of the tap inputs.

4.5  the SteepeSt-DeSCent algorithM VieWeD 
aS a DeterMiniStiC SearCh MethoD

The error-performance surface of an adaptive FIR filter operating in a wide-sense sta-
tionary stochastic environment is a bowl-shaped (i.e., quadratic) surface with a distinct 
minimum point. The steepest-descent algorithm provides a local search method for seek-
ing the minimum point of the error-performance surface, starting from an arbitrary ini-
tial point. For its operation, the steepest-descent algorithm depends on three quantities:

	 •	 The starting point, which is specified by the initial value w(0) of the tap-weight vector.
	 •	 The gradient vector, which, at a particular point on the error-performance sur-

face (i.e., a particular value of the tap-weight vector), is uniquely determined by 
the cross-correlation vector p and the correlation matrix R that characterize the 
environment.

	 •	 The step-size parameter μ, which controls the size of the incremental change 
applied to the tap-weight vector of the FIR filter from one adaptation cycle of the 
algorithm to the next; for stability of the algorithm, μ must satisfy the condition of 
Eq. (4.22).

Once these three quantities are specified, the steepest-descent algorithm follows 
a distinct path in the multidimensional weight space, starting from the initial point w(0) 
and ultimately terminating on the optimum solution wo. In other words, the steepest-
descent algorithm is a deterministic search method in weight space. This statement is 
confirmed by the experimental results presented in Section 4.4. In theory, the algorithm 
requires an “infinite” number of adaptation cycles to move from the starting point w(0) 
to the optimum point wo. However, in practice, we need to execute just a “finite” number 
of adaptation cycles of the algorithm for the FIR filter to attain a tap-weight vector close 
enough to the optimum solution wo—closeness is clearly a subjective matter that can be 
determined only by a designer’s objective.
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4.6 Virtue anD liMitation of the SteepeSt-DeSCent algorithM

The important virtue of the steepest-descent algorithm is the simplicity of its implemen-
tation, which is readily seen from Eq. (4.10). However, as pointed out in Section 4.5, 
we may require a large number of adaptation cycles for the algorithm to converge to a 
point sufficiently close to the optimum solution wo. This performance limitation is due 
to the fact that the steepest-descent algorithm is based on a straight-line (i.e., first-order) 
approximation of the error-performance surface around the current point.

newton’s Method

To overcome the aforesaid limitation of the steepest-descent algorithm, we may use a 
quadratic (i.e., second-order) approximation of the error-performance surface around 
the current point denoted by w(n). To this end, we may invoke the second-order Taylor 
series expansion of the cost function J(w) around w(n). Such an expansion requires 
knowledge of the gradient (first-order) as well as the Hessian (second-order) of the cost 
function J(w). When the training data [i.e., u(n) and d(n)] are complex, evaluation of the 
Hessian is much more difficult than that of the gradient; for details, see the Taylor series 
expansion in Appendix B on the Wirtinger calculus. With this section being of rather 
limited scope, we simplify matters by focusing on real data.

Under this limitation, we may express the second-order Taylor series expansion of 
the cost function J(w) as follows:

 J1w2 ≈ J1w1n22 + 1w - w1n22T
 g1n2 +

1
2

 1w - w1n22T
 H1n21w - w1n22, (4.38)

where the superscript T denotes matrix transposition, the vector

 g1n2 =
0J1w2

0w
`
w = w1n2

 (4.39)

is the gradient evaluated at w(n), and the matrix

 H1n2 =
02J1w2

0w2 `
w = w1n2

 (4.40)

is the Hessian of the cost function evaluated at w(n). The straight-line approximation of 
J(w) around the current point w(n) is clearly a simplification of Eq. (4.38). Differentiating 
Eq. (4.38) with respect to w and setting the result to zero, we find that the next iterate 
(i.e., the updated point on the error-performance surface) is given by

 w1n + 12 = w1n2 - H-1g1n2, (4.41)

where H-11n2 is the inverse of the Hessian H(n). This iterative equation is the pure 
Newton method of optimization theory. (See Problem 15 for a modified form of Newton’s 
algorithm.)

For the quadratic cost function of Eq. (4.8), the gradient vector is defined by  
Eq. (4.9). Moreover, differentiating the last line of Eq. (4.9) with respect to w(n), we get

 H1n2 = 2R. (4.42)
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That is, except for a scaling factor, the Hessian of the quadratic cost function of  
Eq. (4.8) is exactly equal to the correlation matrix R of the tap-input vector u(n). Hence, 
substituting Eqs. (4.9) and (4.42) into Eq. (4.41), we obtain

  w1n + 12 = w1n2 -
1
2

 R-11-2p + 2Rw1n22 

  = R-1p  
  = wo.  (4.43)

Equation (4.43) shows that Newton’s method attains the optimum solution wo from 
an arbitrary point w(n) on the error surface in a single adaptation cycle. However, this 
improvement in performance requires the inversion of the correlation matrix R, the fore-
going of which is the very thing that motivates the use of the steepest-descent algorithm.

The conclusion to be drawn from this section is that if computational simplicity is 
of paramount importance, then the method of steepest descent is the preferred  iterative 
method for computing the tap-weight vector of an adaptive FIR filter operating in a wide-
sense stationary environment. If, on the other hand, the rate of convergence is the issue 
of interest, then Newton’s method or a modified version of it is the preferred approach.

4.7 SuMMary anD DiSCuSSion

The method of steepest descent provides a simple procedure for computing the tap-
weight vector of a Wiener filter, given knowledge of two ensemble-average quantities:

	 •	 The correlation matrix of the tap-input vector.
	 •	 The cross-correlation vector between the tap-input vector and the desired response.

A critical feature of the method of steepest descent is the presence of feedback, which 
is another way of saying that the underlying algorithm is recursive in nature. As such, 
we have to pay particular attention to the issue of stability, which is governed by two 
parameters in the feedback loop of the algorithm:

	 •	 The step-size parameter m.
	 •	 The correlation matrix R of the tap-input vector.

Specifically, the necessary and sufficient condition for stability of the algorithm is 
embodied in the condition

 0 6 m 6
2

lmax
, 

where lmax is the largest eigenvalue of the correlation matrix R.
Moreover, depending on the value assigned to the step-size parameter μ, the tran-

sient response of the steepest-descent algorithm may exhibit one of three forms of 
behavior:

	 •	 Underdamped response, in which case the trajectory followed by the tap-weight 
vector toward the optimum Wiener solution exhibits oscillations; this response 
arises when the step-size parameter μ is large.
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	 •	 Overdamped response, which is a nonoscillatory behavior that arises when μ is small.
	 •	 Critically damped response, which is the fine dividing line between the under-

damped and overdamped conditions.

Unfortunately, in general, these conditions do not lend themselves to an exact math-
ematical analysis; they are usually evaluated by experimentation.

proBleMS

 1. Consider a Wiener filtering problem characterized by the following values for the correlation 
matrix R of the tap-input vector u(n) and the cross-correlation vector p between u(n) and the 
desired response d(n):

  R = c 1 0.5
0.5 1

d ; 

  p = c 0.5
0.25

d .  

 (a) Suggest a suitable value for the step-size parameter μ that would ensure convergence of 
the method of steepest descent, based on the given value for matrix R.

 (b) Using the value proposed in part (a), determine the recursions for computing the elements 
w1(n) and w2(n) of the tap-weight vector w(n). For this computation, you may assume the 
initial values

 w1102 = w2102 = 0. 

 (c) Investigate the effect of varying the step-size parameter μ on the trajectory of the tap-
weight vector w(n) as n varies from zero to infinity.

 2. Consider a Wiener filter characterized by the following values for the correlation matrix R 
of the tap-input vector u(n) and the cross-correlation vector P between u(n) and the desired 
response d(n):

R = c 1 0.5
0.5 1

d

P = c 0.25
0.5

d

Based on the given R, suggest a suitable value for the step-size parameter μ that would ensure 
convergence by the method of steepest descent.

 3. From Problem 2, determine the recursions for w1(n) and w2(n) of the tap-weight vector w(n). 
[Hint: Assume the initial values w1(0) = w2(0) = 0.]

 4. Starting with the formula for the estimation error, viz.,

 e1n2 = d1n2 - wH1n2u1n2, 
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where d(n) is the desired response, u(n) is the tap-input vector, and w(n) is the tap-weight vec-
tor in the FIR filter, show that the gradient of the instantaneous square error ∙ e1n2 ∙2 equals

 ∇n  J 1n2 = -2u1n2d* 1n2 + 2u1n2uH
 1n2w1n2. 

 5. In this problem, we explore another way of deriving the steepest-descent algorithm of  
Eq. (4.9) used to adjust the tap-weight vector in an FIR filter. The inverse of a positive-definite 
matrix may be expanded in a series as

 R-1 = ma
∞

k = 0
1I - mR2k, 

where I is the identity matrix and m is a positive constant. To ensure that the series converges, 
the constant μ must lie inside the range

 0 6 m 6
2

lmax
, 

where lmax is the largest eigenvalue of the matrix R. By using this series expansion for the 
inverse of the correlation matrix in the Wiener–Hopf equations, develop the recursion

 w1n + 12 = w1n2 + m3p - Rw1n24, 
where

 w1n2 = ma
n - 1

k = 0
1I - mR2kp 

is the approximation to the Wiener solution for the tap-weight vector.

 6. Justify by validation that the steepest-descent algorithm becomes unstable when the step-size 
parameter μ is assigned a negative value.

 7. Consider a single-order autoregressive (AR) process u(n) = -au(n) + u(n), where a is the 
AR parameter and v(n) is a zero-mean white noise of variance s2

v. Set up a linear predictor 
of order one to compute the parameter a. [Hint: Use the method of steepest descent for the 
recursive computation of the Wiener solution for the parameter.]

 8. Equation (4.29) defines the transient behavior of the mean-square error J(n) for varying n that 
is produced by the steepest-descent algorithm. Let J(0) and J(∞) denote the initial and final 
values of J(n). Suppose that we approximate this transient behavior with the single exponential

 Japprox1n2 = 3J102 - J1∞24e-n>r + J1∞2, 

where t is termed the effective time constant. Let t be chosen such that

 Japprox112 = J112. 

Show that the initial rate of convergence of the steepest-descent algorithm, defined as the 
inverse of t, is given by

 
1
t

= ln c J102 - J1∞2
J112 - J1∞2 d . 

Using Eq. (4.29), find the value of 1/t. Assume that the initial value w(0) is zero and that the 
step-size parameter μ is small.
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 9. Consider an autoregressive (AR) process of order one, described by the difference equation

 u1n2 = -au1n - 12 + n1n2, 

where a is the AR parameter of the process and v(n) is a zero-mean white noise of variance s2
n.

 (a) Set up a linear predictor of order one to compute the parameter a. Specifically, use the 
method of steepest descent for the recursive computation of the Wiener solution for the 
parameter a.

 (b) Plot the error-performance curve for this problem, identifying the minimum point of the 
curve in terms of known parameters.

 (c) What is the condition on the step-size parameter μ to ensure stability? Justify your answer.

 10. Figure 4.7 has two tap weights and the AR process u(n) is real valued. The correlation matrix 
R of the tap inputs is a 2-by-2 symmetric matrix. Show that the eigenvectors associated with 
the eigenvalues l1 and l2 are normalized to unit length.

 11. Examine the transient behavior of the steepest-descent algorithm applied to a pre-
dictor that operates on a real-valued AR with the second-order difference equation 
u(n) - a1u(n - 1) + a2u(n - 2) = v(n).

 12. Determine the correlation matrix R of a prediction-error filter applied to a third-order AR 
process u(n) =  -0.5u(n - 1) + 0.5u(n - 2) + 0.5u(n - 3) + v(n) where u(n) is white 
noise of zero mean and unit variance. [Hint: The method of steepest descent is used for 
recursive computation of the coefficient vector of the prediction-error filter.]

 13. Consider a moving-average (MA) process of order one described by the difference equation

 u1n2 = n1n2 - 0.2n1n - 12, 

where v(n) is white noise of zero mean and unit variance. The MA process is applied to a 
forward linear predictor.

 (a) The MA process u(n) is approximated by a second-order AR process. Utilizing this 
approximation, determine the bounds on the step-size parameter μ of the steepest-
descent algorithm used to recursively compute the weight vector of the predictor.

 (b) Repeat the computation in part (a), but this time approximate u(n) by a third-order AR 
process.

 (c) Discuss the nature of differences between the results computed in parts (a) and (b).

 14. An autoregressive moving-average (ARMA) process of order (1,1) is described by the dif-
ference equation

 u1n2 = -0.5u1n - 12 + n1n2 - 0.2n1n - 12, 

where v(n) is white noise of zero mean and unit variance. The process u(n) is applied to a 
prediction-error filter. To compute the coefficient vector of this filter, the ARMA process is 
approximated by a third-order AR process.

 (a) Determine the coefficients of the approximating AR process and therefore the entries of 
the corresponding 3-by-3 correlation matrix R.

 (b) Compute the eigenvalues of the correlation matrix R determined in part (a).
 (c) Determine the bounds on the step-size parameter μ of the steepest-descent algorithm 

used to recursively compute the coefficient vector of the prediction-error filter.

 15. Introducing a step-size parameter μ into the formulation of Newton’s equation, we modify 
Eq. (4.43) as follows:
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  w1n + 12 = w1n2 + mR-11p - Rw1n22 

  = 11 - m2w1n2 + mR-1p.  

Following a procedure similar to that described in Section 4.3 on the steepest-descent method, 
investigate the transient behavior of Newton’s algorithm as formulated herein. That is,  
show that

 (a) the transient behavior of Newton’s algorithm is characterized by a single exponential 
whose time constant t is defined by

 11 - m22k = e-k>t; 

 (b) for μ small compared with unity, the time constant is

 t ≈
1

2m
. 

M04_HAYK4083_05_SE_C04.indd   245 21/06/13   8:30 AM



246

In the preceding chapter, we studied the method of steepest descent for formulating 
recursive computation of the Wiener filter under the following two assumptions:

 1. Joint stationarity of the environment, from which the regressor (i.e., input vector) 
u(n) and the corresponding desired response d(n) are picked for n = 1, 2, . . . .

 2. Information about the environment, which is made up of the correlation matrix, R, 
of u(n) and the cross-correlation vector, p, between u(n) and d(n).

Insofar as formulation of the cost function for the Wiener filter is concerned, namely, 
J(w(n)), where w(n) is the unknown tap-weight vector, the information made up of R 
and p is perfect for the discussion at hand [see Eq. (4.8)]. As pointed out previously in 
Section 4.5, the method of steepest descent is deterministic, in the sense that this infor-
mation is all that is required to determine the gradient (i.e., the search direction) from 
one adaptation cycle to the next.

Unfortunately, in many situations encountered in practice, the needed information 
about the environment contained in R and p is not available. We therefore have to look 
to a new class of algorithms with the built-in capability to adapt to statistical variations 
in the unknown environment. Such algorithms are collectively called adaptive filtering 
algorithms. There are two different methods for deriving these algorithms:

 1. One based on the method of stochastic gradient descent, which is discussed in this 
chapter.

 2. The other one based on the method of least squares, which is deferred to Chapter 9.

5.1 PrinciPles of stochastic Gradient descent

“Stochastic” is of Greek origin; it is a generic term, which signifies that we have a “random 
choice” in finding a gradient for an adaptive filtering algorithm to iterate from one adaptation 
cycle to the next. As different as they both are, the methods of stochastic gradient descent1 
and steepest descent do share a common property: They are both local methods of filtering.

c h a P t e r  5

Method of stochastic 
Gradient descent

1The method of stochastic gradient descent has a long history. It was originally introduced into the 
statistics literature by Robbins and Monro (1951), where the method was used for solving certain sequential 
parameter estimation problems. For detailed treatments of the method, the reader is referred to Kushner and 
Clark (1978), Kushner (1984), and Spall (2003).
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Over and above its application to the widely used least-mean-square (LMS) algo-
rithm and its variants, the method of stochastic gradient descent has been applied to 
stochastic control (Stengel, 1986), self-organized maximum eigenfiltering (Oja, 1982), 
nearest-neighbor clustering (Duda et al., 2001), back-propagation algorithm for super-
vised training of multilayer perceptrons (Rumelhart & McLelland, 1986), and reinforce-
ment learning (Sutton, 1992).

optimization and complexity

In a rigorous sense, the method of stochastic gradient descent does not qualify to be 
viewed as an optimization algorithm for the following simple reason:

On account of its stochastic nature, stochastic gradient descent can never reach the 
desired optimum solution of a convex optimization problem; rather, once it reaches 
the local neighborhood of the optimum solution, it continually wanders around that 
solution in a random-walk fashion and therefore never settles down to an equilib-
rium point.

As such, the method of stochastic gradient descent is suboptimal.
The method makes up for this computational deficiency, however, by offering 

the simplest possible form of complexity: linear law of scaling with respect to adjust-
able parameters. It is therefore popular in practice whenever computational complexity 
(among other issues) is of interest. This is particularly so when dealing with the process-
ing of information-bearing data whose size grows continually over time.

efficiency

Another key issue in the study of adaptive filtering algorithms is that of efficiency, which 
may be viewed as a representation of the cost involved in finding a satisfactory solu-
tion. There are various ways of measuring efficiency: the amount of computer run time, 
number of algorithmic adapatation cycles, and rate of convergence. In what follows, the 
latter measure will be used for the following reason:

The rate of convergence not only involves statistical learning theory but also encom-
passes the Wiener solution as the frame of reference for linear adaptive filtering 
algorithms, exemplified by the LMS and recursive least-squares (RLS) algorithms, 
operating in a stationary environment.

robustness

Yet another key issue in the study of adaptive filtering algorithms is that of robustness, which 
provides a criterion for assessing how a particular adaptive filtering algorithm maintains a 
satisfactory performance in the face of unknown disturbances that are typically expected to 
arise in practice. The classical approach used to evaluate robustness is a deterministic one, 
rooted in H∞ theory, which was first formulated in control theory (Zames, 1981); detailed 
treatment of this property is deferred to Chapter 11. For the present, it suffices to say that 
robustness and efficiency address two conflicting aspects of an adaptive filtering algorithm’s 
behavior, more on which will also be said in Chapter 11.
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curse of dimensionality

In general, the volume of a search space, inside which the gradient of a cost function is 
picked at each adaptation cycle of an optimization algorithm, may grow exponentially 
with dimensionality (i.e., number of adjustable parameters) of the algorithm. This kind 
of behavior is attributed to the curse of dimensionality problem (Bellman, 1961). In the 
case of stochastic gradient descent algorithms, which feature prominently throughout 
this book, algorithmic complexity follows a linear law, as pointed out at the beginning 
of this section. Fortunately, therefore, the curse of dimensionality is of no concern to 
the study of linear adaptive filtering algorithms rooted in stochastic gradient descent.

time-Varying Problems

In many practical applications of adaptive filtering algorithms, the relevant environ-
ment is nonstationary. Therefore, its statistical characterization continually varies over 
time. In situations of this kind, the “best” solution to an adaptive filtering problem 
computed now may not be the best—or even a good—solution in the future. For an 
adaptive filtering algorithm to operate successfully in a nonstationary environment, 
it must have the capability to track statistical variations in the environment continu-
ally over time.

Monte carlo simulations

Given the realities just described, how do we study the performance of an adaptive 
filtering algorithm experimentally? The answer to this important question lies in the 
use of Monte Carlo simulations, which provide the experimenter the means not only 
to gain insight about that algorithm but also to compare it with a different adaptive 
filtering algorithm under various conditions. For this computer-oriented approach to 
be informative, it is essential that we do the following:

	 •	 First, use a number of independent Monte Carlo runs in the simulations large enough 
(at least 100 if not more) for the simulation results to be statistically reliable.

	 •	 Second, wherever possible, combine together both theory and numerical results 
in assessing the insights derived from the simulations.

With the material covered thus far on the method of stochastic gradient descent, the 
stage is set for two applications of the method to linear adaptive filtering.

5.2 aPPlication 1: least-Mean-square (lMs) alGorithM

For our first application of the method of stochastic gradient descent, we have chosen 
the highly popular adaptive filtering algorithm, the LMS algorithm, which was pio-
neered by Widrow and Hoff (1960). Distinctive features of this algorithm can be sum-
marized as follows:

 1. The LMS algorithm is simple, meaning that computational complexity of the 
algorithm scales linearly with the dimensionality of the finite-duration impulse 
response (FIR) filter, around which the algorithm operates.
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 2. Unlike the Wiener filter, the algorithm does not require knowledge of statistical 
characteristics of the environment in which it operates.

 3. The algorithm is robust in a deterministic sense (i.e., single realization of the algo-
rithm) in the face of unknown environmental disturbances.

 4. Last but by no means least, the algorithm does not require inversion of the correla-
tion matrix of the regressor (i.e., input vector), which, therefore, makes it simpler 
than its counterpart, namely, the RLS algorithm.

Given this important set of properties, it is not surprising that the LMS algorithm is one 
of the most popular adaptive filtering algorithms in use.

structural description of the lMs algorithm

Figure 5.1, depicted in three parts, addresses different perspectives of the underlying 
structure of the LMS algorithm.

The overall block diagram of Fig. 5.1(a) shows the three components that consti-
tute the algorithm:

 1. FIR filter, which operates on the regressor (input vector) u(n) to produce an esti-
mate of the desired response, denoted by dn1n ∙un2, where un denotes the space in 
which the input vector u(n) resides.

 2. Comparator, which subtracts the estimate dn1n ∙un2 from the desired response, d(n), 
applied to the FIR filter at its output; the resultant is the estimation error (also 
referred to as the error signal), denoted by e(n).

 3. Adaptive weight-control mechanism, the function of which is to control the incre-
mental adjustments applied to the individual tap weights of the FIR filter by 
exploiting information contained in the estimation error e(n).

Details of the FIR filter are presented in Fig. 5.1(b). The tap inputs u(n), u(n — 1), . . . ,  
u(n - M + 1) form the elements of the M-by-1 tap-input vector u(n), where M - 1 is the 
number of delay elements; these inputs span a multidimensional space denoted by un. 
Correspondingly, the tap weights wn 0 1n2, wn 1 1n2, c , wn M - 1 1n2 form the elements of 
the M-by-1 tap-weight vector wn 1n2. The value computed for this vector using the LMS 
algorithm represents an estimate whose expected value may come close to the Wiener 
solution wo (for a wide-sense stationary environment) as the number of adaptation 
cycles, n, approaches infinity.

Figure 5.1(c) presents details of the adaptive weight-control mechanism. Specifically, 
a scalar version of the inner product of the estimation error e(n) and the tap input  
u(n - k) is computed for k = 0, 1, 2, . . . , M - 2, M - 1. The result so obtained defines the 
correction dwn k (n) applied to the tap weight wn k (n) at adaptation cycle n + 1. The scaling 
factor used in this computation is denoted by a positive m in Fig. 5.1(c) called the step-
size parameter, which is real-valued.

Comparing the control mechanism of Fig. 5.1(c) for the LMS algorithm with that 
of Fig. 4.2 for the method of steepest descent, we see that the LMS algorithm uses the 
product u(n - k)e*(k) as an estimate of element k in the gradient vector ∇J(n) that 
characterizes the method of steepest descent. In other words, the expectation operator 
is removed from all the paths in Fig. 5.1(c). Accordingly, the recursive computation of 
each tap weight in the LMS algorithm suffers from gradient noise.
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252   Chapter 5  Method of Stochastic Gradient Descent

Throughout this chapter, it is assumed that the tap-input vector u(n) and the 
desired response d(n) are drawn from a jointly wide-sense stationary environment. 
In particular, the desired response d(n) is linearly related to the input vector (i.e., 
 regressor) u(n) by a multiple linear regression model whose parameter vector is 
unknown—hence the need for adaptive filtering. For such an environment, we know 
from Chapter 4 that the method of steepest descent computes a tap-weight vector 
w(n) that moves down the ensemble-average error-performance surface along a deter-
ministic trajectory that terminates on the Wiener solution wo. The LMS algorithm, on 
the other hand, behaves differently because of the presence of gradient noise: Rather 
than terminating on the Wiener solution, the tap-weight vector wn 1n2 [different from 
w(n)] computed by the LMS algorithm moves in the form of a random walk around 
the minimum point of the error-performance surface—that is, the Wiener solution.

In Eq. (2.3) of Chapter 2 on the Wiener filter, which is reproduced here for conve-
nience, we defined the cost function as the mean-square value of the estimation error, 
as shown by

 J = 𝔼3 ∙ e1n2 ∙24, (5.1)

where 𝔼 is the statistical expectation operator. Therein, it was assumed that the Wiener 
filter operates on a wide-sense stationary environment, which results in a cost function, 
J, that is independent of time n, as shown in Eq. (5.1). To this end:

The expectation operator performs ensemble averaging over a large number of 
statistically independent realizations of the instantaneous value of the square estima-
tion error, ∙ e1n2 ∙2, which is performed at time n.

Unfortunately, in practical applications of adaptive filtering, the use of ensemble 
averaging in the manner just described is not feasible. We say so because the whole 
motivation behind the deployment of adaptive filtering is to adapt to statistical varia-
tions of an unknown environment in an on-line manner, based on a single realization 
of the estimation error, e(n), as it evolves across time n. Doing so is precisely what the 
method of stochastic gradient descent is all about. We may therefore proceed by ignor-
ing the expectation operator in Eq. (5.1), thereby working on the following simplifed 
cross-function:

  Js1n2 = ∙ e1n2 ∙2  

  = e1n2e*1n2, 
(5.2)

where the subscript s in Js(n) is intended to differentiate it from its ensemble-average 
counterpart, J. With the estimation error e(n) being the sample function of a stochastic 
process, it follows that the cost function Js(n) is itself the sample value of a stochastic 
process. The derivative of Js(n) with respect to the kth tap weight of the FIR filter, 
wk1n2, is therefore also stochastic, which is how it should be in the method of stochastic 
gradient descent.

Following the procedure described in Appendix B based on the Wirtinger cal-
culus for computing gradients of complex data, the first use of which was discussed in  
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Chapter 2 on Wiener filters, we may express the partial derivative of the cost function 
Js(n) with respect to the complex conjugate of wk1n2 as

  ∇Js,k1n2 =
0Js1n2

0w*k1n2  

  = -2u1n - k2e*1n2, k = 0, 1, c,  M - 1, 

(5.3)

which is exactly the same as that of Eq. (2.10) in Chapter 2, except for the expectation 
operator 𝔼. Using the stochastic gradient of Eq. (5.3), we may now formulate the updat-
ing rule for the LMS algorithm as follows:

 wn k1n + 12 = wn k1n2 -
1
2

 m∇Js,k1n2, (5.4)

where the scaling factor 1
2 has been introduced merely for mathematical convenience. 

Thus, substituting Eq. (5.3) into Eq. (5.4), we obtain

 wn k1n + 12 = wn k1n2 + mu(n - k)e*1n2, k = 0, 1, c, M - 1, (5.5)

where m is a fixed positive step-size parameter.
Equation (5.5) is the scalar form of the LMS algorithm. To express it in vector 

form using matrix notation, let 

 wn 1n2 = 3wn 01n2, wn 11n2, c, wn M - 11n24T, 

where the superscript T denotes transposition, and

 u1n2 = 3u1n2, u1n - 12, c, u1n - M - 124T. 

We may thus rewrite Eq. (5.5) in the following compact form:

 wn 1n + 12 = wn 1n2 + mu1n2e*1n2, (5.6)

where the asterisk denotes complex conjugation.
By definition, we have

 e1n2 = d1n2 - dn1n 0  𝒰n2, (5.7)

where 

 dn1n 0  𝒰n2 = wn H1n2u1n2, (5.8)

where the superscript H denotes Hermitian transposition (i.e., transposition combined with 
complex conjugation). Thus Eqs. (5.6) to (5.8), put together, define the LMS algorithm.

another Way of deriving the lMs algorithm

The updated formula of Eq. (5.6) may also be obtained exactly from Eq. (4.10), describ-
ing iterative computation of the Wiener filter using the method of steepest descent that 
was covered in Chapter 4. Specifically, all that we have to do is to replace the correlation 

M05_HAYK4083_05_SE_C05.indd   253 21/06/13   8:31 AM



254   Chapter 5  Method of Stochastic Gradient Descent

matrix R and cross-correlation vector p with their respective instantaneous (sample) 
values; that is:

	 •	 The matrix R in Eq. (2.29) is replaced by the outer product u(n)uH(n).
	 •	 The vector p in Eq. (2.32) is replaced by the product u(n)d*(n).

Then, doing simple algebraic manipulations, we get the updated formula of Eq. (5.6). 
There is an important point that should be carefully noted here:

Whatever connection that may have existed between the LMS algorithm and the 
Wiener filter, that connection is completely destroyed once the expectation opera-
tor 𝔼 is removed in deriving the LMS algorithm from the Wiener filter.

how do We account for the filtering capability of the lMs algorithm?

At first sight, it may appear that because instantaneous estimates of the correlation 
matrix R and cross-correlation vector p have relatively large variances, the LMS algo-
rithm is incapable of performing a satisfactory filtering function. However, we must 
recognize that the LMS algorithm is recursive, as evidenced by Eq. (5.5) or, equivalently, 
Eq. (5.6). Accordingly, the LMS algorithm has a built-in feedback mechanism, whereby 
the instantaneous estimates of both R and p are averaged over time during the course 
of adaptation. Thus, although the trajectory followed by the LMS algorithm is entirely 
different from that produced by recursive computation of the Wiener filter, the LMS 
algorithm can produce a satisfactory performance under the following proviso:

The step-size parameter, m, is assigned a relatively small positive value.

TAbLe 5.1 Summary of the LMS Algorithm

Parameters: M = number of taps (i.e., filter length)
 m = step-size parameter

0 6 m 6
2

lmax
,

where l max  is the maximum value of the correlation matrix of the tap inputs u(n) and the filter length M is 
moderate to large.

Initialization: If prior knowledge of the tap-weight vector wn 1n2 is available, use it to select an appropriate 
value for wn 102. Otherwise, set wn 102 = 0.

Data:
•	 Given u(n) = M-by-1 tap-input vector at time n
  = [u ((n), u(n-1)), . . . , u(n - M + 1)]T

 d(n) = desired response at time n.
•	 To be computed:
 wn (n + 1) =  estimate of tap-weight vector at time n + 1.

Computation: For n = 0, 1, 2, . . . , compute

e1n2 = d1n2 -  wn H
 1n2u1n2

wn 1n + 12 = wn 1n2 + mu1n2e*1n2.
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It turns out that this provision is also responsible for robust behavior of the LMS algo-
rithm, an issue that will be addressed in Chapter 11.

summary of the lMs algorithm

In Table 5.1 we present a summary of the LMS algorithm, which incorporates Eqs. (5.6) 
through (5.8) as well as the initialization of the algorithm. The table also includes a con-
straint on the permissible value of the step-size parameter, which is needed to ensure 
that the algorithm converges. More is said on this necessary condition for convergence 
of the LMS algorithm in Chapter 6.

5.3 aPPlication 2: Gradient-adaPtiVe lattice filterinG alGorithM

Another algorithm that is rooted in the method of stochastic gradient descent is the 
gradient-adaptive lattice (GAL) algorithm. The GAL algorithm, due to Griffiths 
(1977, 1978), distinguishes itself from the LMS algorithm in that it is a joint esima-
tor. To explain what we mean by this new terminology, consider the block diagram of  
Fig. 5.2, which is based on a multistage lattice predictor; this structure is a reproduction of  
Fig. 3.13. Unlike the LMS algorithm that is driven by the input signal directly, the adjust-
able tap weights in the GAL algorithm are driven by the backward prediction errors 
produced by the multistage lattice predictor. Accordingly, there are two consecutive 
stages in the GAL algorithm:

	 •	 Stage 1 involves recursive computation of the backward prediction errors, leading 
to recursive updates of the reflection coefficients.

	 •	 Stage 2 involves recursive updates of the tap weights in the GAL algorithm, fol-
lowed by recursive estimates of the desired response.

Computations in these two stages are carried out jointly—hence the terminology “joint 
estimator.”

Multistage lattice Predictor

Figure 5.3 shows the block diagram of a single-stage lattice predictor, the input–output 
relation of which is characterized by a single parameter: the reflection coefficient km. We 
assume that the input data are wide-sense stationary and that km is complex valued. For 
the estimation of km, we start with the cost function

 Jfb, m =
1
2
 𝔼3 ∙ fm1n2 ∙2 + ∙ bm1n2 ∙24, (5.9)

where fm(n) is the forward prediction error and bm(n) is the backward prediction error, 
both measured at the output of the lattice predictor; 𝔼 is the statistical expectation opera-
tor; and the factor 12 is introduced to simplify the presentation. From Section 3.8 we recall 
that the input–output relations of the lattice stage under consideration are described by  
(see Fig. 5.3)

 fm1n2 = fm - 1 1n2 + k*mbm - 1 1n - 12 (5.10)
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256   Chapter 5  Method of Stochastic Gradient Descent

FiGure 5.2 Lattice-based structure for joint-process estimation, with each lattice stage involving a 
single reflection coefficient.

FiGure 5.3 Block diagram of stage m in 
a lattice predictor; the relations defining 
the dependence of the output prediction 
variables fm(n) and bm(n) on the input 
prediction variables fm - 1(n) and bm - 1(n) 
are given in Eqs. (5.10) and (5.11).

and
 bm 1n2 = bm - 1 1n - 12 + km fm - 1 1n2. (5.11)

Substituting Eqs. (5.10) and (5.11) into Eq. (5.9), we get

  Jf  b, m =
1
2

 1𝔼3 ∙ fm - 1 1n2 ∙24 + 𝔼3 ∙ bm - 11n - 12 ∙24211 + ∙km ∙22  

  + km𝔼3fm - 1 1n2b*m - 1 1n - 124 + k*m𝔼3bm - 1 1n - 12f *m - 11n24.  (5.12)
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Differentiating the cost function Jfb, m with respect to the complex-valued reflection 
coefficient km, we get

0Jf  b, m

0km
= km 1𝔼3 ∙ fm - 1 1n2 ∙24 + 𝔼3 ∙ bm - 1 1n - 12 ∙242 + 2𝔼3bm - 1 1n - 12f *m - 1 1n24. (5.13)

Putting this gradient equal to zero, we find that the optimum value of the reflection 
coefficient, for which the cost function Jfb, m is minimum, is given by

 km, o = -  
2𝔼3bm - 1 1n - 12f *m - 1 1n24

𝔼3 ∙ fm - 1 1n2 ∙2 + ∙ bm - 1 1n - 12 ∙24. (5.14)

Equation (5.14) for the optimum reflection coefficient km, o is known as the Burg  formula2 
(Burg, 1968).

The Burg formula involves the use of ensemble averages. Assuming that the input 
signal u(n) is ergodic, then, as discussed in Chapter 1, we may substitute time averages 
for the expectations in the numerator and denominator of the formula. We thus get 
the Burg estimate for the reflection coefficient km,o for stage m in the lattice predictor:

 knm 1n2 = -  
2a

n

i = 1
bm - 1 1i - 12 f *m - 1 1i2

a
n

i = 1
1 ∙ fm - 1 1i22 ∙ + ∙ bm - 1 1i - 12 ∙22

. (5.15)

Here, the dependence of the estimate knm on the data-block length n emphasizes the fact 
that the estimate is data dependent.

the Gal algorithm

The formula of Eq. (5.15) is a block estimator for the reflection coefficient km; it operates 
on the input prediction variables fm - 1(i) and bm - 1(i - 1) for stage m of the lattice pre-
dictor on a block-by-block basis. We may reformulate this estimator into an equivalent 
recursive structure by following the procedure described next.

First, we define

 em - 1 1n2 = a
n

i = 1
1 ∙ fm - 1 1i2∙2 + ∙ bm - 1 1i -  12∙22, (5.16)

which is the total energy of both the forward and delayed backward prediction errors 
at the input of the mth stage, measured up to and including time n. Isolating the term 
∙ fm - 1 1n2 ∙2 + ∙ bm - 1 1n - 12 ∙2 from the rest of the summation in Eq. (5.16), we have a 
recursive formula for computing em - 1 1n2, that is the summation in the denominator 
of Eq. (5.15):

  em - 1 1n2 = a
n - 1

i = 1
1 ∙ fm - 1 1i2∙2 + ∙ bm - 1 1i - 12∙22 + ∙ fm - 1 1n2∙2 + ∙ bm - 1 1n - 12∙2 

  = em - 1 1n - 12 + ∙ fm - 1 1n2∙2 + ∙ bm - 1 1n - 12∙2.  (5.17)

2The 1968 paper by Burg is reproduced in the book edited by Childers (1978).
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258   Chapter 5  Method of Stochastic Gradient Descent

In a similar fashion, we may formulate the following recursive formula for comput-
ing the sum mation in the numerator of Eq. (5.15), which represents a time-average 
cross-correlation:

 a
n

i = 1
bm - 1 1i - 12f *m - 1 1i2 = a

n - 1

i = 1
bm - 1 1i - 12f *m - 1 1i2 + bm - 1 1n - 12f *m - 1 1n2. (5.18)

Accordingly, substituting Eqs. (5.17) and (5.18) into Eq. (5.15), we may reformulate the 
Burg estimate for the reflection coefficient km as

 knm 1n2 = -  
2a

n - 1

i = 1
bm - 1 1i - 12f *m - 1 1i2 + 2bm - 1 1n - 12f *m - 1 1n2

em - 1 1n - 12 + ∙ fm - 1 1n2∙2 + ∙ bm - 1 1n - 12∙2 . (5.19)

Equation (5.19) is still not quite in the right form for recursively computing the estimate 
knm 1n2. To arrive at such a recursive formula, we continue as follows:

 1. Use the time-varying estimate knm 1n - 12 in place of km to rewrite Eqs. (5.10) and 
(5.11) respectively, as

 fm 1n2 = fm - 1 1n2 + kn*m 1n - 12bm - 1 1n - 12 (5.20)

  and

 bm 1n2 = bm - 1 1n - 12 + knm 1n - 12fm - 1 1n2 (5.21)

for m = 1, 2, . . . , M. For practical justification as to why knm 1n - 12 rather than 
knm 1n2 is the correct choice in Eqs. (5.20) and (5.21), the reader is referred to 
Problem 8.

 2. Use the rearranged forms of Eqs. (5.20) and (5.21) together with Eq. (5.17), to write

 2bm - 1 1n - 12f *m - 1 1n2 = bm - 1 1n - 12f *m - 1 1n2 + f *m - 1 1n2bm - 1 1n - 12
 = bm - 1 1n - 121fm 1n2 - kn*m 1n - 12bm - 1 1n - 122*

 + f *m - 1 1n2(bm 1n2 - knm 1n - 12fm - 1 1n22
 = -knm 1n - 12( ∙ fm - 1 1n2 ∙2 + ∙ bm - 1 1n - 12 ∙22

 + 1f *m - 1 1n2bm 1n2 + bm - 1 1n - 12 f *m 1n22
 = -knm 1n - 121em - 1 1n - 12 + ∙ fm - 1 1n2∙2 + ∙ bm - 1 1n - 12∙22

 + knm 1n - 12em - 1 1n - 12 + 1f *m - 1 1n2bm 1n2 + bm - 1 1n - 12f *m 1n22
 = -knm 1n - 12em - 1 1n2 + knm 1n - 12em - 1 1n - 12

 + 1f *m - 1 1n2bm 1n2 + bm - 1 1n - 12f *m 1n22.
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 3. Use the relation just derived and the formula of Eq. (5.15) redefined for knm 1n - 12 
to rewrite the numerator of Eq. (5.19) as

 2a
n - 1

i = 1
bm - 1 1i - 12f *m - 1 1i2 + 2bm - 1 1n - 12f *m - 1 1n2

 = -knm 1n - 12em - 1 1n - 12 - knm 1n - 12em - 1 1n2 + knm 1n - 12em - 1 1n - 12
 + 1f *m - 1 1n2bm 1n2 + bm - 1 1n - 12f *m 1n22

 = -knm 1n - 12em - 1 1n2 + 1f *m - 1 1n2bm 1n2 + bm - 1 1n - 12f *m 1n22.

Hence, substituting this last relation into the numerator of Eq. (5.19) and then  simplifying 
terms, we get the recursive formula

knm 1n2 = knm 1n - 12 -
f *m - 1 1n2bm 1n2 + bm - 1 1n - 12f *m 1n2

em - 1 1n2 ,    m = 1, 2, c, M. 

(5.22)

To finalize the algorithmic formulation of the gradient lattice filter, we make two 
modifications to the recursive formulas of Eqs. (5.17) and (5.22) (Griffiths, 1977, 1978):

 1. Introduce a step-size parameter m∼ to control the adjustment applied to each reflec-
tion coefficient in progressing from one adaptation cycle to the next:

knm 1n2 = knm 1n - 12 -
m∼

em - 1 1n2  1f *m - 1 1n2bm 1n2 + bm - 1 1n - 12f *m 1n22, m = 1, 2, c, M.

(5.23)

 2. Modify the energy estimator of Eq. (5.17) by writing it in the form of a single-pole 
averaging filter that operates on the squared prediction errors, as shown by the 
convex combination

 em - 1 1n2 = bem - 1 1n - 12 + 11 - b21 ∙ fm - 1 1n2∙2 + ∙ bm - 1 1n - 12∙22, (5.24)

where b is a new parameter lying in the interval 0 6 b 6 1.
The original assumption behind the derivation of the recursive estimator of  

Eq. (5.22) is that it operates in a pseudostationary environment. In order to deal with 
statistical variations in a nonstationary environment, the modification described in  
Eq. (5.24) is introduced. The purpose of the modification is to equip the estimator with 
memory whereby the immediate past value of the prediction energy em - 1, as well as its 
present value, is used in computing the present value of the estimate knm 1n2.

desired-response estimator

Turning next to the estimation of the desired response d(n), we consider the structure 
shown in Fig. 5.4, which is that part of Fig. 5.2 that deals with this estimation for m stages, 
where m = 0, 1, . . . , M. Here, we have an input vector (i.e., regressor) bm(n) consisting 
of the backward prediction errors b0(n), b1(n), . . . , bm(n) and a corresponding vector 
hnm 1n2 made up of the parameters hn0, hn1, c,  hnm. The regressor acts on the parameter 
vector to produce the output signal ym(n), which is an estimate of d(n).
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For the estimation of hn, we may use a stochastic-gradient approach and proceed 
along the lines of the normalized LMS algorithm to be discussed in Section 7.1 of 
Chapter 7. First, referring to Fig. 5.4, we readily see that the order-update estimate of 
the desired response d(n) is defined by

  ym 1n2 = a
m

k = 0
hn*k  1n2bk 1n2  

  = a
m - 1

k = 0
hn*k  1n2bk 1n2 + hn*m1n2bm 1n2 

  = ym - 1 1n2 + hn*m 1n2bm 1n2.  (5.25)

Correspondingly, the estimation error is defined by

 em 1n2 = d1n2 - ym 1n2. (5.26)

Following Problem 7, we may go on to express the time update for the mth regression 
coefficient as

  hnm 1n + 12 = hnm 1n2 +
m∼

∙∙ bm 1n2∙∙2 bm 1n2e*m 1n2, (5.27)

where m∼ is the step-size parameter and the squared Euclidean norm ∙∙ bm 1n2∙∙2 is defined 
by the order update

  ∙∙ bm 1n2∙∙2 = a
m

k = 0
∙ bk1n2 ∙2  

  = a
m - 1

k = 0
∙ bk1n2 ∙2 + ∙ bm1n2 ∙2  

  = ∙∙ bm - 1 1n2∙∙2 + ∙ bm1n2 ∙2. (5.28)

FiGure 5.4 Desired-response estimator using a sequence of m backward prediction errors.
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Properties of the Gal algorithm

The use of the time-varying step-size parameter mm 1n2 = m∼  >  em - 1 1n2 in the update 
equation for the reflection coefficient knm 1n2 introduces a form of normalization simi-
lar to that in the normalized LMS algorithm, discussed in Chapter 7. From Eq. (5.24), 
we see that, for small magnitudes of the forward and backward prediction errors, the 
value of the parameter em - 1 1n2 is correspondingly small, or, equivalently, the step-size 
para meter m∼(n) has a correspondingly large value. Such a behavior is desirable from a 
practical point of view. Basically, a small value for the prediction errors means that the 
adaptive lattice predictor is providing an accurate model of the external environment in 
which it is operating. Hence, if there is any increase in the prediction errors, it should be 
due to variations in that environment, in which case it is highly desirable for the adaptive 
lattice predictor to respond rapidly to such variations. This objective is indeed realized 
by having m∼(n) assume a large value, which makes it possible for Eq. (5.23) in the GAL 
algorithm to provide an initially rapid convergence to the new environmental condi-
tions. If, on the other hand, the input data applied to the adaptive lattice predictor are 
too noisy (i.e., if they contain a strong white-noise component in addition to the signal 
of interest), then the prediction errors produced by the adaptive lattice predictor are 
correspondingly large. In such a situation, the parameter em - 1 1n2 has a large value, or, 
equivalently, the step-size parameter m∼(n) has a small value. Accordingly, Eq. (5.23) in 
the GAL algorithm does not respond rapidly to variations in the external environment, 
which is precisely the way we would like the algorithm to behave (Alexander, 1986a).

Previously, we referred to the GAL algorithm as approximate in nature. We justify 
this remark on the following grounds:

	 •	 The order-update equations (5.20) and (5.21) for the forward and backward prediction 
errors, respectively, were postulated under the assumption that the signal u(n) applied 
to the input of the multistage lattice predictor originates from a stationary source. To 
deal with a nonstationary environment, the energy estimator is modified into the form 
shown in Eq. (5.24), which accounts for statistical variations in the environment.

	 •	 Most importantly, there is no guarantee that, in a nonstationary environment, the 
decoupling property (i.e., orthogonality of the backward prediction errors) of the 
multistage lattice predictor in Fig. 5.2 is preserved by using the GAL algorithm.

The net result is that, although the convergence behavior of the GAL algorithm is faster 
than that of the LMS algorithm, it is inferior to exact recursive least-squares lattice 
algorithms to be discussed in Chapter 16. Nevertheless, the GAL algorithm offers a 
relatively simple implementation, which makes it attractive from a practical perspective.

summary of the Gal algorithm

Equations (5.20) and (5.21) are the order updates and Eqs. (5.23) and (5.24) are the time 
updates, of the multistage lattice predictor of the GAL algorithm. Equations (5.25) and (5.28) 
are the order updates and Eq. (5.27) is the time update of the algorithm’s desired-response 
estimator, as summarized in Table 5.2, which also shows how to initialize the GAL algorithm.

For a well-behaved convergence of the GAL algorithm, it is recommended that 
we set m∼ 6 0.1.
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5.4 other aPPlications of stochastic Gradient descent

Over and above Problems 5 and 6 on the leaky LMS and fourth-least-mean (FLM) 
algorithm, respectively, there are other applications of the method of stochastic gradient 
descent that are covered in subsequent chapters of the book.

In Chapter 7, we discuss the normalized LMS algorithm, which is intended to miti-
gate a limitation of the LMS algorithm that is attributed to the amplification of gradi-
ent noise. In effect, the step-size parameter m is normalized with respect to the square 
Euclidean norm of the input vector, u(n), plus a small fixed parameter; in other words, 
the step-size parameter takes a time-varying normalized form.

As discussed in Section 5.1, one of the issues in using the method of stochastic 
gradient descent is that of having to track statistical variations encountered in a non-
stationary environment. Although the LMS algorithm does have a built-in capability to 

TAbLe 5.2 Summary of the GAL Algorithm

Parameters: M = final prediction order
 b = constant, lying in the range (0, 1)
 m∼ 6 0.1
 d: small positive constant
 a: another small positive constant

Multistage lattice predictor:
For prediction order m = 1, 2, . . . , M, put

 fm 102 = bm 102 = 0
 em - 1 102 = a
 knm 102 = 0.

For time step n = 1, 2, . . . , put

 f0 1n2 = b0 1n2 = u1n2,    u1n2 = lattice predictor input.

For prediction order m = 1, 2, . . . , M and time step n = 1, 2, . . . , compute

 em - 1 1n2 = bem - 1 1n - 12 + 11 - b21 ∙ fm - 1 1n2∙2 + ∙ bm - 1 1n - 12∙22
 fm 1n2 = fm - 1 1n2 + kn*m1n - 12bm - 1 1n - 12
 bm 1n2 = bm - 1 1n - 12 + knm 1n - 12fm - 1 1n2

 knm 1n2 = knm1n - 12 -
m∼

em - 1 1n2 3f *m - 1 1n2bm 1n2 + bm - 1 1n - 12 f *m1n24.

Desired response estimator:
For prediction order m = 0, 1, . . . , M, put

 hnm 102 = 0.

For time step n = 0, 1, . . . , put

 y-1 1n2 = 0; 7b-1 1n2 7 2 = d.
For prediction order m = 0, 1, . . . , M and time step n = 0, 1, . . . , compute

 ym1n2 = ym - 1 1n2 + hn*m 1n2bm 1n2
 em1n2 = d1n2 - ym1n2
 ∙∙ bm1n2 ∙∙ 2 = ∙∙ bm - 1 1n2 ∙∙ 2 + ∙ bm1n2 ∙2

 hnm 1n + 12 = hnm 1n2 +
m∼

∙∙ bm 1n2 ∙∙ 2
 bm1n2e*m 1n2.
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tackle this tracking problem, it is not adequate when dealing with the processing of data 
streams that, for example, are massive in size and change rapidly in time.

In Chapter 13, we describe a new stochastic gradient descent algorithm called the 
incremental delta-bar-delta (IDBD) algorithm. In this algorithm, the step-size parameter 
is not only time-varying but also takes the form of a vector whose individual elements 
correlate with factors of the input vector.

All the stochastic gradient descent algorithms discussed up to and including 
Chapter 11 are of the supervised learning variety. In Chapter 17, we shift gears by 
addressing blind adaptation that does not require supervision (i.e., desired response). 
With blind equalization as the application of interest, we describe the so-called Bussgang 
algorithms, the implementation of which involves the combined use of a zero-memory 
nonlinear estimator and the LMS algorithm.

5.5 suMMary and discussion

In this chapter, we discussed the principles of the method of stochastic gradient descent, 
which provides the basis for a family of adaptive filtering algorithms exemplified by the 
LMS and GAL algorithms.

A distinctive feature of this first family of adaptive filtering algorithms is a com-
putational complexity that is linear in the number of adjustable parameters (e.g., tap 
weights) of a finite-duration impulse response (FIR) filter, around which the adaptation 
takes place. Computational simplicity is particularly important when processing data 
streams that are massive in size and change rapidly in time. In applications of this kind, 
time is of the essence, hence the requirement to minimize the number of computations 
needed for each adaptation cycle.

Computational complexity governed by a linear law is an important characteristic 
of the LMS algorithm. Furthermore, the LMS algorithm has another important char-
acteristic, namely robustness, which signifies the ability to deliver a satisfactory perfor-
mance in the face of unknown disturbance that can arise in practice. A cautionary note 
is in order here: Robustness is always attained at the expense of efficiency. This trade-off 
is discussed in detail in Chapter 11.

Another requirement that needs to be addressed in adaptive filtering is that of 
tracking statistical variations in a nonstationary environment over time. Referring back 
to the example of having to process massive data that change rapidly, we may have to 
improve the tracking capability of the LMS algorithm. One clever way of accomplishing 
this requirement is to do two things:

	 •	 First, use a vectorized step-size parameter, the dimensionality of which is the same 
as that of the tap-weight vector to be estimated.

	 •	 Second, expand the LMS algorithm to assume the form of a “learning within learn-
ing” scheme.

In such a scheme, each element of the tap-weight vector is assigned its own step-size 
parameter, thereby acquiring the capability to focus more on relevant parts of the incom-
ing data and less on the irrelevant parts. The idea of learning within learning based on 
the LMS algorithm strengthens the signal-processing power to tackle applications that 
are beyond the capability of the algorithm in its traditional form. Most importantly, 
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as will be shown in Chapter 13, the modified algorithm remains a stochastic gradient 
descent algorithm.

To conclude, the method of stochastic gradient descent has a great deal to offer in 
the design of adaptive filtering algorithms.

ProbleMs

 1. Parts (a) and (b) of Fig. P5.1 depict two ways in which the gradient of a convex function can arise. 
In part (a), the gradient is positive; in part (b), it is negative. Demonstrate that despite this differ-
ence, algorithmic description of the method of gradient descent is exactly the same for both parts.

 2. How can we study the performance of an adaptive filtering algorithm experimentally? Give 
two applications of the method of stochastic gradient descent to linear adaptive filtering.

 3. The update formula of the real-valued version of the so-called sign-error LMS algorithm is given by

 wn 1n + 12 = wn 1n2 + mu1n - i2sgn3e1n24, i = 0,1,c, M - 1. 

 (a) Compare the computational complexity of this algorithm to that of the LMS algorithm.
 (b) How is this update formula modified for the complex-valued version of the sign-error LMS?
 4. Using the steepest descent method, derive the LMS algorithm by using iterative computation 

of the Wiener filter.

 5. The leaky LMS algorithm. Consider the time-varying cost function

 J1n2 = ∙ e1n2 ∙2 + a ∙∙ w1n2 ∙∙ 2, 

  where w(n) is the tap-weight vector of an FIR filter, e(n) is the estimation error, and a is a 
constant. As usual,

 e1n2 = d1n2 - wH
 1n2u1n2, 

where d(n) is the desired response and u(n) is the tap-input vector. In the leaky LMS algo-
rithm, the cost function J(n) is minimized with respect to the weight vector w(n).

 (a) Show that the time update for the tap-weight vector wn 1n2 is defined by

 wn 1n + 12 = (1 - ma)wn 1n2 + mu1n2e*1n2. 

 (b) How would you modify the tap-input vector in the conventional LMS algorithm to get 
the equivalent result described in part (a) of the problem?

FiGure P5.1
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 6. The instantaneous cost function of the fourth-least-mean (FLM) algorithm is defined by

 Js1w2 = ∙ e1n2 ∙4. 

 (a) Show that the update formula for this algorithm is given by

 wn 1n + 12 = wn 1n2 + mu1n - i2e*1n2 ∙ e1n2 ∙2 i = 0, 1, c, M - 1. 

 (b) Compare the computational complexity of the FLM algorithm to that of the LMS algorithm.
 (c) What is the advantage of the FLM over the LMS algorithm?
 7. Compare the computational complexity of the FLM algorithm to that of the GAL algorithm.

 8. As an alternative to the procedure used in Section 5.3 to derive the recursion of Eq. (5.22) for 
the GAL algorithm, it would be tempting to proceed as follows: First, knm 1n2 is used in place 
of knm 1n - 12 in Eqs. (5.20) and (5.21), as shown by

  fm 1n2 = fm - 1 1n2 + kn*m 1n2bm - 1 1n - 12; 

  bm 1n2 = bm - 1 1n - 12 + knm 1n2fm - 1 1n2. 

  Next, through a process of cross-multiplication of terms applied to Eq. (5.15), followed by 
simplification of terms, the recursion

 knm1n2 = knm1n - 12 -
f *m - 1 1n2bm 1n2 + bm - 1 1n - 12f *

 m 1n2
em - 11n - 12 ,   m = 1, 2, c,  M, 

  for updating the reflection coefficient is derived. The term em - 1(n - 1) is defined in Eq. (5.17) 
with n replaced by n - 1.

 (a) Derive this alternative recursion for knm 1n2.
 (b) Given the equations presented in this problem, explain the reason why such an algorithm 

is computationally impractical, thereby justifying the practical validity of Eq. (5.22).

 9. Compare the computational complexity of the LMS algorithm with that of the GAL algorithm 
for the same number of adjustable parameters.
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C h a p t e r  6

the Least-Mean-Square  
(LMS) algorithm

In this relatively long chapter, we build on the derivation of the least-mean-square 
(LMS) algorithm as an application of the method of stochastic gradient descent that 
was presented in the preceding chapter. Specifically, we will expand on why the LMS 
algorithm is of fundamental importance in linear adaptive filtering in theory as well as 
application.

We begin the chapter with a signal-flow graph representation of the LMS algo-
rithm, which clearly exhibits the fact that the LMS algorithm is basically a nonlinear 
feedback control system. With feedback known to be a “double-edged sword,” it can 
work for us or against us. It is not surprising, therefore, to find that with the control 
mechanism being directly dependent on how the step-size parameter, m, is chosen. This 
parameter plays a critical role in assuring convergence of the algorithm (i.e., its stability 
when viewed as a feedback control system) or in failing to do so.

The study of convergence is carried out under the umbrella of statistical learning 
theory of the LMS algorithm, which occupies a good part of the chapter. Although, 
indeed, the LMS algorithm is simple to formulate, its mathematical analysis is very 
difficult to carry out. Nevertheless, ideas related to efficiency of the algorithm that are 
derived from this theory are supported through the use of Monte Carlo simulations.

6.1 SignaL-FLow graph

For convenience of presentation, we reproduce the LMS algorithm summarized in  
Table 5.1, as follows:

 y 1n2 = wn H1n2u1n2,  (6.1)

  e1n2 = d1n2 - y1n2, (6.2)

and

 wn 1n + 12 = wn 1n2 + mu1n2e*1n2, (6.3)

where u(n) is the input vector (regressor), d(n) is the corresponding desired response, 
and wn 1n2 is an estimate of the unknown tap-weight vector, w(n), of the linear multiple 
regression model used to represent the environment from which u(n) and d(n) are 
jointly picked. The superscript H denotes Hermitian transposition (i.e., transposition 
combined with complex conjugation), and the asterisk denotes complex conjugation.
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1The multiplier on the left in Fig. 6.1 signifies ordinary multiplication, and the multiplier on the right 
signifies inner-product formulation.

Given this set of equations, we may construct a signal-flow graph of the LMS 
algorithm as shown in Fig. 6.1. Based on this diagram, we see that the LMS algorithm 
embodies two basic processes that continually build on each other:

 1. Filtering process. This first process involves two operations:
	•	  one computing the output, y*(n), of the finite-duration impulse response (FIR) 

filter within the algorithm, in response to the input signal u(n), and
	•	  the other one generating the estimation error, e*(n), by subtracting y*(n)  

from d*(n).
 2. Adaptation process. This second process involves updating the present value of the 

estimated weight vector wn 1n2 by an “incremental” amount equal to the product 
term mu1n2e*1n2 to produce wn (n + 1), where the incrementality is assured by 
choosing a small value for the step-size parameter, m.

These two processes are identified on the right- and left-hand sides of Fig. 6.1, respec-
tively.1 Henceforth, each complete cycle of the LMS algorithm is referred to as an 
 adaptation cycle.

From Fig. 6.1, we readily find that:

Computational complexity of the LMS algorithm scales linearly with dimensional-
ity of the estimate wn 1n2.

This statement reemphasizes simplicity of the LMS algorithm that was pointed out in 
Chapter 5.

FiGure 6.1 Signal-flow graph representation of the LMS algorithm, where I is the identity matrix  
and z-1 is the unit-time delay operator.
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6.2 optiMaLity ConSiderationS

There are two ways in which optimality of the LMS algorithm may be considered. The 
first involves data-induced perturbation, for which the LMS algorithm is optimal in a 
localized sense. The second is an overall sense, for which, as expected, the LMS algo-
rithm is suboptimal.

Localized optimality

In Chapter 5, we pointed out that the method of stochastic gradient descent is of a 
“local” kind, meaning that the search for a gradient vector is chosen not only randomly 
but also in a localized manner. Despite its stochastic behavior, the LMS algorithm is 
capable of exhibiting localized optimality in a Euclidean sense, provided that the data-
induced perturbation from one adaptation cycle to the next one is small enough (Sayed, 
2003). In a way, this requirement works in the best interests of the algorithm as an 
adaptive filter.

To explain what we have in mind here, we consider two different scenarios:

 1. Current estimation error. Given the supervised-training set {u(n), d(n)}, we write

 e1n2 = d1n2 - wH1n2u1n2, (6.4)

  where w(n) is an unknown tap-weight vector to be optimized in a localized 
Euclidean sense.

 2. Posterior estimation error. In this second scenario, the requirement is to optimize 
the updated tap-weight vector w(n + 1), for which we write

 r1n2 = d1n2 - wH1n + 12u1n2. (6.5)

  Here, it should be noted that the error r(n) is different from the one-step prediction 
error that involves the product term wH(n)u(n + 1).

For the localized perturbation to be small, we require that the step-size parameter, 
m, is small enough to satisfy the following condition:

 ∙ 1 - m 7u1n2 7  

2 ∙ 6 1 for all u1n2, 

where 7u1n2 7  

2 is the squared Euclidean norm of the input vector u(n). Equivalently, we 
may express this condition as follows:

 0 6
1
2

 m 7u1n2 7  

2 6 1 for all u1n2. (6.6)

We may now state the problem at hand:

Find the optimum value of w(n + 1) that minimizes the squared Euclidean between 
it and its past value w(n), subject to the condition described in Eq. (6.6).

In effect, the localized problem of interest is a constrained optimization problem.
To solve this problem, we use the well-known method of Lagrange multipliers, 

described in Appendix C. Specifically, we begin by introducing the Lagrangian function:
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 L1n2 =
1
2

 7w1n + 12 - w1n2 7  

2 + l1n2ar1n2 - a1 -
m

2
 7u1n2 7  

2be1n2b ,  (6.7)

where l(n) is a time-dependent Lagrangian multiplier; e(n) and r(n) are defined in  
Eqs. (6.4) and (6.5). Applying Wirtinger calculus of Appendix B to differentiate L(n) with 
respect to wH(n + 1) and formally treating w(n) as a constant, we obtain the partial derivative

 
0L1n2

0wH1n + 12 = w1n + 12 - w1n2 - l1n2u1n2. 

Let wn 1n + 12 and wn 1n2 be the tap-weight vectors for which this partial derivative is 
zero. Accordingly, we obtain

 wn 1n + 12 = wn 1n2 + l1n2u1n2. (6.8)

To find the corresponding value of the Lagrange multiplier, we substitute the solution of 
Eq. (6.8) in Eq. (6.7). Then, cancelling common terms in the resulting equation, we obtain

 l1n2 = me*1n2. 

for which the Lagrangian function L(n) attains its minimum value of zero. Recognizing 
that the parameter m is a positive constant, it follows that the Lagrangian multiplier is 
complex valued for all n.

Finally, using the l(n) in Eq. (6.8), we get the desired solution to our constrained 
optimization problem, as shown by

 wn 1n + 12 = wn 1n2 + mu1n2e*1n2, 

which is a duplicate of the update formula previously described in Eq. (6.3), and with it, 
localized optimality of the LMS algorithm is justified.

Suboptimality Compared to the wiener Solution

In Chapter 4, we demonstrated that the steepest-descent algorithmic representation 
of the Wiener filter approaches the Wiener solution, wo, in the limit as the number of 
adaptation cycles, n, approaches infinity, provided that the step-size parameter, m, satis-
fies the condition of Eq. (4.22). Moreover, the learning curve approaches the asymptotic 
value Jmin.

In Section 6.4, we will show that, in contrast with the Wiener filter, the corre-
sponding learning curve of the LMS algorithm approaches an asymptotic value J1∞2 
that exceeds Jmin by an amount referred to as the excess mean-square error. It follows, 
therefore, that compared to the Wiener solution, the LMS algorithm is suboptimal.

In conceptual statistical terms, we may differentiate between these two learning 
curves as follows:

 1. In the method of steepest descent, ensemble averaging is performed before comput-
ing the learning curve, as illustrated in Fig. 6.2(a); thereby, perfect information about 
the environment is contained in the correlation matrix R and cross- correlation vec-
tor p, provided that the environment is wide-sense stationary. The learning curve for 
the method of steepest descent is therefore deterministic in nature.
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 2. On the other hand, in the LMS case, ensemble averaging is performed after com-
puting the “noisy” learning curves of an ensemble of independently adapted FIR 
filters, as illustrated in Fig. 6.2(b); the noise is attributed to gradient noise. The 
learning curve of the LMS is therefore statistical in nature.

This important difference in ensemble averaging is what accounts for the excess 
mean-square error experienced in the LMS algorithm and therefore its suboptimality 
 compared to the Wiener solution.

6.3 appLiCationS

Before proceeding further with a convergence analysis of the LMS algorithm, it 
is instructive to develop an appreciation for the versatility of this important signal- 
processing algorithm. We do that by presenting six widely different applications of the 
LMS algorithm.

application 1: Canonical Model of the Complex LMS algorithm

The LMS algorithm described in Eqs. (6.1) through (6.3) is complex in the sense that the 
input and output data as well as the tap weights are all complex valued. To emphasize 
the complex nature of the algorithm, henceforth we use the following complex notations:

Tap-input vector:

 u1n2 = uI  1n2 + juQ 1n2. (6.9)

FiGure 6.2 Illustrating the difference between learning curves for the same environment, 
assumed to be stationary: (a) method of steepest descent; (b) LMS.
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Desired response:

 d1n2 = dI  1n2 + jdQ 1n2. (6.10)

Tap-weight vector:

 wn 1n2 = wn I  1n2 + jwn Q 1n2. (6.11)

FIR filter output:

 y1n2 = yI  1n2 + jyQ 1n2. (6.12)

Estimation error:

 e1n2 = eI + jeQ 1n2. (6.13)

The subscripts I and Q denote “in-phase” and “quadrature” components, respectively—
that is, real and imaginary parts, respectively. Using these definitions in Eqs. (6.1) through 
(6.3), expanding terms, and then equating real and imaginary parts, we get

  yI  1n2 = wn T
I  1n2uI  1n2 - wn T

Q 1n2uQ 1n2,  (6.14)

  yQ 1n2 = wn T
I 1n2uQ 1n2 + wn T

Q 1n2uI  1n2,  (6.15)

  eI  1n2 = dI  1n2 - yI  1n2,  (6.16)

  eQ 1n2 = dQ 1n2 - yQ 1n2,  (6.17)

  wn I  1n + 12 = wn I  1n2 + m3eI  1n2uI  1n2 - eQ 1n2uQ 1n24, (6.18)

and

  wn Q 1n + 12 = wn Q 1n2 + m3eI  1n2uQ 1n2 + eQ 1n2uI  1n24, (6.19)

where the superscript T denotes transposition. Equations (6.14) through (6.17), defining the 
error and output signals, are represented by the cross-coupled signal-flow graph shown in  
Fig. 6.3(a). The updated Eqs. (6.18) and (6.19) are likewise represented by the cross- 
coupled signal-flow graph shown in Fig. 6.3(b). The combination of this pair of signal-
flow graphs constitutes the canonical model of the complex LMS algorithm. This model 
clearly illustrates that a complex LMS algorithm is equivalent to a set of four real LMS 
algorithms with cross-coupling between them, hence the computing power of the com-
plex LMS algorithm.

The need for the canonical model of the complex LMS algorithm may arise, for 
example, in the adaptive equalization of a communication system for the transmission of 
binary data over a dispersive channel. To facilitate data transmission over the channel, 
some form of modulation is used, so that the spectral content of the transmitted signal 
resides inside the passband of the channel. Moreover, for spectral efficiency, modulation 
techniques such as quadrature phase-shift keying (QPSK) or M-ary quadrature ampli-
tude modulation (QAM) are used, in which case the baseband version of the channel 
output assumes a complex form, which is the reason for the complex LMS algorithm. In 
any event, data transmission through the channel is limited by two factors:

	 •	 Intersymbol interference (ISI), which is caused mainly by dispersion in the channel.
	 •	 Thermal noise, which is generated at the channel output (i.e., receiver input).

M06_HAYK4083_05_SE_C06.indd   271 21/06/13   8:32 AM



272   Chapter 6  The Least-Mean-Square (LMS) Algorithm 

For bandwidth-limited channels, we typically find that ISI is the chief determining factor 
in the design of high-data transmission systems. The adaptive equalizer is customarily 
placed in the receiver. With the channel output as the source of excitation applied to 
the equalizer, its free parameters are adjusted by means of the complex LMS algorithm 
to provide an estimate of each symbol transmitted. Provision for the desired response 
is made locally in the receiver. Specifically, during the training mode, a replica of the 
desired response is stored in the receiver. Naturally, the generator of this stored refer-
ence has to be synchronized with the known training sequence that is transmitted prior 
to data transmission. A widely used training sequence is a pseudonoise (PN) sequence, 
which has broadband noiselike properties; in reality, it is a deterministic waveform that 
repeats periodically. The PN sequence is generated by means of a feedback shift register 
that consists of a number of consecutive two-state memory stages (flip-flops) regulated 

FiGure 6.3 Canonical signal-flow graph representation of the complex LMS algorithm.  
(a) Error and output signals. (continued on the next page.) 
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by a single timing clock. A feedback signal consisting of the modulo-two sum of the 
outputs of the memory stages is applied to the first memory stage of the shift register 
and thereby prevents it from emptying. Once the training mode is completed, data 
transmission over the channel begins. To allow the adaptive equalizer to track statisti-
cal variations of the channel during data transmission, the equalizer is switched to its 
decision-directed mode, more on which is said in Chapter 17.

application 2: adaptive deconvolution for processing  
of time-Varying Seismic data

In exploration seismology, we usually think of a layered model of the earth. In order 
to collect (i.e., record) seismic data for the purpose of characterizing such a model and 
thereby unraveling the complexities of the earth’s surface, it is customary to use the 
method of reflection seismology, which involves the following:

	 •	 A source of seismic energy (e.g., dynamite or an air gun), which is typically acti-
vated on the earth’s surface.

FiGure 6.3  (b) Tap-weight update equation.
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	 •	 The propagation of seismic waves from the interfaces between the earth’s geologi-
cal layers.

	 •	 Picking up and recording the seismic returns (i.e., reflections of seismic waves from 
the interfaces), which carry information about the subsurface structure of the earth.

An important issue in exploration seismology is the interpretation of seismic returns 
from the different geological layers of the earth. This interpretation is fundamental to 
the identification of crusted regions such as rocks, layers of sand, or sedimentary layers. 
The sedimentary layers are of particular interest, because they may contain hydrocarbon 
reservoirs. The idea of a layered-earth model plays a key role here.

Figure 6.4 depicts an FIR model for a layered earth; the model provides a local 
parameterization of the propagation (scattering) phenomenon in the earth’s subsurface. 
According to the real-valued model shown in the figure, the input (downgoing) seismic 
wave s(n) and the output (upgoing) seismic wave u(n) are related by the convolution 
sum (assuming a model of length M - 1)

 u1n2 = a
M - 1

k = 0
wks1n - k2, 

where the sequence of tap weights, denoted by w0, w1, . . . , wM - 1, represents the spatial 
mapping of the weighting or impulse response of the medium. The problem to be solved 
is one of system identification:

Given a seismogram (i.e., a record of seismic returns) denoted by u(n), estimate 
the impulse response wn of the medium.

This estimation, called seismic deconvolution, removes the effect of convolving s(n) 
with wn. However, the problem is complicated by the fact that the input seismic 

FiGure 6.4 FIR model of layered earth.
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wave s(n) is actually unknown. To overcome this difficulty, we may use one of two 
procedures:

 1. Predictive deconvolution,2 which is so called because the procedure relies on linear 
prediction theory.

 2. Blind deconvolution, which accounts for valuable phase information con-
tained in the reflection seismogram—information that is ignored in predictive 
deconvolution.

In this section, we describe predictive convolution; discussion of blind deconvolution 
is deferred to Chapter 17. In both procedures, the LMS algorithm features prominently.

Predictive deconvolution rests on two hypotheses (Robinson & Durrani, 1986):

 1. The feedback hypothesis, which treats wn as the impulse response of an autoregres-
sive (AR) model; the implication of this hypothesis is that the layered-earth model 
is minimum phase.

 2. The random hypothesis, according to which the reflectivity function (i.e., the result 
of the deconvolution) is assumed to have the properties of white noise, at least 
within certain time gates.

Given the real-valued seismogram u(n), we may use the real LMS algorithm to solve 
the predictive deconvolution problem by proceeding as follows (Griffiths et al., 1977):

	 •	 An M-dimensional operator wn 1n2 is used to generate a predicted trace from the 
data; that is,

 u1n + ∆2 = wn T
 1n2u1n2, (6.20)

where

  wn 1n2 = 3wn 0 1n2, wn 1 1n2, c, wn M - 1 1n24T,  

  u1n2 = 3u1n2, u1n - 12, c, u1n - M + 124T, 

and ∆ Ú 1 is the prediction depth, or decorrelation delay, measured in units of the 
sampling period.

	 •	 The deconvolved trace y(n) defining the difference between the input and pre-
dicted samples is evaluated:

 y1n2 = u1n2 - un1n2. 

	 •	 The operator wn 1n2 is updated:

 wn 1n + 12 = wn 1n2 + m3u1n + ∆2 - un1n + ∆24u1n2. (6.21)

Equations (6.20) and (6.21) constitute the LMS-based adaptive seismic deconvolution 
algorithm. The adaptation is begun with an initial guess wn (0).

2A critique of predictive deconvolution is given by Schneider (1978, p. 29): 

[A] work horse of statistical wavelet deconvolution for [several] decades has been the predictive deconvolu-
tion approach, which assumes the reflectivity function is statistically white and the convolutional wavelet to be 
minimum phase. To say that this has not been an effective tool is to condemn hundreds of thousands of miles 
of seismic processing and to deny untold millions of barrels of oil discovered from these data.
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application 3: instantaneous Frequency Measurement

In this example, we study the use of the LMS algorithm as the basis for estimating the 
frequency content of a narrowband signal characterized by a rapidly varying power spec-
trum (Griffiths, 1975). In so doing, we illustrate the linkage between three basic ideas: an 
autoregressive (AR) model for describing a stochastic process, studied in Chapter 1; a 
linear predictor for analyzing the process, studied in Chapter 3; and the LMS algorithm 
for estimating the AR parameters.

By a narrowband signal, we mean a signal whose bandwidth Ω is small compared 
with the midband angular frequency vc, as illustrated in Fig. 6.5. A frequency-modulated 
(FM) signal is an example of a narrowband signal, provided that the carrier frequency 
is high enough. The instantaneous frequency (defined as the derivative of phase with 
respect to time) of an FM signal varies linearly with the modulating signal. Consider, 
then, a narrowband process u(n) generated by a time-varying AR model of order M, as 
shown by the difference equation (assuming real data)

 u1n2 = - a
M

k = 1
ak 1n2u1n - k2 + n1n2, (6.22)

where the ak(n) are the time-varying model parameters and v(n) is a zero-mean white-
noise process of time-varying variance s2

n  1n2. The time-varying AR (power) spectrum 
of the narrowband process u(n) is given by [see Eq. (3.101)] 

 SAR 1v; n2 =
s2
n1n22 1 + a

M

k = 1
ak 1n2e-jvk 2 2,    -p 6 v … p. (6.23)

FiGure 6.5 Definition of a narrowband signal in terms of its spectrum.
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Note that an AR process whose poles form a cluster near the unit circle in the z-plane 
has the characteristics of a narrowband process.

To estimate the model parameters, we use an adaptive FIR filter employed as a 
linear predictor of order M. Let the tap weights of the predictor be denoted by wn k 1n2, 
k = 1, 2, . . . , M. The tap weights are adapted continuously as the input signal u(n) is 
received. In particular, we use the following LMS algorithm for adapting the tap weights:

 wn k 1n + 12 = wn k 1n2 + mu1n - k2fM 1n2,   k = 1, 2, c, M. (6.24)

In this equation,

 fM 1n2 = u1n2 - a
M

k = 1
wn k 1n2u1n - k2 (6.25)

is the prediction error. The tap weights of the adaptive predictor are related to the AR 
model parameters as follows:

 -wn k 1n2 = estimate of ak 1n2 at adaptation cycle n,   for k = 1, 2, c, M. 

Moreover, the average power of the prediction error fM(n) provides an estimate of the 
noise variance s2

n  1n2. Our interest is in locating the frequency of a narrowband signal. 
Accordingly, in what follows, we ignore the estimation of s2

n  1n2. Specifically, we use 
only the tap weights of the adaptive predictor to define the time-varying frequency 
function

 F1v; n2 =
12 1 - a

M

k = 1
wn k 1n2e-jvk 2 2. (6.26)

Given the relationship between wn k 1n2 and ak(n), we see that the essential difference 
between the frequency function F(v; n) in Eq. (6.26) and the AR power spectrum 
SAR(v; n) in Eq. (6.23) lies in their numerator scale factors. The numerator of F(v; n) 
is a constant equal to unity, whereas that of SAR(v; n) is a time-varying constant equal 
to s2

n  1n2. The advantages of F(v; n) over SAR(v; n) are twofold: First, the 0/0 indeter-
minacy inherent in the narrowband spectrum of Eq. (6.23) is replaced by a “computa-
tionally tractable” limit of 1/0 in Eq. (6.26); second, the frequency function F(v; n) is 
not affected by amplitude scale changes in the input signal u(n), with the result that 
the peak value of F(v; n) is related directly to the spectral width of the input signal.

We may use the function F(v; n) to measure the instantaneous frequency of a 
frequency-modulated signal u(n), provided that the following assumptions are justified 
(Griffiths, 1975):

	 •	 The adaptive predictor has been in operation sufficiently long, so as to ensure that 
any transients caused by the initialization of the tap weights have died out.

	 •	 The step-size parameter m is chosen correctly for the prediction error fM(n) to be 
small for all n.

	 •	 The modulating signal is essentially constant over the sampling range of the adaptive 
predictor, which extends from adaptation cycle (n - M) to adaptation cycle (n - 1).
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Given the validity of these assumptions, we find that the frequency function F(v; n) 
has a peak at the instantaneous frequency of the input signal u(n). Moreover, the LMS 
algorithm will track the time variation of the instantaneous frequency.

application 4: adaptive noise Cancelling applied to a Sinusoidal interference

The traditional method of suppressing a sinusoidal interference corrupting an information- 
bearing signal is to use a fixed notch filter tuned to the frequency of the interference. To 
design the filter, we naturally need to know the precise frequency of the interference. 
But what if the notch is required to be very sharp and the interfering sinusoid is known 
to drift slowly? Clearly, then, we have a problem that calls for an adaptive solution. One 
such solution is provided by the use of adaptive noise cancelling, an application that is 
different from the previous three in that it is not based on a stochastic excitation.

Figure 6.6 shows the block diagram of a dual-input adaptive noise canceller. The 
primary input supplies an information-bearing signal and a sinusoidal interference that 
are uncorrelated with each other. The reference input supplies a correlated version of the 
sinusoidal interference. For the adaptive filter, we may use an FIR filter whose tap weights 
are adapted by means of the LMS algorithm. The filter uses the reference input to provide 
(at its output) an estimate of the sinusoidal interfering signal contained in the primary 
input. Thus, by subtracting the adaptive filter output from the primary input, the effect of 
the sinusoidal interference is diminished. In particular, an adaptive noise canceller using 
the LMS algorithm has two important characteristics (Widrow et al., 1976; Glover, 1977):

 1. The canceller behaves as an adaptive notch filter whose null point is determined 
by the angular frequency v0 of the sinusoidal interference. Hence, the canceller is 
tunable, and the tuning frequency moves with v0.

 2. The notch in the frequency response of the canceller can be made very sharp at 
precisely the frequency of the sinusoidal interference by choosing a small enough 
value for the step-size parameter m.

Thus, unlike the situation with an ordinary notch filter, we have control over the fre-
quency response of the adaptive noise canceller.

FiGure 6.6 Block diagram of adaptive noise canceller.
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In the application considered here, the input data are assumed to be real valued:

	 •	 Primary input:

 d1n2 = s1n2 + A0 cos 1v0n + f02, (6.27)

  where s(n) is an information-bearing signal, A0 is the amplitude of the sinusoidal 
interference, v0 is the normalized angular frequency, and f0 is the phase.

	 •	 Reference input: 

 u1n2 = A cos1v0n + f2, (6.28)

  where the amplitude A and the phase f are different from those in the primary 
input, but the angular frequency v0 is the same.

Using the real form of the LMS algorithm, we describe the tap-weight update by means 
of the equations

  y1n2 = a
M - 1

i = 0
wn i 1n2u1n - i2, (6.29)

  e1n2 = d1n2 - y1n2,  (6.30)

and

 wn i 1n + 12 = wn i 1n2 + mu1n - i2e1n2,    i = 0, 1, c, M - 1, (6.31)

where M is the length of the FIR filter and the constant m is the step-size parameter. 
Note that the sampling period in the input data and in all other signals in the LMS algo-
rithm is assumed to be unity for convenience of presentation; as mentioned previously, 
this practice is indeed followed throughout the book.

With a sinusoidal excitation as the input of interest, we restructure the block dia-
gram of the adaptive noise canceller as in Fig. 6.7(a). According to this new represen-
tation, we may lump the sinusoidal input u(n), the FIR filter, and the weight-update 
equation of the LMS algorithm into a single (open-loop) system. The adaptive system 
with input e(n) and output y(n) varies with time and cannot be represented by a trans-
fer function. We may get around this difficulty as follows: With z = ejv and z0 = ejv0, let 
the adaptive system be excited with e(n) = zn. Then, the output y(n) consists of three 
components: one proportional to zn, the second proportional to zn

 1z2n
0 2*, and the third 

proportional to zn
 1z2n

0 2. The first component represents a time-invariant system with 
the transfer function G(z), which denotes the proportionality factor characterizing that 
component. The task at hand is to find G(z).

To do so, we use the detailed signal-flow graph representation of the LMS algo-
rithm depicted in Fig. 6.7(b) (Glover, 1977). In this diagram, we have singled out the ith 
tap weight for specific attention. The corresponding value of the tap input is

  u1n - i2 = A cos3v0 1n - i2 + f4  
(6.32)

  =
A
2

 3ej1v0n +fi2 + e-j1v0n +fi24, 

M06_HAYK4083_05_SE_C06.indd   279 21/06/13   8:33 AM



Fi
G

u
r

e 
6.

7 
(a

) 
N

ew
 r

ep
re

se
nt

at
io

n 
of

 a
da

pt
iv

e 
no

is
e 

ca
nc

el
le

r. 
(c

on
tin

ue
d 

on
 th

e 
ne

xt
 p

ag
e.

)

280

M06_HAYK4083_05_SE_C06.indd   280 21/06/13   8:33 AM



Fi
G

u
r

e 
6.

7 
(b

) 
Si

gn
al

-f
lo

w
 g

ra
ph

 r
ep

re
se

nt
at

io
n 

of
 a

da
pt

iv
e 

no
is

e 
ca

nc
el

le
r, 

si
ng

lin
g 

ou
t t

he
 it

h 
ta

p 
w

ei
gh

t f
or

 d
et

ai
le

d 
at

te
nt

io
n.

281

M06_HAYK4083_05_SE_C06.indd   281 21/06/13   8:33 AM



282   Chapter 6  The Least-Mean-Square (LMS) Algorithm 

where

 fi = f - v0i. 

In Fig. 6.7(b), the input u(n - i) is multiplied by the estimation error e(n). Hence, 
 taking the z-transform of the product u(n - i)e(n) and using z3 #4 to denote this opera-
tion, we obtain

 z3u1n - i2e1n24 =
A
2

 ejfiE1ze-jv02 +
A
2

 e-jfiE1zejv02, (6.33)

where E1ze-jv02 is the z-transform E(z) of e(n) rotated counterclockwise around the unit 
circle through the angle v0. Similarly, E1zejv02 represents a clockwise rotation through v0.

Next, taking the z-transform of Eq. (6.31), we get

 zWn i 1z2 = Wn i 1z2 + mz3u1n - i2e1n24, (6.34)

where Wn i 1z2 is the z-transform of wn i 1n2. Solving Eq. (6.34) for Wn i 1z2 and using the 
z-transform given in Eq. (6.33), we get

 Wn i 1z2 =
mA

2
 

1
z - 1

 3ejfiE1ze-jv02 + e-jfiE1zejv024. (6.35)

We turn next to Eq. (6.29), which defines the adaptive filter output y(n). 
Substituting Eq. (6.32) into Eq. (6.29), we obtain

 y1n2 =
A
2
 a

M - 1

i = 0
wn i 1n23ej1v0n +fi2 + e-j1v0n +fi24. 

Evaluating the z-transform of y(n) then yields

 Y1z2 =
A
2
 a

M - 1

i = 0
3ejfiWn i(ze-jv02 + ejfiWn i1ze-jv024. (6.36)

Thus, substituting Eq. (6.35) into Eq. (6.36), we obtain an expression for Y(z) that  consists 
of the sum of two components (Glover, 1977):

 1. A time-invariant component defined by

 
mMA2

4
 a 1

ze-jv0 - 1
+

1

zejv0 - 1
b , 

  which is independent of the phase fi and, therefore, the time index i.
 2. A time-varying component that is dependent on the phase fi and hence on the 

variation with time i. This second component is scaled in amplitude by the factor

 b1v0, M2 =
 sin1Mv02

sin v0
. 

For a given angular frequency v0, we assume that the total number of tap weights M in 
the FIR filter is large enough to satisfy the following approximation:

 
b1v0, M2

M
=

sin1Mv02
M sin v0

≈ 0. (6.37)
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Accordingly, we may justifiably ignore the time-varying component of the z-transform 
and so approximate Y(z) by retaining the time-invariant component only:

 Y1z2 ≈
mMA2

4
 E1z2a 1

ze-jv0 - 1
+

1

zejv0 - 1
b . (6.38)

The open-loop transfer function, relating y(n) to e(n), is therefore

  G1z2 =
Y1z2
E1z2  

  ≈
mMA2

4
 a 1

ze-jv0 - 1
+

1

zejv0 - 1
b  (6.39)

  =
mMA2

2
 a z cos v0 - 1

z2 - 2z cos v0 + 1
b .  

The transfer function G(z) has two complex-conjugate poles on the unit circle at 
z = e{jv0 and a real zero at z = 1/cos v0, as illustrated in Fig. 6.8(a). In other words, the 
adaptive noise canceller has a null point determined by the angular frequency v0 of the 
sinusoidal interference, as stated previously. (See Characteristic 1 on page 278.) Indeed, 
according to Eq. (6.39), we may view G(z) as a pair of integrators that have been rotated 
by {v0. In actuality, we see from Fig. 6.7(b) that it is the input that is first shifted in 
frequency by an amount {v0 due to the first multiplication by the reference sinusoid 
u(n), digitally integrated at zero frequency, and then shifted back again by the second 
multiplication. This overall operation is similar to a well-known technique in commu-
nications for obtaining a resonant filter that involves the combined use of two low-pass 
filters and heterodyning with sine and cosine at the resonant frequency (Wozencraft & 
Jacobs, 1965; Glover, 1977).

FiGure 6.8 Approximate pole–zero patterns of (a) the open-loop transfer function G(z) 
and (b) the closed-loop transfer function H(z).
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The model of Fig. 6.7(a) is recognized as a closed-loop feedback system whose 
transfer function H(z) is related to the open-loop transfer function G(z) via the 
equation

  H1z2 =
E1z2
D1z2  (6.40)

  =
1

1 + G1z2, 

where E(z) is the z-transform of the system output e(n) and D(z) is the z-transform of 
the system input d(n). Accordingly, substituting Eq. (6.39) into Eq. (6.40), we get the 
approximate result

 H1z2 ≈
z2 - 2z cos v0 + 1

z2 - 211 - mMA2>42z cos v0 + 11 - mMA2>22. (6.41)

Equation (6.41) is the transfer function of a second-order digital notch filter with a notch 
at the normalized angular frequency v0. The zeros of H(z) are at the poles of G(z); that 
is, they are located on the unit circle at z = e{jv0. For a small value of the step-size 
parameter m (i.e., a slow adaptation rate), such that

 
mMA2

4
V 1, 

we find that the poles of H(z) are located at

 z ≈ a1 -
mMA2

4
be{jv0. (6.42)

In other words, the two poles of H(z) lie inside the unit circle, a radial distance approxi-
mately equal to mMA2/4 behind the zeros, as indicated in Fig. 6.8(b). The fact that the 
poles of H(z) lie inside the unit circle means that the adaptive noise canceller is stable, 
as it should be for practical use in real time.

Figure 6.8(b) also includes the half-power points of H(z). Since the zeros of H(z) 
lie on the unit circle, the adaptive noise canceller has (in theory) a notch of infinite 
depth (in dB) at v = v0. The sharpness of the notch is determined by the closeness of 
the poles of H(z) to its zeros. The 3-dB bandwidth B is determined by locating the two 
half-power points on the unit circle that are 12 times as far from the poles as they are 
from the zeros. Using this geometric approach, we find that the 3-dB bandwidth of the 
adaptive noise canceller is

 B ≈
mMA2

2
  radians. (6.43)

Therefore, the smaller we make m, the smaller the bandwidth B is, and the sharper the 
notch is. This confirms Characteristic 2 of the adaptive noise canceller that was men-
tioned on page 278. Its analysis is thereby completed.

M06_HAYK4083_05_SE_C06.indd   284 21/06/13   8:33 AM



Section 6.3 Applications   285

application 5: adaptive Line enhancement

The adaptive line enhancer (ALE), illustrated in Fig. 6.9, is a system that may be used 
to detect a sinusoidal signal buried in a wideband noise background.3 This figure shows 
that the ALE is in fact a degenerate form of the adaptive noise canceller in that its 
reference signal, instead of being derived separately, consists of a delayed version of the 
primary (input) signal. The delay, denoted by ∆ in the figure, is called the prediction 
depth, or decorrelation delay, of the ALE, measured in units of the sampling period. 
The reference signal u(n - ∆) is processed by an FIR filter to produce an error signal  
e(n), defined as the difference between the actual input u(n) and the ALE’s output  
y(n) = u(n). The error signal e(n) is, in turn, used to actuate the LMS algorithm for 
adjusting the M tap weights of the FIR filter.

Consider an input signal u(n) that consists of a sinusoidal component  
A sin(v0n + f0) buried in wideband noise v(n); that is,

 u1n2 = A sin 1v0n + f02 + v1n2, (6.44)

where f0 is an arbitrary phase shift and the noise v(n) is assumed to have zero mean and 
variance s2

n. The ALE acts as a signal detector by virtue of two actions (Treichler, 1979):

	 •	 The prediction depth ∆ is assigned a value large enough to remove the correlation 
between the noise v(n) in the original input signal and the noise v(n - ∆) in the 
reference signal, while a simple phase shift equal to v0∆ is introduced between the 
sinusoidal components in these two inputs.

	 •	 The tap weights of the FIR filter are adjusted by the LMS algorithm so as to mini-
mize the mean-square value of the error signal and thereby compensate for the 
unknown phase shift v0∆.

The net result of these two actions is the production of an output signal y(n) that consists 
of a scaled sinusoid in noise of zero mean. In particular, when v0 is several multiples of 
π/M away from zero or π, we may express the output signal as (see Problem 3)

 y1n2 = aA sin 1v0n + f02 + vout1n2, (6.45)

where f denotes a phase shift and vout(n) denotes the output noise. The scaling factor 
is defined by

 a =
1M  >  22SNR

1 + 1M  >  22SNR
, (6.46)

where M is the length of the FIR filter and

 SNR =
A2

2s2
n

 (6.47)

3The ALE owes its origin to Widrow et al. (1975b). For a statistical analysis of its performance for 
the detection of sinusoidal signals in wideband noise, see Zeidler et al. (1978), Treichler (1979), and Rickard 
and Zeidler (1979). For a tutorial treatment of the ALE, see Zeidler (1990); the effects of signal bandwidth, 
input  signal-to-noise ratio, noise correlation, and noise nonstationarity are explicitly considered in Zeidler’s 
1990 paper.
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denotes the signal-to-noise ratio at the input of the ALE. According to Eq. (6.45), the 
ALE acts as a self-tuning filter whose frequency response exhibits a peak at the angular 
frequency v0 of the incoming sinusoid—hence the name “spectral line enhancer” or 
simply “line enhancer.”

Rickard and Zeidler (1979) have also shown that the power spectral density of the 
ALE output y(n) may be expressed as

  S1v2 =
pA2

2
 1a2 + ms2

nM2d1v - v02 + d1v + v02 + ms4
nM  

 +
a2s2

n

M2  c 1 - cos M1v - v02
1 - cos1v - v02 +

1 + cos M1v - v02
1 + cos1v - v02 d ,   -p 6 v … p, 

(6.48)

where d(·) denotes a Dirac delta function. To understand the composition of Eq. (6.48), 
we first note that an LMS algorithm operating in a stationary environment, the mean 
of the weight vector wn 1n2 approaches the Wiener solution wo(n). A formal analysis of 
this behavior is presented in the next section; for now, it suffices to say that the steady-
state model of the converged weight vector consists of the Wiener solution wo, acting in 
parallel with a slowly fluctuating, zero-mean random component wn mis 1n2 due to gradient 
noise. The ALE may thus be modeled as shown in Fig. 6.10.

Recognizing that the ALE input itself consists of two components—sinusoid of 
angular frequency v0 and wideband noise v(n) of zero mean and variance s2

n—we may 
distinguish four components in the power spectrum of Eq. (6.48) (Zeidler, 1990):

FiGure 6.10 Model of the adaptive line enhancer.
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	 •	 A sinusoidal component of angular frequency v0 and average power pa2A2/2, 
which is the result of processing the input sinusoid by the Wiener filter represented 
by the weight vector wo.

	 •	 A sinusoidal component of angular frequency v0 and average power pmA2s2
nM  >  2, 

which is due to the stochastic filter represented by the weight vector wn mis 1n2 acting 
on the input sinusoid.

	 •	 A wideband noise component of variance ms4
nM, which is due to the action of the 

stochastic filter on the noise v(n).
	 •	 A narrowband filtered noise component centered on v0, which results from pro-

cessing the noise v(n) by the Wiener filter.

These four components are depicted in Fig. 6.11. Thus, the power spectrum of the ALE 
output consists of a sinusoid at the center of a pedestal of narrowband filtered noise, the 
combination of which is embedded in a wideband noisy background. Most importantly, 

FiGure 6.11 The four primary spectral components of the power spectral density at the 
ALE output. (a) Component due to Wiener filter acting on the input sinusoid. (b) Component 
due to stochastic filter acting on the input sinusoid. (c) Wideband noise due to the stochastic 
filter acting on the noise v(n). (d) Narrowband noise due to the Wiener filter acting on v(n).
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when an adequate SNR exists at the ALE input, the ALE output is, on the average, 
approximately equal to the sinusoidal component present at the input, thereby providing 
a simple adaptive system for the detection of a sinusoid in wideband noise.

application 6: adaptive Beamforming

In this final example, we consider a spatial application of the LMS algorithm, namely, 
that of adaptive beamforming. In particular, we revisit the generalized sidelobe canceller 
(GSC) that was studied under the umbrella of Wiener filter theory in Chapter 2.

Figure 6.12 shows a block diagram of the GSC, the operation of which hinges on 
the combination of two actions:

 1. The imposition of linear multiple constraints, designed to preserve an incident 
signal along a direction of interest.

 2. The adjustment of some weights, in accordance with the LMS algorithm, so as to 
minimize the effects of interference and noise at the beamformer output.

The multiple linear constraints are described by an M-by-L matrix C, on the basis of 
which a signal-blocking matrix Ca of size M-by-(M - L) is defined by

 CH
a C = O. (6.49)

In the GSC, the vector of weights assigned to the linear array of antenna elements is 
represented by

 w1n2 = wq - Cawa1n2, (6.50)

FiGure 6.12 Block diagram of the GSC.
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where wa(n) is the adjustable-weight vector and wq is the quiescent-weight vector. The 
latter component is defined in terms of the constraint matrix C by

 wq = C1CHC2-1
 g, (6.51)

where g is a prescribed gain vector.
The beamformer output is

  e1n2 = wH
 1n2u1n2  

  = 1wq - Cawa1n22H
 u1n2  (6.52)

  = wH
q u1n2 - wH

a  1n2CH
a u1n2. 

In words, the quiescent weight vector wq influences that part of the input vector u(n) 
which lies in the subspace spanned by the columns of constraint matrix C, whereas the 
adjustable weight vector wa(n) influences the remaining part of the input vector u(n) 
that lies in the complementary subspace spanned by the columns of signal-blocking 
matrix Ca. Note that e(n) in Eq. (6.52) is the same as y(n) in Eq. (2.107).

According to Eq. (6.52), the inner product wH
q u1n2 plays the role of the desired 

response:

 d1n2 = wH
q u1n2. 

By the same token, the matrix product CH
a u1u2 plays the role of the input vector for the 

adjustable weight vector wa(n); to emphasize this point, we let

 x1n2 = CH
a u1n2. (6.53)

We are now ready to formulate the LMS algorithm for the adaptation of weight 
vector wa(n) in the GSC. Specifically, using Eqs. (6.52) and (6.53), we may go on to write

  wa  1n + 12 = wa  1n2 + mx1n2e*1n2  

  = wa  1n2 + mCH
a u1n21wH

q u1n2 - wH
a  1n2CH

a u1n22* (6.54)

  = wa  1n2 + mCH
a u1n2uH

 1n2(wq - Cawa  1n22,  

where m is the step-size parameter and all of the remaining quantities are displayed in 
the block diagram of Fig. 6.12.

6.4 StatiStiCaL Learning theory

Derivation of the LMS algorithm was presented in Chapter 5. In this chapter, we have 
followed up with signal-flow graph representations, optimality considerations, and appli-
cations of the algorithm. The one topic yet to be covered is the underlying statistical 
learning theory of the LMS algorithm.

Much of the remainder of this chapter is devoted to this topic, in the study of 
which the step-size parameter, m, plays a critical role. When m is small, the LMS algo-
rithm behaves like a low-pass filter with a small cutoff frequency. It is on the basis of 
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this behavior that the statistical learning theory of the algorithm addresses the fol-
lowing issues:

	 •	 Condition imposed on the m for convergence.
	 •	 Misadjustment due to gradient noise.
	 •	 Efficiency of the algorithms.

All three issues are of practical importance.
What is also remarkable is the fact that under a slate of reasonable assumptions, 

there is a close mathematical relationship between the LMS statistical learning theory and 
the Langevin theory of nonequilibrium thermodynamics, which is discussed in Appendix F. 

Basic nonlinear Stochastic difference equation

To pave the way for a statistical analysis of the LMS algorithm, we find it more conve-
nient to work with the weight-error vector rather than with the tap-weight vector itself. 
The rationale for this choice is that the error vector provides more useful information 
about the environment in a compact fashion than otherwise.

To this end, we introduce the following two definitions:

 1. The weight-error vector

 E1n2 = wo - wn 1n2, (6.55)

  where, as before, wo denotes the optimum Wiener solution and wn 1n2 denotes the esti-
mate of the tap-weight vector produced by the LMS algorithm at adaptation cycle n.

 2. The estimation error produced by the optimum Wiener filter

 eo1n2 = d1n2 - wH
o u1n2. (6.56)

Then, using these two definitions in the update formula of Eq. (6.3) and simplifying the 
results, we obtain

 E1n + 12 = 3I - mu1n2uH1n24E1n2 - mu1n2e*o1n2. (6.57)

Equation (6.57) is the nonlinear stochastic difference equation, on which statistical learn-
ing theory of the LMS algorithm is based in what follows.

Kushner’s direct-averaging Method

Equation (6.57) is a stochastic difference equation in the weight-error vector E(n) with 
the characteristic feature of a system matrix equal to [I - mu(n)uH(n)]. To study the 
convergence behavior of such a stochastic algorithm in an average sense, we may invoke 
the direct-averaging method described in Kushner (1984). According to this method, the 
solution of the stochastic difference equation (6.57), operating under the assumption of 
a small step-size parameter m, is (by virtue of the low-pass filtering action of the LMS 
algorithm) close to the solution of another stochastic difference equation whose system 
matrix is equal to the ensemble average, viz.,

 𝔼3I - mu1n2uH
 1n24 = I - mR, 
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where R is the correlation matrix of the tap-input vector u(n). More specifically, we 
may replace the stochastic difference equation (6.57) with another stochastic difference 
equation described by

 E01n + 12 = 1I - mR2E0 1n2 - mu1n2e*o  1n2, (6.58)

where, for reasons that will be become apparent presently, we have used the symbol 
E0(n) for the weight-error vector, which is different from that used in Eq. (6.57). Note, 
however, that the solutions of Eqs. (6.57) and (6.58) become equal for the limiting case 
of a vanishingly small step-size parameter m.

Butterweck’s iterative procedure

In an iterative procedure devised by Butterweck (1995, 2001, 2003), the solution of  
Eq. (6.58) is used as a starting point for generating a whole set of solutions of the original 
stochastic difference equation (6.57).4 The accuracy of the solution so obtained improves 
with increasing adaptation cycle order. Thus, starting with the solution E0(n), we may 
express the solution of Eq. (6.57) as the sum of partial functions

 E1n2 = E01n2 + E1 1n2 + E2 1n2 + g, (6.59)

where E0(n) is the zero-order solution of Eq. (6.57) for the limiting case of m S 0 and 
E1(n), E2(n), . . . are higher-order corrections to the zero-order solution for m 7 0. If we 
now define the zero-mean difference matrix

 P1n2 = u1n2uH
 1n2 - R, (6.60)

then, substituting Eqs. (6.59) and (6.60) into Eq. (6.57) yields

 E0 1n + 12 + E1 1n + 12 + E2 1n + 12 + g
 = 1I - mR23E0 1n2 + E1 1n2 + E2 1n2 + g4

 - mP1n23E0 1n2 + E1 1n2 + E2 1n2 + g 4 - mu1n2e*o1n2,

from which we readily deduce the set of coupled difference equations

 Ei 1n + 12 = 1I - mR2Ei 1n2 + fi 1n2,   i = 0, 1, 2, c, (6.61)

where the subscript i refers to the adaptation cycle order. The driving force fi(n) for the 
difference equation (6.61) is defined by

 fi 1n2 = e -mu1n2e*o  1n2, i = 0
-mP1n2Ei- 1 1n2 i = 1, 2, c. (6.62)

Thus, a time-varying system characterized by the stochastic difference equation (6.57) 
is transformed into a set of equations having the same basic format as that described in 

4The material presented in this subsection is based on work done by Butterweck, which started with 
an article referring to the so-called independence theory in convergence analysis of the LMS algorithm as a 
disposable tool and then went on to the study of the steady-state analysis of long LMS algorithms (Butterweck, 
2003, 2011).
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Eq. (6.61), such that the solution to the ith equation in the set (i.e., step i in the iterative 
procedure) follows from the (i - 1)th equation. In particular, the analysis of the LMS 
algorithm is reduced to a study of the transmission of a stationary stochastic process 
through a low-pass filter with an extremely low cutoff frequency as the step-size para-
meter m approaches zero.

On the basis of Eq. (6.59), we may now express the correlation matrix of the 
weight-error vector E(n) by a corresponding series as follows:

  K1n2 = 𝔼3E1n2EH
 1n24  (6.63)

  = a
i
a
k

𝔼3Ei 1n2EH
k  1n24,    1i, k2 = 0, 1, 2, c. 

Expanding this series in light of the definitions given in Eqs. (6.61) and (6.62) and then 
grouping equal-order terms in the step-size parameter m, we get the corresponding 
series expansion

 K1n2 = K0 1n2 + mK1 1n2 + m2K2 1n2 + g, (6.64)

where the various matrix coefficients are themselves defined as follows:

 m 

jKj 1n2 = d 𝔼3E01n2EH
0  1n24 for j = 0

a
i
a
k

𝔼3Ei 1n2EH
k  1n24 for all 1i, k2 Ú 0

such that i + k = 2j - 1, 2j

t . (6.65)

The second part of Eq. (6.65) is understandable for i + k = 2j, dealing with the orders 
of magnitude Ei(n) and Ek(n). However, for a combination of terms with the same 
index i, but k replaced with (k - 1) such that the sum of the indices is 2j - 1, we would 
expect a higher result because Ek - 1(n) is an order of magnitude larger than Ek(n). 
The surprisingly new result is ascribed to a very low degree of correlation between 
Ek - 1(n) and Ek(n); that is, these two weight-error vectors are almost orthogonal. Note 
also that Kj is not independent of m; rather, its Taylor expansion contains higher-
order terms, which, in reality, makes the series expansion of K(n) less elegant than 
Eq. (6.64) may suggest.

The matrix coefficients in Eq. (6.65) are determined, albeit in a rather complex 
fashion, by the spectral and probability distribution of the environment in which the 
LMS algorithm operates. In a general setting with arbitrarily colored input signals, 
the calculation of Kj(n) for j Ú 1 can be rather tedious, except in some special cases 
(Butterweck, 1995). Nevertheless, Butterweck’s procedure reveals an interesting struc-
ture in the statistical characteristics of the LMS algorithm.

three Simplifying assumptions

In much of what follows, we restrict the development of statistical LMS theory to small 
step sizes, embodied in the following assumptions:

Assumption 1. The step-size parameter m is small, so the LMS algorithm acts as 
a low-pass filter with a low cutoff frequency.

M06_HAYK4083_05_SE_C06.indd   293 21/06/13   8:33 AM



294   Chapter 6  The Least-Mean-Square (LMS) Algorithm 

Under this assumption, we may use the zero-order terms E0(n) and K0(n) as approxima-
tions to the actual E(n) and K(n), respectively.

To illustrate the validity of Assumption 1, consider the simple example of an  
LMS algorithm using a single weight. For this example, the stochastic difference equa-
tion (6.57) simplifies to the scalar form

 e0 1n + 12 = 11 - ms2
u2e0 1n2 + f0 1n2 

where s2
u is the variance of the input signal u(n). This difference equation represents a 

low-pass filter whose transfer function has a single pole at

 z = 11 - ms2
u2. 

For small m, the pole lies inside of, and very close to, the unit circle in the z-plane, which 
implies a very low cutoff frequency.

Assumption 2. The physical mechanism for generating the desired response d(n) 
is described by a multiple linear regression model that is matched exactly by the 
Wiener filter; that is,

 d1n2 = wH
o u1n2 + eo 1n2, (6.66)

where the irreducible estimation error eo(n) is a white-noise process that is statisti-
cally independent of the input vector u(n).

The characterization of eo(n) as white noise means that its successive samples are 
uncorrelated, as shown by

 𝔼3eo 1n2e*o  1n - k24 = e Jmin for k = 0
0 for k ≠ 0

. (6.67)

The essence of the second assumption was discussed in Section 2.8, where we showed 
that, provided that the use of a multiple linear regression model is justified and the 
length of the Wiener filter is exactly equal to the order of the regression model, the esti-
mation error eo(n) produced by the Wiener filter inherits the statistical characterization 
of the model error as white noise. [Note that the statistical independence of eo(n) from 
u(n) is stronger than the principle of orthogonality discussed in Chapter 2.]

(For experiments illustrating the validity of Assumptions 1 and 2, see Problem 18.)
The choice of a small step size according to Assumption 1 is certainly under the 

designer’s control. To match the LMS algorithm’s length to the order of the multiple 
regression model under Assumption 2 requires the use of a model selection criterion 
such as Akaike’s information-theoretic criterion or Rissanen’s minimum description-
length criterion, which were discussed in Chapter 1. What if, for one reason or another, 
the multiple regression model described by Eq. (6.66) holds but the Wiener filter is 
mismatched to the model? In such a situation, the statistical characterization of the 
estimation error as white noise may not be justified. In this second possible scenario, we 
make the following assumption as an alternative to Assumption 2:

Assumption 3. The input vector u(n) and the desired response d(n) are jointly 
Gaussian.
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Stochastic processes produced by physical phenomena are often such that a Gaussian 
model is appropriate. Furthermore, the use of a Gaussian model to describe physical 
phenomena may be confirmed by experiments.

Thus, the small step-size theory, representing a special case of statistical learn-
ing of the LMS algorithm, applies to one of two possible scenarios: In one scenario, 
Assumption 2 holds, whereas in the other scenario, Assumption 3 holds. Between them, 
these two scenarios cover a wide range of environments in which the LMS algorithm 
operates. Most importantly, in deriving the small step-size theory, we avoid making any 
assumptions about the statistical independence of input data; we shall have more to say 
on this issue later on.

natural Modes of the LMS algorithm

Under Assumption 1, Butterweck’s iterative procedure reduces to the following pair 
of equations:

  E0 1n + 12 = 1I - mR2E0 1n2 + f0 1n2; (6.68)

  f0 1n2 = -mu1n2e*o  1n2.  (6.69)

Before proceeding further, it is informative to transform the difference equation (6.68) 
into a simpler form by applying the unitary similarity transformation to the correlation 
matrix R. (See Appendix E.) When we do so, we obtain

 QHRQ = 𝚲, (6.70)

where Q is a unitary matrix whose columns constitute an orthogonal set of eigenvectors 
associated with the eigenvalues of the correlation matrix R and 𝚲 is a diagonal matrix 
consisting of the eigenvalues. To achieve the desired simplification, we also introduce 
the definition

 v1n2 = QHE0 1n2. (6.71)

Accordingly, using Eqs. (6.70) and (6.71) and the defining property of the unitary matrix Q, 
namely,

 QQH = I, (6.72)

where I is the identity matrix, we may transform Eq. (6.68) into the form

 v1n + 12 = 1I - m𝚲2v1n2 + F1n2, (6.73)

where the new vector F(n) is defined in terms of f0(n) by the transformation

 F1n2 = QHf0 1n2. (6.74)

For a partial characterization of the stochastic force vector F(n), we may express 
its mean and correlation matrix over an ensemble of LMS algorithms as follows:

 1. The mean of the stochastic force vector F(n) is zero:

 𝔼3F1n24 = 0  for all n. (6.75)
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 2. The correlation matrix of the stochastic force vector F(n) is a diagonal matrix; 
that is,

 𝔼3F1n2FH
 1n24 = m2Jmin𝚲, (6.76)

  where Jmin is the minimum mean-square error produced by the Wiener filter and  
𝚲 is the diagonal matrix of eigenvalues of the correlation matrix of the tap-input 
vector u(n).

These two properties imply that the individual components of the transformed 
stochastic force vector F are uncorrelated with each other.

Property 1 follows immediately from the principle of orthogonality that is inher-
ent in the Wiener filter. [See Eq. (2.11).] Specifically, using the defining equations (6.69) 
and (6.74), we write

  𝔼3F1n24 = -mQH𝔼3u1n2e*o  1n24 
  = 0,  

where the expectation term is zero by virtue of the principle of orthogonality.
The correlation matrix of F(n) is defined by

 𝔼3F1n2FH
 1n2] = m2QH𝔼3u1n2e*o  1n2eo 1n2uH

 1n24Q. (6.77)

To evaluate the expectation term in Eq. (6.77), we invoke Assumption 2 or Assumption 3, 
depending on which operational scenario is applicable:

	 •	 When the Wiener filter is perfectly matched to the multiple regression model of 
Eq. (6.66), the estimation error eo(n) is white (Assumption 2). Accordingly, we may 
factorize the expectation term in Eq. (6.77) as follows:

  𝔼3u1n2e*o  1n2eo 1n2uH
 1n24 = 𝔼3e*o  1n2eo 1n24𝔼3u1n2uH

 1n2] 

  = JminR.  

  Hence,

  𝔼3F1n2FH
 1n24 = m2JminQHRQ 

  = m2Jmin𝚲,  

which demonstrates Property 2.
	 •	 When the Wiener filter is mismatched to the multiple regression model of  

Eq. (6.66), we invoke Assumption 3. Specifically, with the input data u(n) and  
d(n) assumed to be jointly Gaussian, the estimation error eo(n) is likewise 
Gaussian. Then, applying the Gaussian moment-factoring theorem of Eq. (1.101), 
we may write

 𝔼3u1n2e*o  1n2eo 1n2uH
 1n24

 = 𝔼3u1n2e*o  1n24𝔼3eo 1n2uH
 1n24 + 𝔼3e*o  1n2eo 1n24𝔼3u1n2uH

 1n24,
  which, by virtue of the principle of orthogonality, reduces to

  𝔼3u1n2e*o  1n2eo 1n2uH
 1n24 = 𝔼3e*o  1n2eo 1n24𝔼3u1n2uH

 1n24 
  = JminR.  
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  Hence, using this result in Eq. (6.77), we get

 𝔼3F1n2FH
 1n24 = m2JminQHRQ 

  = m2Jmin𝚲,  

  which again demonstrates Property 2.

According to Eq. (6.73), the number of natural modes constituting the transient 
response of the LMS algorithm is equal to the number of adjustable parameters in the 
filter. In particular, for the kth natural mode of the LMS algorithm, we have

 vk 1n + 12 = 11 - mlk2vk 1n2 + fk 1n2,   k = 1, 2, c, M. (6.78)

Comparing this equation with the corresponding equation (4.20) for the steepest-
descent algorithm, we see that the transient behavior of the LMS algorithm differs 
from the steepest-descent algorithm for the Wiener filter in the presence of the sto-
chastic force fk(n)—a difference that has profound implications. In particular, from 
Eq. (6.78), it follows that the change in the natural model vk from one adaptation 
cycle to the next is

  ∆vk 1n2 = vk 1n + 12 - vk 1n2  

  = -mlkvk 1n2 + fk 1n2,    k = 1, 2, c, M, 
(6.79)

which is naturally split into two parts: a damping force, denoted by mlkvk(n), and a 
stochastic force, denoted by fk(n).

on the relationship between LMS Statistical Learning theory  
and Langevin equation of nonequilibrium thermodynamics

The linear difference equation (6.79) bears a close relationship with the Langevin equa-
tion of nonequilibrium thermodynamics, which is discussed in Appendix F. Indeed,  
Eq. (6.79) is the discrete-time version of the Langevin equation, which is demonstrated 
in Table 6.1. Just as the Langevin equation, driven by a stochastic force of its own, 
never reaches an equilibrium condition in thermodynamics, so it is with the LMS algo-
rithm that never reaches an equilibrium condition in signal processing, as evidenced by  
Eq. (6.79). Moreover, just as the Langevin equation characterizes Brownian motion, so it 
is with the LMS algorithm that performs a Brownian motion of its own, a characteriza-
tion that will be demonstrated experimentally in Sections 6.7 and 6.8.

To elaborate further on Eq. (6.79), we note that like fk(n), the natural mode vk(n) 
of the LMS algorithm is stochastic with a mean and mean-square value of its own.  

TAbLe 6.1 Analogy between the LMS Algorithm and the Langevin Equation

  LMS algorithm 
(discrete time, n)

Langevin equation 
(continuous time, t)

Stochastic force fk1n2 Γ1t2
Damping force -mlk -g

Sample function ∆vk1n2 v1t2
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Let vk(0) denote the initial value of vk(n). We may then solve the stochastic difference 
equation (6.78) to produce the solution

 vk 1n2 = 11 - mlk2n
 vk (0) + a

n - 1

i = 0
11 - mlk2n - 1 - i

 fk 1i2, (6.80)

where the first term is the natural component of vk(n) and the summation term is the 
forced component. Invoking the statistical properties of the stochastic force fk(n) 
described in Eqs. (6.75) and (6.76), we obtain the following formulas for the first two 
moments of the natural mode vk(n) for k = 1, 2, . . . , M (see Problem 11):

 1. Mean value:

 𝔼3vk 1n24 = vk 10211 - mlk2n. (6.81)

 2. Mean-square value:

 𝔼3 ∙ vk 1n2 ∙24 =
m Jmin

2 - mlk
+ 11 - mlk22n  a ∙ vk 102 ∙2 -

m Jmin

2 - mlk
b . (6.82)

We may thus summarize the exposition of small step-size theory of the LMS algorithm 
presented thus far as follows:

Provided that the step-size parameter of an LMS algorithm is small, the natural 
modes of the algorithm execute Brownian motion about some fixed values, with 
the first and second moments of the natural modes being defined by Eqs. (6.81) 
and (6.82), respectively.

With this material at our disposal, we are ready to probe more deeply into statistical 
characterization of the LMS algorithm.

Learning Curves

It is common practice to use ensemble-average learning curves to study the statistical 
performance of adaptive filtering algorithms. In particular, we may identify two kinds 
of learning curves:

 1. The mean-square-error (MSE) learning curve, which is based on ensemble averag-
ing of the squared estimation error |e(n)| 2. This learning curve is thus a plot of the 
mean-square error

 J1n2 = 𝔼3 ∙ e1n2 ∙24 (6.83)

  versus the adaptation cycle n.
 2. The mean-square deviation (MSD) learning curve, which is based on ensemble 

averaging of the squared error deviation 7E1n2 7  

2. This second learning curve is 
thus a plot of the mean-square deviation

 d1n2 = 𝔼3 7E1n2 7  

24 (6.84)

  versus the adaptation cycle n.
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Unlike the case of the steepest-descent algorithm, considered in Chapter 4, both the 
mean-square error J(n) and mean-square deviation d(n) in the LMS algorithm depend 
on the adaptation cycle n, because the estimation error e(n) and weight-error vector 
E(n) are both nonstationary processes.

The estimation error produced by the LMS algorithm is expressed as

  e1n2 = d1n2 - wn H
 1n2u1n2  

  = d1n2 - wH
o u1n2 + EH

 1n2u1n2  

  = eo 1n2 + EH
 1n2u1n2  

  ≈ eo 1n2 + EH
o  1n2u1n2  for m small, (6.85)

where eo(n) is the estimation error produced by the Wiener filter and E0(n) is the zero-
order weight-error vector of the LMS algorithm. Hence, the mean-square error pro-
duced by the corresponding LMS algorithm is given by

  J1n2 = 𝔼3 ∙ e1n2 ∙24  

  ≈ 𝔼31eo 1n2 + EH
0  1n2u1n221e*o1n2 + uH

 1n2E01n224  

  = Jmin + 2Re5𝔼3e*o1n2EH
0  1n2u1n246 + 𝔼3EH

0  1n2u1n2uH
 1n2E0 1n24,   (6.86)

where Jmin is the minimum mean-square error produced by the Wiener filter and Re{·} 
denotes the real part of the quantity enclosed between the braces.

The second term on the right-hand side of Eq. (6.86) is zero for the following 
reasons, depending on which scenario applies:

	 •	 Under Assumption 2, the irreducible estimation error eo(n) produced by the 
Wiener filter is statistically independent of the input vector u(n). At adapta-
tion cycle n, the zero-order weight-error vector E0(n) depends on past values of  
eo(n), a relationship that follows from the iterated use of Eq. (6.58). Hence, we 
may write

  𝔼3e*o  1n2EH
0  1n2u1n24 = 𝔼3e*o 1n24𝔼3EH

0  1n2u1n24 
  = 0.  (6.87)

	 •	 The null result of Eq. (6.87) also holds under Assumption 3, For the kth compo-
nents of E0(n) and u(n), we write the expectation

 𝔼3e*o  1n2e*0, k 1n2u1n - k24,   k = 0, 1, c, M - 1. 

  Assuming that the input vector u(n) and the desired response d(n) are jointly 
Gaussian, and the estimation error eo(n) is therefore also Gaussian, then applying 
the identity described in Eq. (1.100), we immediately obtain

 𝔼3e*o  1n2e*0, k 1n2u1n - k24 = 0   for all k. 

  Hence, Eq. (6.87) follows.

To evaluate the remaining term in Eq. (6.86), we use the fact that, as a conse-
quence of Assumption 1, the variations of the weight-error vector E0(n) with time  
are slow compared with those of the input vector u(n); that is, the spectral content  
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of the input signal u(n) is significantly different from that of the weight error ek(n) 
for k = 0, 1, . . . , M - 1. Consequently, in light of the direct-averaging method, we may 
replace the stochastic product u(n)uH(n) by its expected value and so write

  𝔼3EH
0  1n2u1n2uH

 1n2E0 1n24 ≈ 𝔼3EH
0  1n2𝔼3u1n2uH

 1n24E0 1n24 
  = 𝔼3EH

0  1n2RE0 1n24.  

The trace of a scalar quantity is the same as the quantity itself; thus, taking the trace of 
this expectation and then interchanging the operations of expectation and trace yields

  𝔼3EH
0  1n2u1n2uH

 1n2E0 1n24 ≈ tr5𝔼3EH
0  1n2RE0 1n246  

  = 𝔼5tr3EH
0  1n2RE0 1n246. 

Next, from matrix algebra, we use the identity

 tr3AB4 = tr3BA4, 
where A and B are matrices of compatible dimensions. So putting A = EH

0  and B = RE0, 
we may write

  𝔼3EH
0  1n2u1n2uH

 1n2E0 1n24 ≈ 𝔼5tr3RE0 1n2EH
0  1n246 

  = tr5𝔼3RE0 1n2EH
0  1n246  

  = tr5R𝔼3E0 1n2EH
0  1n246  

  = tr3RK0 1n24,  (6.88)

where R is the correlation matrix of the tap inputs and K0(n) is the zero-order approxi-
mation to the weight-error correlation matrix defined in the first line of Eq. (6.65).

Accordingly, using Eqs. (6.87) and (6.88) in Eq. (6.86), we may approximate the 
mean-square error produced by the LMS algorithm simply as

 J1n2 ≈ Jmin + tr3RK0 1n24. (6.89)

Equation (6.89) indicates that, for all n, the mean-square value of the estimation error 
in the LMS algorithm consists of two components: the minimum mean-square error Jmin 
and a component depending on the transient behavior of the zero-order weight-error 
correlation matrix K0(n). Since the latter component is nonnegative definite for all n, 
the LMS algorithm produces a mean-square error J(n) that is in excess of the minimum 
mean-square error Jmin. This statement confirms suboptimality of the LMS algorithm 
compared to the Wiener filter, which was stated previously is Section 6.2.

We now formally define the excess mean-square error as the difference between 
the mean-square error J(n) produced by the LMS algorithm at adaptation cycle n and 
the minimum mean-square error Jmin produced by the corresponding Wiener filter. 
Denoting the excess mean-square error by Jex(n), we write

  Jex 1n2 = J1n2 - Jmin  

   ≈ tr3RK0 1n24. (6.90)

Employing the definition in the first line of Eq. (6.65) and proceeding in a manner 
 similar to that described in Eq. (6.88), we may go on to express Jex(n) as
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  Jex 1n2 ≈ tr5R𝔼3E0 1n2EH
0  1n246  

  = tr5R𝔼3Qv1n2vH
 1n2QH46 

  = 𝔼5tr3RQv1n2vH
 1n2QH46 

  = 𝔼5tr3vH
 1n2QHRQv1n246 

  = 𝔼5tr3vH
 1n2𝚲v1n246  

  = a
M

k = 1
lk𝔼3 ∙ vk 1n2 ∙24.  (6.91)

Again, using E0(n) as an approximation for the weight-error vector E(n) under 
Assumption 1, we may correspondingly use Eq. (6.71) to approximate the mean-square 
deviation of Eq. (6.84) as

  d1n2 ≈ 𝔼3 7E0 1n2 7  

24  

  = 𝔼3 7v1n2 7  

24  

  = a
M

k = 1
𝔼3 ∙ vk 1n2 ∙24, (6.92)

where, in the second line, we have used the fact that the Euclidean norm of a vector is 
invariant to rotation by a unitary similarity transformation. Now, let lmin and lmax denote 
the minimum and maximum eigenvalues, respectively, of the correlation matrix R; that is,

 lmin … lk … lmax,   k = 1, 2, c, M. (6.93)

Using Eqs. (6.91) and (6.92), we may therefore bound the mean-square deviation as follows:

 lmin d1n2 … Jex 1n2 … lmax d1n2   for all n. 

Equivalently, we may write

 
Jex 1n2
lmin

Ú d1n2 Ú
Jex 1n2
lmax

   for all n. (6.94)

This twofold inequality shows that, for all n, the mean-square deviation d1n2 is lower bounded 
by Jex(n)/lmax and upper bounded by Jex(n)/lmin. Accordingly, we may make the statement:

The mean-square deviation of the LMS algorithm decays with an increasing number 
of adaptation cycles in a manner similar to that of the excess mean-square error.

It therefore suffices to focus attention on the convergence behavior of Jex(n).

6.5 tranSient BehaVior and ConVergenCe ConSiderationS

According to Eq. (6.81), the exponential factor (1 - mlk)n governs the evolution of the 
mean of the kth natural mode of the LMS algorithm with adaptation cycle n. A neces-
sary condition for this exponential factor to decay to zero is to have

 -1 6 1 - mlk 6 +1  for all k, 

which, in turn, imposes the following condition on the step-size parameter:

 0 6 m 6
2

lmax
. (6.95)

M06_HAYK4083_05_SE_C06.indd   301 21/06/13   8:33 AM



302   Chapter 6  The Least-Mean-Square (LMS) Algorithm 

Here, lmax is the largest eigenvalue of the correlation matrix R. However, in studying 
the transient behavior of the LMS algorithm, we have to recall that the derivation of 
Eq. (6.81) is subject to the requirement that the step-size parameter m be small. We may 
satisfy this requirement by assigning to m a value that is small compared with the recip-
rocal of lmax. Then, for all k, the exponential factor (1 - mlk)n is assured of decaying to 
zero with increasing n, in which case we may write

 𝔼13vk1n242 S 0 as n S ∞     for all k. (6.96)

Equivalently, by virtue of Eqs. (6.55) and (6.71) and the approximation of E(n) by E0(n), 
we have

 𝔼3wn 1n24 S wo  as  n S ∞ , (6.97)

where wo is the Wiener solution. However, such a convergence criterion is of little prac-
tical value, since a sequence of asymptotically zero-mean random variables need not 
tend to zero.

We avoid this shortcoming of the convergence of the mean by considering a 
stronger criterion: convergence in the mean square, which is inherently linked to the 
ensemble- average learning curves and which therefore explains the practical impor-
tance of learning curves in the study of adaptive filters. Using Eqs. (6.82) and (6.91) in 
the first line of Eq. (6.90), we may express the mean-square error produced by the LMS 
algorithm for small m compared to the permissible limit, 2/lmax, as shown by

 J1n2 = Jmin + m Jmina
M

k = 1

lk

2 - mlk
+ a

M

k = 1
lka ∙ vk (0) ∙2 -

m Jmin

2 - mlk
b11 - mlk22n  (6.98)

 ≈ Jmin +
m Jmin

2
 a

M

k = 1
lk + a

M

k = 1
lk a ∙ vk 102 ∙2 -

m Jmin

2
b11 - mlk22n.   

For most practical applications of the LMS algorithm, the error incurred in using the 
approximate formula in the second line of Eq. (6.98), compared to the first line of the 
equation, is small enough to be ignored.

The evolution of J(n) with adaptation cycle n is governed by the exponential 
factor (1 - mlk)2n for all natural modes k = 1, 2, . . . , M. Recalling that the derivation 
of Eq. (6.97) is subject to the requirement that the step-size parameter m be small, we 
may again satisfy this requirement by choosing m small compared with 1/lmax. Then, 
under this condition, the exponential factor (1 - mlk)2n is assured of decaying to zero 
with increasing n for all k. Accordingly, we may characterize the learning curves of LMS 
algorithms for small m by stating the following principle:

The ensemble-average learning curve of an LMS algorithm does not exhibit oscil-
lations; rather, it decays exponentially to the constant value

  J1∞2 = Jmin + m Jmina
M

k = 1

lk

2 - mlk
 (6.99)

  ≈ Jmin +
m Jmin

2 a
M

k = 1
lk,    m small. 
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Note, however, applicability of this principle is based on the zero-order solution E0(n), 
the use of which is justified only for small m.5 

As pointed out briefly in Section 5.2, the use of a small value for the step-size 
parameter m is also responsible for robust behavior of the LMS algorithm, an important 
practical issue that will be discussed in detail in Chapter 11. We may therefore go on to 
say that assigning a small value to the m is not only justifiable from a practical perspec-
tive but also from a statistical learning theoretic perspective of the LMS algorithm.

Misadjustment

We next characterize the LMS algorithm by introducing a new parameter: the misadjust-
ment, which is formally defined as

 m =
Jex 1∞2

Jmin
. (6.100)

In words:

The misadjustment is defined as the ratio of the steady-state value of the excess 
mean-square error Jex(∞) to the minimum mean-square error Jmin.

Using Eqs. (6.99) and (6.100), we may thus write for small m:

 m =
m

2
 a

M

k = 1
lk. (6.101)

The misadjustment m is a dimensionless parameter that provides a measure of how close 
the LMS algorithm is to optimality in the mean-square-error sense. The smaller m is com-
pared with unity, the more accurate is the adaptive filtering action being performed by the 
LMS algorithm. It is customary to express m as a percentage. For example, a misadjust-
ment of 10 percent means that the LMS algorithm produces a mean-square error (after 
adaptation is completed) that is 10 percent greater than the minimum mean-square error 
Jmin. Such performance is ordinarily considered to be satisfactory in practice.

From the eigendecomposition theory presented in Appendix E we recognize that 
the trace of matrix R is equal to the sum of its eigenvalues. We may therefore rewrite 
Eq. (6.101) in the equivalent form

 m =
m

2
 tr3R4. (6.102)

This formula is the result of an eigendecomposition. It may also be derived directly 
without having to go through such an approach as discussed in Problem 12.

Regardless of which procedure is used to arrive at Eq. (6.102), we note that, for a 
stationary process composed of the tap inputs in the FIR filter of Fig. 5.1, the correlation 

5No reliable statement can be made on the stability of the LMS algorithm for moderate and large val-
ues of m. In this latter situation, the whole LMS algorithm (i.e., zero-order as well as higher-order solutions) 
would have to be considered. Unfortunately, under this complicated scenario, the statistical learning theory 
of the LMS algorithm becomes mathematically unmanageable.
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matrix R is not only nonnegative definite, but also Toeplitz, with all of the elements on 
its main diagonal equal to r(0). Since r(0) is itself equal to the mean-square value of the 
input at each of the M taps in the FIR filter, we have

   tr3R4 = Mr102  

  = a
M - 1

k = 0
𝔼3 ∙ u1n - k2 ∙24 

  = 𝔼3 7u1n2 7  

24.  

Thus, using the term “total tap-input power” to refer to the sum of the mean-square 
values of the tap inputs u(n), u(n - 1), . . . , u(n - M + 1) in the FIR filter of the LMS 
algorithm, we may recast Eq. (6.102) for the misadjustment as shown by

 m =
m

2
* 1total tap@input power2. (6.103)

6.6 eFFiCienCy

In Chapter 5, on the method of stochastic gradient descent, we introduced the notion 
of efficiency as one of the principles of that method. Therein, we referred to the rate of 
convergence as a measure of statistical efficiency, which is formally defined for linear 
adaptive filtering algorithms as follows:

The rate of convergence is a representative measure of the cost involved in con-
verging to the Wiener solution by a linear adaptive filtering algorithm under the 
umbrella of statistical learning theory of that algorithm operating on a stationary 
environment.

For this measure to provide a common principle for comparative evaluation of different 
linear adaptive filtering algorithms, exemplified by the LMS algorithm studied in this 
chapter and the RLS algorithm to be studied in Chapter 10, it is understood that similar 
statistical assumptions are made on the environment, wherein observable data made up 
of the input vector and corresponding desired response are picked.

time Constants of the Learning Curve

The rate of convergence of the LMS algorithm is determined by the time constants 
of its discrete transient response. To get a handle on this issue, we have to go back to  
Eq. (6.98), which embodies this transient response, herewith denoted by tk(n). Putting 
aside all the constants in this equation, we may express t(n) in terms of the eigenvalues 
of the condition matrix R as follows:

  tk1n2 = 11 - mlk22n  

  = 11 - 2mlk + m2l2
k2n. 
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Typically, with m assigned a small value, the squared term m2l2
k is small enough to be 

ignored for all practical purposes. We may therefore approximate tk(n) as follows:

 tk1n2 ≈ 11 - 2mlk2n for k = 1, 2, c, M. (6.104)

Evaluating Eq. (6.104) at the initial condition n = 0 and adaptation cycle n = 1, we have

  tk102 = 1  

  tk112 = 1 - 2mlk. 

Let tmse,k denote the time constant corresponding to the kth eigenvalue. Then, referring 
to Fig. 6.13, we find that

  
1

tmse,k
= t102 - t112  

  ≈ 1 - 11 - 2mlk2  

  = 2mlk, k = 1, 2, c, M. 

Equivalently, we may write

 tmse,k ≈
1

2mlk
, k = 1, 2, c, M. (6.105)

From this equation, we may draw the following conclusions (Widrow & Kamenetsky, 2003):

 1. As the tap weights of the LMS algorithm converge toward the Wiener solution, 
the learning curve undergoes a geometric progression around the minimum mean-
square error, Jmin.

FiGure 6.13 Exponential transient response, tk(n) pertaining to kth eigenvalue of the  
LMS algorithm, where n is the number of adaptation cycles normalized with respect to  
some arbitrary time interval for convenience of presentation.
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 2. The LMS algorithm is sensitive to the eigenvalue spread of the correlation matrix 
R, hence its potential vulnerability to eigenvalue spreads of a stationary process. 
(This issue will be discussed experimentally in Sections 6.7 and 6.8.)

 3. Under worst conditions, the rate of convergence will be dominated by the smallest 
eigenvalue, denoted by lmin; the slowest time constant for the learning curve will 
therefore be approximately defined by

 tmse, min ≈
1

2mlmin
, 

  which leads to a slow rate of convergence.

All along, we have to be aware of the stability constraint imposed on the LMS algorithm 
in Eq. (6.95), which, interestingly enough, involves the largest eigenvalue, lmax.

relationship Between Misadjustment and rate of Convergence

According to Eq. (6.103), the misadjustment factor of the LMS algorithm, m, is directly 
proportional to the step-size parameter, m; for m to be small, m should be correspond-
ingly kept small. In Chapter 11, we will show that by keeping m small, robustness of the 
LMS algorithm is guaranteed in H∞ theory. For this latter reason, we may reiterate that 
keeping m small is in the best practical interests of the LMS algorithm.

However, the time constants of the learning curve and therefore the rate of con-
vergence of the LMS algorithm are inversely proportional to the step-size parameter, m. 
Accordingly, keeping m small results in a long rate of convergence and, therefore, a less 
statistically efficient LMS algorithm.

In other words, keeping m small, robustness of the LMS algorithm (with a small 
misadjustment factor) is traded off for efficiency. Detailed discussion of this trade-off 
is deferred to Chapter 11.

6.7 CoMputer experiMent on adaptiVe prediCtion

For our first experiment with the LMS algorithm, we study a first-order, autoregressive 
(AR) process using real-valued data. The process is described by the following differ-
ence equation:

 u1n2 = -au1n - 12 + n1n2, (6.106)

where a is the (one and only) parameter of the process and n(n) is a zero-mean white-
noise process of variance s2

n. To estimate the parameter a, we use an adaptive predictor 
of order one, as depicted in Fig. 6.14. The real LMS algorithm for adaptation of the (one 
and only) tap weight of the predictor is written as

 wn 1n + 12 = wn 1n2 + mu1n - 12f1n2, (6.107)

where

 f1n2 = u1n2 - wn 1n2u1n - 12 

is the prediction error.

M06_HAYK4083_05_SE_C06.indd   306 21/06/13   8:33 AM



Section 6.7 Computer experiment on Adaptive Prediction   307

The experiment is performed for the following parameterization of the AR pro-
cess, assumed to have zero mean:

AR parameter, a = -0.99
Variance of the process, s2

u = 0.936

The experiment has two objectives:

 1. Study experimental plots of the algorithm’s learning curves for varying m.
 2. Validate experimentally the statistical learning theory of the algorithm for small m.

These two issues are addressed in this order in the discussion that follows.

objective i. Learning Curves for Varying M

Figure 6.15 shows experimental plots of the learning curves of the LMS algorithm [i.e., the 
mean-square error J(n) versus the number of adaptation cycles, n] for the AR parameter 
a previously and varying step-size parameter m. Specifically, the values used for m are 0.01, 
0.05, and 0.1. The ensemble averaging was performed over 100 independent Monte Carlo 
runs of the experiment. The plots of Fig. 6.15 confirm the following properties:

	 •	 As the step-size parameter m is reduced, the rate of convergence of the LMS algo-
rithm is correspondingly increased.

	 •	 A reduction in the step-size parameter m also has the effect of reducing variation 
in the experimentally computed learning curve.

objective 2. Validation of the Statistical Learning theory

With the AR process of order one (i.e., M = 1), as described in Eq. (6.106), we note the 
following points for the problem at hand:

 1. The correlation matrix R is a scalar with an eigenspectrum that consists of an 
eigenvalue l1 equal to s2

u and an associated eigenvector q1 equal to unity.

FiGure 6.14 Adaptive first-order predictor.
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 2. The Wiener solution wo for the tap weight of the predictor is equal to -a.
 3. The minimum mean-square error Jmin is equal to s2

n, denoting the variance of the 
additive white noise n(n).

These values are summarized here:

 

l1 = s2
u  

q1 = 1     

wo = -a
Jmin = s2

n  

t . (6.108)

The first item to be checked is the choice of m that justifies application of the small step-
size theory developed in Section 6.5. As explained previously, this requirement may be 
satisfied by assigning to m a value very small compared with 2/lmax, where lmax is the 
largest eigenvalue of R. For this experiment, lmax = l1. With l1 = s2

u, the requirement of 
the small step-size theory is satisfied for the specified value of s2

u by choosing m = 0.001.

FiGure 6.15 Experimental learning curves of adaptive first-order predictor for varying step-size 
parameter m.
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With this background, we may now proceed with the second objective of the experiment, 
addressing two related aspects of the LMS statistical learning theory.

Random-Walk Behavior. Figure 6.16 plots a single realization of the LMS algo-
rithm for m = 0.001. In this figure, we see that starting from the initial condition wn 102 = 0, 
the sample estimate of the tap weight, wn 1n2, increases upward gradually with increasing 
number of adaptation cycles, n. After about n = 500, the estimate wn 1n2 reaches a “quasi-
steady-state” that is characterized by a random behavior around the optimum Wiener 
solution, wo = -a = 0.99. The plot presented in Fig. 6.17 magnifies this random behavior, 
around the steady state, which has the appearance of a random walk with mean equal to 
0.0439 and variance equal to 0.0074; these results were computed using 100 Monte Carlo 
runs. Thus, assuming that the additive noise in the update formula for wn  is Gaussian dis-
tributed, we may go on to say that the random walk assumes the form of Brownian motion.

Agreement between Theory and Experiment. Finally, another verification of 
the small step-size theory is presented in Fig. 6.18 on learning curves. The experimental 
curve, labeled “Experiment,” was obtained by ensemble averaging the squared value 
of the prediction error f(n) over 100 independent Monte Carlo runs for varying n. The 
theoretical curve, labeled “Theory,” follows from Eq. (6.98), the second line of which, 
for the problem at hand, reduces to

 J1n2 ≈ s2
n

 a1 +
m

2
 s2

ub + s2
u aa2 -

m

2
 s2

nb11 - ms2
u22n,  m small. (6.109)

FiGure 6.16 Transient response, displaying evolution of the tap weight of the adaptive   
one-step predictor across time, around the Wiener solution represented by the faint 
horizontal line.
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FiGure 6.17 Illustrating the random behavior of the only tap weight of the predictor.

FiGure 6.18 Comparison of experimental results with theory for the adaptive predictor, based on the 
mean-square error for m = 0.001.
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For an AR process of order one, the variance of the white noise n(n) is defined by [see 
Eq. (1.71)]

 s2
n = s2

u 11 - a22. (6.110)

Accordingly, the use of Eq. (6.110) in Eq. (6.109) yields

J1n2 ≈ s2
u11 - a22a1 +

m

2
 s2

ub + s2
u aa2 +

m

2
 a2s2

u -
m

2
 s2

ub11 - ms2
u22n, m small.

(6.111)

The experimental curve in Fig. 6.18 was computed using the parameter values: a = -0.99, 
s2

u = 0.936, and m = 0.001. From the figure we observe that the agreement between 
theory and experiment is remarkably good for the entire learning curve, justifying valid-
ity of the LMS transient behavior presented in Section 6.5.

6.8 CoMputer experiMent on adaptiVe equaLization

In this second computer experiment, we study the use of the LMS algorithm for adap-
tive equalization of a linear dispersive channel that produces (unknown) distortion. 
Here, again, we assume that the data are all real valued. Figure 6.19 shows the block 
diagram of the system used to carry out the study. Random-number generator 1 pro-
vides the test signal xn, used for probing the channel, whereas random-number genera-
tor 2 serves as the source of additive white noise n(n) that corrupts the channel output. 
These two random-number generators are independent of each other. The adaptive 
equalizer has the task of correcting for the distortion produced by the channel in the 
presence of the additive white noise. Random-number generator 1, after suitable delay, 
also supplies the desired response applied to the adaptive equalizer in the form of a 
training sequence.

FiGure 6.19 Block diagram of adaptive equalizer experiment.
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The random sequence {xn} applied to the channel input consists of a Bernoulli 
sequence, with xn = {1 and the random variable xn having zero mean and unit variance. 
The impulse response of the channel is described by the raised cosine6

 
hn = c 1

2
 c 1 + cos a2p

W
 1n - 22bd , n = 1, 2, 3,

0, otherwise
 (6.112)

where the parameter W controls the amount of amplitude distortion produced by the 
channel, with the distortion increasing with W.

Equivalently, the parameter W controls the eigenvalue spread x(R) of the cor-
relation matrix of the tap inputs in the equalizer, with the eigenvalue spread increasing 
with W. The sequence n(n), produced by the second random-number generator, has zero 
mean and variance s2

n = 0.001.
The equalizer has M = 11 taps. Since the channel has an impulse response hn that 

is symmetric about adaptation cycle n = 2, as depicted in Fig. 6.20(a), it follows that 
the optimum tap weights won of the equalizer are likewise symmetric about adaptation 
cycle n = 5, as depicted in Fig. 6.20(b). Accordingly, the channel input xn is delayed by  
∆ = 2 + 5 = 7 samples to provide the desired response for the equalizer. By selecting the 

FiGure 6.20 (a) Impulse response of channel; (b) impulse response of optimum FIR 
equalizer.

6The parameters specified in this experiment closely follow the paper by Satorius and Alexander 
(1979).
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delay ∆ to match the midpoint of the FIR equalizer, the LMS algorithm is enabled to 
provide an approximate inversion of both the minimum-phase and non-minimum-phase 
components of the channel response.

The experiment is in three parts that are intended to evaluate the response of the 
adaptive equalizer using the LMS algorithm to changes in the eigenvalue spread x(R) and 
step-size parameter m. Before proceeding to describe the results of the experiment, however, 
we compute the eigenvalues of the correlation matrix R of the 11 tap inputs in the equalizer.

Correlation Matrix of the equalizer input

The first tap input of the equalizer at adaptation cycle n is

 u1n2 = a
3

k = 1
hkx1n - k2 + n1n2, (6.113)

where all the parameters are real valued. Hence, the correlation matrix R of the 11 tap 
inputs of the equalizer, u(n), u(n - 1), . . . , u(n - 10), is a symmetric 11-by-11 matrix. Also, 
since the impulse response hn has nonzero values only for n = 1, 2, 3, and the noise process 
n(n) is white with zero mean and variance s2

n, the correlation matrix R is quintdiagonal. 
That is, the only nonzero elements of R are on the main diagonal and the four diagonals 
directly above and below it, two on either side, as shown by the special structure

 R = F r102 r112 r122 0 g 0
r112 r102 r112 r122 g 0
r122 r112 r102 r112 g 0

0 r122 r112 r102 g 0
f f f f f f
0 0 0 0 g r102

V , (6.114)

where

  r102 = h2
1 + h2

2 + h2
3 + s2

n, 

  r112 = h1h2 + h2h3,  

and

  r122 = h1h3.  

The variance s2
n = 0.001; hence, h1, h2, and h3 are determined by the value assigned to 

the parameter W in Eq. (6.112).
In Table 6.2, we have listed (1) values of the autocorrelation function r(l) for  

lag l = 0, 1, 2, and (2) the smallest eigenvalue lmin, the largest eigenvalue lmax, and the 
eigenvalue spread x(R) = lmax/lmin. We thus see that the eigenvalue spread ranges from 
6.078 (for W = 2.9) to 46.821 (for W = 3.5).

Experiment 1: Effect of Eigenvalue Spread. For the first part of the experiment, 
the step-size parameter was held fixed at m = 0.075. This value is chosen in accordance 
with the requirement that the step-size parameter m be small compared with the recipro-
cal of lmax, which denotes the largest eigenvalue of the correlation matrix R. (Indeed, all 
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three values of the step-size parameter m used in the experiment satisfy this requirement, 
thereby assuring convergence.)

For each eigenvalue spread, an approximation to the ensemble-average learning 
curve of the adaptive equalizer is obtained by averaging the instantaneous-squared-
error “e2(n) versus n” curve over 200 independent Monte Carlo runs of the computer 
experiment. The results of this computation are shown in Fig. 6.21, from which we see 

TAbLe 6.2 Summary of Parameters for the Experiment on Adaptive Equalization

W   2.9   3.1   3.3  3.5

r(0) 1.096  1.157  1.226  1.302

r(1) 0.439  0.560  0.673  0.777

r(2) 0.048  0.078  0.113  0.151

lmin 0.33   0.214  0.126  0.066

lmax 2.030  2.376  2.726  3.071

x(R) = lmax/lmin 6.078 11.124 21.713 46.822

FiGure 6.21 Learning curves of the LMS algorithm for an adaptive equalizer with number of taps  
M = 11, step-size parameter m = 0.075, and varying eigenvalue spread x(R).
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that increasing the eigenvalue spread x(R) has the effect of slowing down the rate of 
convergence of the adaptive equalizer and also increasing the steady-state value of the 
average squared error. For example, when x(R) = 6.0782, approximately 80 adaptation 
cycles are required for the adaptive equalizer to converge in the mean square, and 
the average squared error (after 500 adaptation cycles) equals approximately 0.003. 
On the other hand, when x(R) = 46.8216 (i.e., the equalizer input is ill conditioned), 
the equalizer requires approximately 200 adaptation cycles to converge in the mean 
square, and the resulting average squared error (after 500 adaptation cycles) equals 
approximately 0.04.

In Fig. 6.22, we have plotted the ensemble-average impulse response of the 
 adaptive equalizer after 1000 adaptation cycles for each of the four eigenvalue spreads 
of interest. As before, the ensemble averaging was carried out over 200 independent 
Monte Carlo runs of the experiment. We see that in each case the ensemble-average 
impulse response of the adaptive equalizer is very close to being symmetric with respect 
to the center tap, as expected. The variation in the impulse response from one eigenvalue 

FiGure 6.22 Ensemble-average impulse response of the adaptive equalizer (after 1000 
adaptation cycles) for each of four different eigenvalue spreads.
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spread to another merely reflects the effect of a corresponding change in the impulse 
response of the channel.

Experiment 2: Effect of Step-Size Parameter. For the second part of the 
experiment, the parameter W in Eq. (6.112) was fixed at 3.1, yielding an eigenvalue 
spread of 11.1238 for the correlation matrix of the tap inputs in the equalizer. The 
step-size parameter m was this time assigned one of the three values 0.075, 0.025, 
and 0.0075.

Figure 6.23 shows the results of the computation. As before, each learning curve is 
the result of ensemble averaging the instantaneous-squared-error “e2(n) versus n” curve 
over 200 independent Monte Carlo runs of the computer experiment.

The results confirm that the rate of convergence of the adaptive equalizer is highly 
dependent on the step-size parameter m. For a large step-size parameter (m = 0.075), 
the equalizer converged to steady-state conditions in approximately 120 adaptation 

FiGure 6.23 Learning curves of the LMS algorithm for an adaptive equalizer with the number of 
taps M = 11, fixed eigenvalue spread, and varying step-size parameter m.

M06_HAYK4083_05_SE_C06.indd   316 21/06/13   8:33 AM



Section 6.8 Computer experiment on Adaptive equalization   317

cycles. On the other hand, when m was small (equal to 0.0075), the rate of convergence 
slowed down by more than an order of magnitude. The results also show that the steady-
state value of the average squared error (and hence the misadjustment) increases with 
increasing m.

Experiment 3: Validation of the Statistical Learning Theory. As with the com-
puter experiment on adaptive prediction, we divide this third experiment on the valida-
tion of LMS statistical learning for the adaptive equalization into two parts.

Random-Walk Behavior. For this part of the experiment, we focus attention 
on quasi-steady-state response of the LMS algorithm, wherein a single sample function 
of the tap-weight vector, estimated by the LMS algorithm, performs a random behav-
ior around the vectorized Wiener solution. With the tap-weight vector, wn 1n2, consist-
ing of 11 elements, we have 11 such random behaviors, as shown plotted in Fig. 6.24.  
Table 6.3 summarizes the time-averaged deviation of the mean value of each estimated 
tap weight from its actual value and the corresponding time-averaged variance of 
each one of these plots; they were computed using 100 Monte Carlo runs. Based on 
these results, we may characterize the 11 random behaviors depicted in Fig. 6.24 as 
random walks. Moreover, assuming the stochastic force driving the random behaviors 
to be Gaussian distributed, we may describe each random behavior in Fig. 6.24 as an 
example of Brownian motion.

Agreement between Theory and Experiment. Applying the second line of  
Eq. (6.98) to the adaptive equalizer described in this section, we get the theoretic 
continuous curves plotted in Fig. 6.25 for the eigenvalue spread W = 3.3 and three 
different values of the step-size parameter, namely, m = 0.0075, 0.025, and 0.075. The 
corresponding experimental plots are also presented in parts (a), (b), and (c) of  
the figure, respectively; this second set of results was obtained using 400 Monte 
Carlo runs.

In light of the results presented in Fig. 6.25, we may make the following three 
observations:

 1. For m = 0.0075, the experimental learning curve follows the theoretically derived 
learning curve very closely.

 2. For m = 0.025, the agreement between theory and experiment remains good.
 3. For m = 0.075, the transient part of the theoretic learning curve follows a good 

part of its experimental counterpart reasonably closely up to about 200 
 adaptation cycles, but thereafter, the theory fails significantly in computing 
the quasi-steady-state response of the algorithm.

Based on these results, we may go on to make two insightful conclusions:

 1. When the step-size parameter, m, is small, there is good agreement between the 
LMS statistical learning theory derived in this chapter and experiments performed 
using Monte Carlo simulations.
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FiGure 6.24 Eleven plots, displaying the random behavior of each tap weight, wn k1n2, estimated by the 
LMS algorithm for k = 0, 1, . . . , 10. The vertical axis in each plot describes the deviation of the estimated 
relevant weight in the LMS algorithm from its own Wiener solution. The horizontal axis of each plot 
indicates the number of adaptation cycles, n. [Note: The number of adaptation cycles is measured from 
when steady-state conditions (i.e., n = 150) are established.]
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 2. When the step-size parameter, m, is large but small enough to assure convergence, 
the learning curve of the LMS algorithm appears to exhibit two distinct modes:7

 (a) Initial mode, which follows the statistical learning theory described in this chapter.
 (b) Later mode, which converges faster towards the quasi-steady-state condition 

of the algorithm.

6.9  CoMputer experiMent on a MiniMuM-VarianCe 
diStortionLeSS-reSponSe BeaMForMer

For our final experiment, we consider the LMS algorithm applied to an adaptive 
 minimum-variance distortionless-response (MVDR) beamformer consisting of a linear 
array of five uniformly spaced sensors (e.g., antenna elements), as depicted in Fig. 6.26. 
The spacing d between adjacent elements of the array equals one-half of the received 
wavelength, so as to avoid the appearance of grating lobes. The beamformer operates in an 
environment that consists of two components: a target signal impinging on the array along 
a direction of interest and a single source of interference coming from an unknown direc-
tion. It is assumed that these two components originate from independent sources and that 
the received signal includes additive white Gaussian noise at the output of each sensor.

The aims of the experiment are twofold:

	 •	 Examine the evolution with time of the adapted spatial response (pattern) of the 
MVDR beamformer for a prescribed target signal-to-interference ratio.

TAbLe 6.3 Second-Order Statistics of Deviations in the 11 Tap 
Weights Estimated by the LMS Algorithm

    Mean  Variation

wo0 - wn 0 -0.0010 1.146 * 10-6

wo1 - wn 1 0.0012 2.068 * 10-6

wo2 - wn 2 -0.0001 2.134 * 10-6

wo3 - wn 3 0.0010 2.701 * 10-6

wo4 - wn 4 -0.0006 2.229 * 10-6

wo5 - wn 5 -0.0001 1.737 * 10-6

wo6 - wn 6 0.0017 1.878 * 10-6

wo7 - wn 7 -0.0014 2.138 * 10-6

wo8 - wn 8 0.0001 1.880 * 10-6

wo9 - wn 9 0.0004 1.934 * 10-6

wo10 - wn 10 0.0012 2.068 * 10-6

Note. Each deviation is defined with respect to the actual value of the tap 
weight wk, k = 0, 1, c, 10.

7A similar observation has been reported in Nascimento and Sayed (2000), where the second mode is 
explained by almost sure convergence analysis—that is, analysis based on the criterion that the LMS algorithm 
will converge with probability one.
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	 •	 Evaluate the effect of varying the target-to-interference ratio on the interference-
nulling performance of the beamformer.

The angles of incidence of the target and interfering signals, measured in radians with 
respect to the normal to the line of the array, are as follows:

	 •	 Target signal: 

 ftarget = sin-11-0.22. 

	 •	 Interference: 

 finterf = sin-1102. 

The design of the LMS algorithm for adjusting the weight vector of the adaptive 
MVDR beamformer follows the theory presented in Section 1.8. For the application at 
hand, the gain vector g = 1.

Figure 6.27 shows the adapted spatial response of the MVDR beamformer for 
signal- to-noise ratio of 10 dB, varying interference-to-noise ratio (INR), and varying num-
ber of adaptation cycles. The spatial response is defined by 20 log10 ∙ wn H

 1n2s1u2 ∙2, where

 s1u2 = 31, e-ju, e-j2u, e-j3u, e-j4u4T 

is the steering vector. The electrical angle u, measured in radians, is related to the angle 
of incidence f by

 u = p sin f. (6.115)

The weight vector wn 1n2 of the beamformer is computed with the use of the LMS 
algorithm with step-size parameter m = 10-8, 10-9, and 10-10 for INR = 20, 30, and  

FiGure 6.26 Linear array antenna.
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FiGure 6.27 Adapted spatial response of MVDR beamformer for varying interference-to- 
noise ratio and varying number of adaptation cycles: (a) n = 20; (b) n = 100; (c) n = 200. In 
each part of the figure, the interference-to-noise ratio assumes one of three values; in part (a), 
the number of adaptation cycles is too small for these variations to have a noticeable effect. 
Parts (b) and (c) are shown on the next page.

40 dB, respectively. The reason for varying m is to ensure convergence for a prescribed 
interference- to-noise ratio, as the largest eigenvalue lmax of the correlation matrix of 
the input data depends on that ratio.

Figure 6.28 shows the adapted spatial response of the MVDR beamformer after 
20, 25, and 30 adaptation cycles. The three curves of the figure pertain to INR = 20 dB 
and a fixed target signal-to-noise ratio of 10 dB.

On the basis of the results presented in Figs. 6.27 and 6.28, we may make the fol-
lowing observations:

	 •	 The spatial response of the MVDR beamformer is always held fixed at 0 dB along 
the prescribed angle of incidence ftarget = sin-11-0.22, as required.

	 •	 The interference-nulling capability of the beamformer improves with (a) an 
increasing number of adaptation cycles (snapshots of data) and (b) an increasing 
interference-to-target signal ratio.
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6.10 SuMMary and diSCuSSion

In the first part of the chapter, we discussed optimality-related issues in two contexts: in a 
localized manner, wherein the LMS algorithm exhibits optimality in a certain Euclidean 
sense, and suboptimality compared with the Wiener solution in a quasi-steady state, where the 
suboptimality is attributed to gradient noise. In the second part, we followed up with appli-
cations of the LMS algorithm in equalization, deconvolution of seismic data, instantaneous 
frequency measurement, noise cancellation, line enhancement, and adaptive beamforming.

highlights of the Small Step-Size theory

Much of the second part of this chapter was devoted to the small step-size theory of 
LMS algorithms, the derivation of which builds on the Wiener filter theory of Chapter 2, 
providing a principled approach for evaluating the transient as well as the steady-state 
response of LMS algorithms under one of two plausible scenarios:

Scenario 1. The statistical dependence of the desired response d(n) on the tap-
input vector u(n) is governed by a multiple linear regression model. The Wiener filter, 

FiGure 6.28 Adapted spatial response of MVDR beamformer for signal-to-noise ratio = 10 dB, 
interference-to-noise ratio = 20 dB, step-size parameter = 10-8, and varying number of adaptation cycles.

M06_HAYK4083_05_SE_C06.indd   324 21/06/13   8:33 AM



Section 6.10 Summary and Discussion   325

used to compute the unknown parameter vector of the model, has a length equal to the 
model order. No other assumptions are made on the statistical characterization of the 
environment.

Scenario 2. The statistical dependence of d(n) on u(n) is linear, but arbitrary. The 
desired response d(n) and tap-input vector u are jointly Gaussian. No other assumptions 
are made on the statistical characterization of the environment.

The net result of the small step-size theory is that the ensemble-average learning 
curves of LMS algorithms for a given problem of interest exhibit a deterministic behav-
ior in accordance with Eq. (6.98). Moreover, comparing that equation with Eq. (4.28), 
we see clearly that the ensemble-average learning curve of the LMS algorithm deviates 
from that of the steepest-descent algorithm operating on the corresponding Wiener 
filter, due to the presence of a stochastic driving force.

Another elegant feature of the small step-size theory is that it provides an insight-
ful link of the stochastic behavior of LMS algorithms to Brownian motion, whose math-
ematical formulation is described by the Langevin equation.

Comparison with independence theory

Most importantly, the small step-size theory avoids shortcomings of the independence 
theory that are rooted in the statistical literature on the LMS algorithm (Widrow et al., 
1976; Mazo, 1979; Gardner, 1984). The independence theory of the LMS algorithm makes 
the following assumptions:

	 •	 The tap-input vectors u(1), u(2), . . . , u(n) constitute a sequence of statistically 
independent vectors.

	 •	 At adaptation cycle n, the tap-input vector u(n) is statistically independent of all 
previous samples of the desired response, namely, d(1), d(2), . . . , d(n - 1).

	 •	 Also at adaptation cycle n, the desired response d(n) is dependent on the corre-
sponding tap-input vector u(n), but it is statistically independent of all previous 
samples of the desired response.

The independence theory may be justified in certain applications, such as adap-
tive beamforming, where it is possible for successive snapshots of data (i.e., input 
vectors) received by an array of antenna elements from the surrounding environ-
ment to be independent of each other. However, for adaptive filtering applications 
in communications (e.g., signal prediction, channel equalization, and echo cancel-
lation), the input vectors that direct the “hunting” of the weight vector toward the 
optimum Wiener solution are in fact statistically dependent. This dependence arises 
because of the shifting property of the input data. Specifically, the tap-input vector 
at adaptation cycle n is

 u1n2 = 3u1n2, u1n - 12, c, u1n - M + 124T. 

At adaptation cycle n + 1, the vector takes on the new value

 u1n + 12 = 3u1n + 12, u1n2, c, u1n - M + 224T. 
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Thus, with the arrival of the new sample u(n + 1), the oldest sample u(n - M + 1) is dis-
carded from u(n), and the remaining samples u(n), u(n - 1), . . . , u(n - M + 2) are shifted 
back in time by one unit to make room for the new sample u(n + 1). We see, therefore, 
that in a temporal setting, the tap-input vectors, and correspondingly the gradient direc-
tions computed by the LMS algorithm, are indeed statistically dependent.

The independence theory leads to conclusions about the transient as well as the 
steady-state response of the LMS algorithm that are similar to conclusions based on the 
small step-size theory. Nevertheless, the small step-size theory is the preferred approach 
to the statistical analysis of the LMS algorithm for three reasons: (1) It is grounded in 
principle, (2) it is insightful, and (3) it is easy to apply.

One other comment is in order. In deriving the small step-size theory, we ignored 
the higher-order terms E1(n), E2(n), . . . , in the expansion of the weight-error vector E(n) 
given in Eq. (6.59). However, when we use a large step size to accelerate the rate of 
convergence, the contributions of these higher-order terms to the statistical analysis of 
the LMS algorithm become significant and would therefore have to be included. The 
higher-order terms E1(n), E2(n), . . . , have a stochastic nature, reflecting the increased 
noisy character of the learning curves of LMS algorithms with increasing step size. 
However, the inclusion of these higher-order terms makes statistical analysis of the LMS 
algorithm mathematically unmanageable.

proBLeMS

 1. What are the equations that define the operation of the LMS algorithm of the canonical model 
of the complex LMS algorithm?

 2. Set up the equations that define the operation of the LMS algorithm that is used to implement 
adaptive noise cancelling applied to a sinusoidal interference.

 3. Demonstrate that the LMS algorithm acts as a low-pass filter with a low cutoff frequency 
when the step-size parameter μ is small.

 4. The zero-mean output d(n) of an unknown real-valued system is represented by the multiple 
linear regression model

 d1n2 = wT
ou1n2 + n1n2, 

  where wo is the (unknown) parameter vector of the model, u(n) is the input vector (regressor), 
and n(n) is the sample value of an immeasurable white-noise process of zero mean and variance 
s2
n. The block diagram of Fig. P6.1 shows the adaptive modeling of the unknown system, in which 

the adaptive FIR filter is controlled by a modified version of the LMS algorithm. In particular, the 
tap-weight vector w(n) of the FIR filter is chosen so as to minimize the index of performance

 J1w, K2 = 𝔼3e2K
 1n24 

  for K = 1, 2, 3, . . . .
 (a) By using the instantaneous gradient vector, show that the new adaptation rule for the 

corresponding estimate of the tap-weight vector is

 wn 1n + 12 = wn 1n2 + mKu1n2e2K - 1
 1n2, 
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  where m is the step-size parameter and

 e1n2 = d1n2 - wT
 1n2u1n2 

  is the estimation error.
 (b) Assume that the weight-error vector

 E1n2 = wo - wn 1n2 

  is close to zero and that n(n) is independent of u(n). Show that

 𝔼3E1n + 12] = 1I - mK12K - 12𝔼[n2K - 2
 1n24R2𝔼3E1n24, 

  where R is the correlation matrix of the input vector u(n).
 (c) Show that the modified LMS algorithm described in part (a) converges in the mean value 

if the step-size parameter m satisfies the condition

 0 6 m 6
2

K12K - 12𝔼3n2(K - 1)
 1n24lmax

, 

  where lmax is the largest eigenvalue of matrix R.
 (d) For K = 1, show that the results given in parts (a), (b), and (c) reduce to those of the 

traditional LMS algorithm.

 5. (a) Let m(n) denote the mean weight vector in the LMS algorithm at adaptation cycle n; that is,

 m1n2 = 𝔼3wn 1n24. 
  Using the small step-size theory of Section 6.4, show that

 m1n2 = 1I - mR2n
 3m(0) - m1∞24 + m1∞2, 

  where m is the step-size parameter, R is the correlation matrix of the input vector, and 
m(0) and m(∞) are the initial and final values, respectively, of the mean weight vector.

FiGure P6.1 
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 (b) Show that, for convergence of the mean value m(n), the step-size parameter m must satisfy 
the condition

 0 6 m 6
2

lmax
, 

  where lmax is the largest eigenvalue of the correlation matrix R.

 6. Show that the physical mechanism for generating observable data is described by a multiple 
linear regression model that is matched exactly by the Wiener filter.

 7. Consider the use of a white-noise sequence of zero mean and variance s2 as the input to the 
LMS algorithm. Evaluate

 (a) the condition for convergence of the algorithm in the mean square, and
 (b) the excess mean-square error.

 8. For this set of specifications, study the following two different scenarios:

  ua1n2 = cos 11.2n2 + 0.5 cos 10.1n2, 

  ub1n2 = cos 10.6n2 + 0.5 cos 10.23n2. 

  The first input, ua(n), has an eigenvalue spread x(R) = 2.9, and the second input, ub(n), has 
an eigenvalue spread x(R) = 12.9. Confirm both of these two spreads.

   There are four distinct combinations to be considered:

  Case 1: Minimum eigenvalue, for which we have

  wo = optimum tap@weight vector of the Wiener filter 

  = 3-1, 14T.  

  Show that wo = q2, where q2 is the eigenvector associated with the eigenvalue l2. Demonstrate 
the following:

 (a) For the input ua(n), convergence of the LMS algorithm lies along the “slow” trajectory.
 (b) For the input ub(n), convergence of the LMS algorithm is decelerated compared to  

part (a).
  Illustrate both results diagrammatically.

  Case 2: Maximum eigenvalue, for which we now have

 wo = 31, 14T. 

  Show that wo = q1, where q1 is the eigenvector associated with the eigenvalue l1. Demonstrate 
the following:

 (a) For the input ua(n), convergence of the LMS algorithm lies along a “fast” trajectory.
 (b) For the input ub(n), convergence of the LMS algorithm is accelerated compared to (a).
  Again, illustrate your results diagrammatically.

 9. Consider the operation of an adaptive line enhancer using the LMS algorithm under a low 
signal-to-noise ratio. The correlation matrix of the input vector is defined by

 R = s2I, 

  where I is the identity matrix. Show that the steady-state value of the weight-error correlation 
matrix K(n) is given by

 K1∞2 _
m

2
 JminI, 
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  where m is the step-size parameter and Jmin is the minimum mean-square error. You may 
assume that the number of taps in the adaptive FIR filter is large.

 10. Starting with Eq. (6.58) for small step sizes, show that under steady-state conditions

 RK0 1n2 + K0 1n2R = ma
∞

l = 0
J1l2

minRl, 

  where

 J1l2
min = 𝔼3eo  1n2e*o1n - l24,    l = 0, 1, 2, c 

  and

 Rl = 𝔼3u1n2uH1n - l24,    l = 0, 1, 2, c. 

  [Because of the structure of the sum term RK0(n) + K0(n)R, the equation involving this sum 
is called the Lyapunov equation.]

 11. How does localized optimality work better compared to LMS algorithm as an adaptive filter?

 12. Using the small step-size theory of LMS algorithms presented in Section 6.4, do the following:
 (a) Show that d1∞2 is independent of the input signal; that is,

 d1∞2 =
1
2
 mMJmin. 

 (b) Derive the formula for the misadjustment

 m =
m

2
 tr3R4 

  without having to go through the diagonalization of the correlation matrix R.

 13. (a) Show that the mean of the stochastic force vector f(n) is zero.

  (b) Show that the correlation matrix of the stochastic force vector f(n) is a diagonal matrix.

 14. The tandem connection of adaptive filters arises in some applications (e.g., acoustic echo can-
cellation). Consider, then, Fig. P6.2, which shows a simplified tandem configuration involving 
a pair of LMS adaptive filters (Ho, 2000). The input vector u(n) is applied simultaneously 
to both filters, and the error signal e1(n) produced by filter I serves the purpose of having a 
desired response for filter II.

 (a) Formulate the update equations for the tandem configuration of the figure.
 (b) Show that this tandem configuration converges in the mean square if both adaptive filters 

I and II converge in the mean square individually.

 15. What does misadjustment refer to in the LMS algorithm? What is its significance?

Computer experiments
 16. In conducting a computer experiment that involves the generation of an AR process, sometimes 

not enough time is allowed for the transients to die out. The purpose of this experiment is to evalu-
ate the effects of such transients on the operation of the LMS algorithm. Consider, then, the AR 
process u(n) of order one described in Section 6.7. The parameters of this process are as follows:

 AR parameter: a = -0.99;
 AR process variance: s2

u = 0.936;
 Noise variance: s2

n = 0.02.
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  Generate the process u(n) so described for 1 … n … 100, assuming zero initial conditions. Use 
u(n) as the input of a linear adaptive predictor that is based on the LMS algorithm together 
with a step-size parameter m = 0.05. In particular, plot the learning curve of the predictor by 
ensemble averaging over 100 independent realizations of the squared value of its output ver-
sus adaptation cycle n for 1 … n … 100. Unlike the normal operation of the LMS algorithm, the 
learning curve so computed should start at the origin, rise to a peak, and then decay toward 
a steady-state value. Explain the reason for this phenomenon.

 17. Consider an AR process u(n) defined by the difference equation

 u1n2 = -a1u1n - 12 - a2u1n - 22 + n1n2, 

where n(n) is an additive white noise of zero mean and variance s2
n. The AR parameters 

a1 and a2 are both real valued:

 a1 = 0.1; 
  a2 = -0.8. 

 (a) Calculate the noise variance s2
n such that the AR process u(n) has unit variance. Hence, 

generate different realizations of the process u(n).
 (b) Given the input u(n), an LMS algorithm of length M = 2 is used to estimate the unknown 

AR parameters a1 and a2. The step-size parameter m is assigned the value 0.05. Justify 
the use of this design value in the application of the small step-size theory developed in 
Section 6.4.

 (c) For one realization of the LMS algorithm, compute the prediction error

 f 1n2 = u1n2 - un1n2 

  and the two tap-weight errors

 e1 1n2 = -a1 - wn 1 1n2 

FiGure P6.2 
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  and

 e2 1n2 = -a2 - wn 2 1n2. 

  Using power spectral plots of f(n), e1(n), and e2(n), show that f(n) behaves as white noise, 
whereas e1(n) and e2(n) behave as low-pass processes.

 (d) Compute the ensemble-average learning curve of the LMS algorithm by averaging the 
squared value of the prediction error f(n) over an ensemble of 100 different realizations 
of the filter.

 (e) Using the small step-size statistical theory of Section 6.4, compute the theoretical learning 
curve of the LMS algorithm and compare your result against the measured result of part (d).

 18. Consider a linear communication channel whose transfer function may take one of three 
possible forms:

  (i) H(z) = 0.25 + z-1 + 0.25z-2

  (ii) H(z) = 0.25 + z-1 - 0.25z-2

  (iii) H(z) = -0.25 + z-1 + 0.25z-2

   The channel output, in response to the input xn, is defined by

 u1n2 = a
 

k
hkxn - k + n1n2, 

    where hn is the impulse response of the channel and n(n) is additive white Gaussian noise 
with zero mean and variance s2

n = 0.01. The channel input xn consists of a Bernoulli 
sequence with xn = {1.

      The purpose of the experiment is to design an adaptive equalizer trained by using 
the LMS algorithm with step-size parameter m = 0.001. In structural terms, the equalizer 
is built around an FIR filter with 21 taps. For desired response, a delayed version of the 
channel input, namely xn-∆, is supplied to the equalizer. For each of the possible transfer 
functions listed under (i), (ii), and (iii), do the following:

 (a) Determine the optimum value of the delay ∆ that minimizes the mean-square error at 
the equalizer output.

 (b) For the optimum delay ∆ determined in part (a), plot the learning curve of the equalizer 
by averaging the squared value of the error signal over an ensemble of 100 independent 
Monte Carlo runs of the experiment.

 19. In Section 6.4, we presented the small step-size statistical theory of LMS algorithms. The 
purpose of this section is to study what happens to the application of this theory when the 
assumption of a small step size is violated.

   Repeat the experiment on the learning curve of the first-order adaptive predictor plotted 
in Fig. 6.18, but this time use the following values for the step-size parameter: 0.001, 0.003, 
0.01, 0.03, 0.1, 0.3, 1, 3.

   Comment on the results so obtained.

 20. What is the analogy between the LMS algorithm (discrete time, n) and the Langevin equation 
(continuous time, t) in terms of stochastic force, damping force, and sample function?

 21. The results presented in Fig. 6.25 for the LMS statistical learning theory for three different 
values of the step-size parameter, m, were computed for the eigenvalue spread W = 3.3, expe-
rienced by the adaptive equalizer studies in Section 6.8.

 (a) Repeat that experiment for the eigenvalue spread W = 2.9, 3.1, and 3.5.
 (b) Comment on the results obtained in the context of the LMS statistical learning theory 

described in Section 6.4.
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 22. Repeat the computer experiment on MVDR beamforming described in Section 6.9 for a tar-
get signal-to-noise ratio of 10 dB, interference-to-noise ratio of 40 dB, and step-size parameter 
m = 10-10. As before, the angle-of-arrival for the interference is

 finterf = sin-1102. 

  This time, however, we investigate what happens to the spatial response of the beamformer 
as the target moves closer to the source of interference. Specifically, plot the spatial response 
for an increasing number of adaptation cycles for each of the following angles-of-arrival for 
the target:

 (a) ftarget = sin-1(-0.15)
 (b) ftarget = sin-1(-0.10)
 (c) ftarget = sin-1(-0.05)

  Comment on your results.
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C h a p t e r  7

Normalized Least-Mean-Square  
(LMS) algorithm and Its 
Generalization

In the traditional form of a least-mean-square (LMS) algorithm studied in Chapter 6, 
the adjustment applied to the tap-weight vector of the filter at adaptation cycle n + 1 
consists of the product of three terms:

	 •	 The step-size parameter μ, which is under the designer’s control.
	 •	 The tap-input vector u(n), which is supplied by a source of information.
	 •	 The estimation error e(n) for real-valued data, or its complex conjugate e*(n) for 

complex-valued data, which is calculated at adaptation cycle n.

The adjustment is directly proportional to the tap-input vector u(n). Therefore, when 
u(n) is large, the LMS algorithm suffers from a gradient noise amplification problem. To 
overcome this difficulty, we may use the normalized LMS algorithm.1 In particular, the 
adjustment applied to the tap-weight vector at adaptation cycle n + 1 is “normalized” 
with respect to the squared Euclidean norm of the tap-input vector u(n) at adaptation 
cycle n—hence the term “normalized.”

This chapter is devoted to a discussion of the normalized LMS algorithm and its 
application to acoustic echo cancellation. The chapter also includes a discussion of the 
affine projection adaptive filter, which may be viewed as a generalization of the normal-
ized LMS algorithm.

7.1  NorMaLIzed LMS aLGorIthM: the SoLutIoN to  
a CoNStraINed optIMIzatIoN probLeM

In structural terms, the normalized LMS algorithm is exactly the same as the traditional 
LMS algorithm, as shown in the block diagram of Fig. 7.1. Both adaptive filtering algo-
rithms are built around a finite-duration impulse response (FIR) filter, but differ only in 
the way in which the weight controller is mechanized. The M-by-1 tap-input vector u(n) 

1The stochastic-gradient-descent algorithm known as the normalized LMS algorithm was suggested 
independently by Nagumo and Noda (1967) and Albert and Gardner (1967). Nagumo and Noda did not use 
any special name for the algorithm, whereas Albert and Gardner referred to it as a “quick and dirty regression” 
scheme. It appears that Bitmead and Anderson (1980a, b) coined the name “normalized LMS algorithm.”

333
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produces an output y(n) that is subtracted from the desired response d(n) to produce the 
estimation error, or error signal, e(n). In response to the combined action of the input 
vector u(n) and error signal e(n), the weight controller applies a weight adjustment to 
the FIR filter. This sequence of events is repeated for a number of adaptation cycles 
until the filter reaches a steady state.

We may formulate the normalized LMS algorithm as a natural modification of the 
traditional LMS algorithm. (See Problem 1.) Alternatively, we may derive the normal-
ized LMS algorithm in its own right; we follow the latter procedure here, as it provides 
insight into the operation of the filter.

The normalized LMS algorithm is a manifestation of the principle of minimal 
disturbance, which may be stated as follows:

From one adaptation cycle to the next, the weight vector of an adaptive filter 
should be changed in a minimal manner, subject to a constraint imposed on the 
updated filter’s output.

To cast this principle in mathematical terms, let wn 1n2 denote the old weight vec-
tor of the filter at adaptation cycle n and wn (n +  1) denote its updated weight vector at 
adaptation cycle n + 1. We may then formulate the criterion for designing the normalized 
LMS algorithm as that of constrained optimization: Given the tap-input vector u(n) 
and desired response d(n), determine the updated tap-weight vector wn 1n +  12 so as to 
minimize the squared Euclidean norm of the change,

 dwn 1n +  12 =  wn 1n +  12 -  wn 1n2, (7.1)

subject to the constraint

 wn H1n +  12u1n2 =  d1n2, (7.2)

where the superscript H denotes Hermitian transposition (i.e., the operation of trans-
position combined with complex conjugation).

To solve this constrained optimization problem, we use the method of Lagrange 
multipliers, which is described in Appendix C for the general case of complex-valued 

FIGure 7.1 Block diagram of adaptive FIR filter.
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data. According to this method, the cost function for the problem at hand consists of 
two terms, given on the right-hand side of the equation

 J1n2 =  7dwn 1n +  12 7 2 +  Re3l*1d1n2 -  wn H1n +  12u1n224, (7.3)

where l is the complex-valued Lagrange multiplier and the asterisk denotes complex 
conjugation. The squared Euclidean norm 7dwn 1n +  12 7 2 is, naturally, real valued. The 
real-part operator, denoted by Re [ # ] and applied to the second term, ensures that the 
contribution of the constraint to the cost function is likewise real valued. The cost func-
tion J(n) is a quadratic function in wn 1n +  12, as is shown by expanding Eq. (7.3) into

 J(n) =  (wn (n +  1) -  wn (n))H(wn (n +  1) -  wn (n)) +  Re[l*(d(n) -  wn H(n + 1)u(n))]. (7.4)

To find the optimum value of the updated weight vector that minimizes the cost function 
J(n), we proceed as follows:

 1. Differentiate the cost function J(n) with respect to wn H1n +  12. Then, following 
the Wirtinger calculus for differentiating a real-valued function with respect to 
a complex-valued weight vector and formally treating wn 1n2 as a constant, as in 
Appendix B, we get

0 J1n2
0 wn H1n +  12  =  21wn 1n +  12 -  wn 1n22 -  l*u1n2.

Setting this result equal to zero and solving for the optimum value wn 1n +  12, we 
obtain

 wn 1n + 12 = wn 1n2 +
1
2
l*u1n2. (7.5)

 2. Solve for the unknown multiplier l by substituting the result of step 1 [i.e., the weight 
vector wn 1n +  12] into the constraint of Eq. (7.2). Doing the substitution, we first write

d1n2 = wn H
 1n + 12u1n2

 = awn 1n2 +
1
2
l*u1n2b

H

 u1n2

 = wn H
 1n2u1n2 +

1
2
 luH

 1n2u1n2

 = wn H
 1n2u1n2 +

1
2
 l 7u1n2 7 2.

Then, solving for l, we obtain

 l =
2e1n2
7u1n2 7 2, (7.6)

where

 e1n2 =  d1n2 -  wn H
 1n2u1n2 (7.7)

is the error signal.
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 3. Combine the results of steps 1 and 2 to formulate the optimal value of the incre-
mental change, dwn 1n +  12. Specifically, from Eqs. (7.5) and (7.6), we have

  dwn 1n +  12 =  wn 1n +  12 -  wn 1n2  

  =  
1

7u1n2 7 2 u1n2e*1n2. (7.8)

In order to exercise control over the change in the tap-weight vector from one 
adaptation cycle to the next without changing the direction of the vector, we introduce 
a positive real scaling factor denoted by m∼. That is, we redefine the change simply as

  dwn 1n +  12 =  wn 1n +  12 -  wn 1n2  

  =
m∼

7u1n2 7 2 u1n2e*1n2. (7.9)

Equivalently, we write

 wn 1n + 12 = wn 1n2 +
m∼

7u1n2 7 2 u1n2e*1n2. (7.10)

Indeed, this is the desired recursion for computing the M-by-1 tap-weight vector in the 
normalized LMS algorithm. Equation (7.10) clearly shows the reason for using the term 
“normalized”: The product vector u(n)e*(n) is normalized with respect to the squared 
Euclidean norm of the tap-input vector u(n).

Comparing the recursion of Eq. (7.10) for the normalized LMS algorithm with 
that of Eq. (5.6) for the traditional LMS algorithm, we may make the following 
observations: 

 •	 The adaptation constant m∼ for the normalized LMS algorithm is dimensionless, 
whereas the adaptation constant μ for the LMS algorithm has the dimensions of 
inverse power.

	 •	 Setting

 m1n2 =
m∼

7u1n2 7 2, (7.11)

we may view the normalized LMS algorithm as an LMS algorithm with a time-
varying step-size parameter.

	 •	 Most importantly, the normalized LMS algorithm exhibits a rate of convergence 
that is potentially faster than that of the traditional LMS algorithm for both 
 uncorrelated and correlated input data (Nagumo & Noda, 1967; Douglas & 
Meng, 1994).

An issue of possible concern is that, in overcoming the gradient noise amplification 
problem associated with the traditional LMS algorithm, the normalized LMS algorithm 
introduces a problem of its own, namely, that when the tap-input vector u(n) is small, 
numerical difficulties may arise because then we have to divide by a small value for the 
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squared norm 7u1n2 7 2. To overcome this problem, we modify the recursion of Eq. (7.10) 
slightly to produce

 wn 1n +  12 =  wn 1n2 +  
m∼

d +  7u1n2 7 2 u1n2e*1n2, (7.12)

where d 7 0. For d = 0, Eq. (7.12) reduces to the form given in Eq. (7.10).
The normalized LMS algorithm, based on Eq. (7.10), is summarized in Table 7.1. 

The upper bound on the normalized step-size parameter m∼ presented in the table is 
derived in the next section.

7.2 StabILIty of the NorMaLIzed LMS aLGorIthM

Suppose that the physical mechanism responsible for generating the desired response 
d(n) is governed by the multiple regression model, which is described by

 d1n2 =  wHu1n2 +  n1n2. (7.13)

In this equation, w is the model’s unknown parameter vector and v(n) is the additive dis-
turbance. The tap-weight vector wn 1n2 computed by the normalized LMS algorithm is an 
estimate of w. The mismatch between w and wn 1n2 is measured by the weight-error vector

TAbLe 7.1  Summary of the Normalized LMS Algorithm

Parameters: M = number of taps (i.e., filter length)

 m∼ = adaptation constant

 0 6 m∼ 6 2 
𝔼3 ∙ u1n2 ∙24𝒟1n2

𝔼3 ∙ e1n2 ∙24 ,

 where

 𝔼3 ∙ e1n2 ∙24 = error signal power,

 𝔼3 ∙ u1n2 ∙24 = input signal power,

 𝒟1n2  = mean-square deviation.

Initialization. If prior knowledge about the tap-weight vector wn 1n2 is available, use that knowledge to select 
an appropriate value for wn 102. Otherwise, set wn 102 =  0.

Data
(a) Given: u(n) = M-by-1 tap input vector at time n.
 d(n) = desired response at time step n.

(b) To be computed: wn 1n +  12 =  estimate of tap-weight vector at time step n + 1.

Computation: For n = 0, 1, 2, . . . , compute

 e1n2 =  d1n2 -  wn H
 1n2u1n2,

 wn 1n +  12 =  wn 1n2 +  
m∼

7u1n2 7 2
  u1n2e*1n2.
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 E1n2 =  w -  wn 1n2. 

Thus, subtracting Eq. (7.10) from w, we get

 E1n +  12 =  E1n2 -
m∼

7u1n2 7 2 u1n2e*1n2. (7.14)

As already stated, the underlying idea of a normalized LMS algorithm is that of mini-
mizing the incremental change dwn 1n +  12 in the tap-weight vector of the filter from 
adaptation cycle n to adaptation cycle n + 1, subject to a constraint imposed on the 
updated tap-weight vector wn 1n +  12. In light of this idea, it is logical that we base 
the stability analysis of the normalized LMS algorithm on the mean-square deviation 
[see Eq. (6.84)]

 𝒟1n2 = 𝔼[ 7E1n2 7 24. (7.15)

Taking the squared Euclidean norms of both sides of Eq. (7.14), rearranging terms, and 
then taking expectations, we get

 d1n +  12 -  d1n2 =  m∼2𝔼 c ∙ e1n2∙2

7u1n2 7 2 d - 2m∼𝔼 eRe c  ju1n2e*1n2
7u1n2 7 2 d f , (7.16)

where ju(n) is the undisturbed error signal defined by

  ju 1n2 =  1w -  wn 1n22H
 u1n2 

  =  EH
 1n2u1n2.  (7.17)

From Eq. (7.16), we readily see that the mean-square deviation 𝒟1n2 decreases expo-
nentially with increasing number of adaptation cycles n, and the normalized LMS algo-
rithm is therefore stable in the mean-square-error sense (i.e., the convergence process is 
monotonic), provided that the normalized step-size parameter m∼ is bounded as follows:

 0 6 m∼ 6 2 
Re5𝔼3ju1n2e*1n2>  7u1n2 7 246

𝔼3 ∙ e1n2 ∙2> 7u1n2 7 24 . (7.18)

From Eq. (7.18), we also readily find that the largest value of the mean-square 
deviation 𝒟1n2 is achieved at the midpoint of the interval defined therein. The optimal 
step-size parameter is therefore given by

 m∼opt =
Re5𝔼3ju 1n2e*1n2> 7u1n2 7 246

𝔼3 ∙ e1n2 ∙ 2> 7u1n2 7 24 . (7.19)

Special environment: real-Valued data

For the case of real-valued data (e.g., in acoustic echo cancellation, considered in the 
next section), the normalized LMS algorithm of Eq. (7.10) takes the form

 wn 1n +  12 =  wn 1n2 +
m∼

7u1n2 ∙∙ 2 u1n2e1n2. (7.20)
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Likewise, the optimal step-size parameter of Eq. (7.19) reduces to

 m∼opt = 
𝔼3ju 1n2e1n2 >  7u1n2 7 24

𝔼3e21n2 >  7u1n2 7 24 . (7.21)

To make the computation of m∼opt tractable, we now introduce three assumptions:

 Assumption 1. The fluctuations in the input signal energy 7u1n2 7 2 from one adap-
tation cycle to the next are small enough to justify the approximations

 𝔼 c ju 1n2e1n2
7u1n2 7 2 d ≈

𝔼3ju1n2e1n24
𝔼3 7u1n2 7 24  (7.22)

and

 𝔼 c e21n2
7u1n2 7 2 d ≈

𝔼3e21n24
𝔼3 7u1n2 7 24. (7.23)

Correspondingly, the formula of Eq. (7.21) approximates to

 m∼opt ≈
𝔼3ju1n2e1n24

𝔼3e2
 1n24 . (7.24)

 Assumption 2. The undisturbed error signal ju(n) is uncorrelated with the 
 disturbance (noise) v(n) in the multiple regression model for the desired 
response d(n).

The disturbed error signal e(n) is related to the undisturbed error signal ju(n) by

 e1n2 =  ju1n2 +  v1n2. (7.25)

Using Eq. (7.25) and then invoking Assumption 2, we have

  𝔼3ju 1n2e1n24 =  𝔼3ju1n21ju1n2 +  n1n224 
  =  𝔼3j2

u 1n24.  (7.26)

Inserting Eq. (7.26) into Eq. (7.24), we may further simplify the formula for the optimal 
step size to

 m∼opt ≈
𝔼3j2

u 1n24
𝔼3e21n24 . (7.27)

Unlike the disturbed error signal e(n), the undisturbed error signal ju 1n2 is inaccessible 
and, therefore, not directly measurable. To overcome this computational difficulty, we 
introduce one last assumption.

 Assumption 3. The spectral content of the input signal u(n) is essentially flat over a 
frequency band larger than that occupied by each element of the weight-error vector 
E(n), thereby justifying the approximation
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 𝔼3J2
u1n24 = 𝔼3 ∙ET

 1n2u1n2∙24  

  ≈ 𝔼3 7E1n2 7 24𝔼3u21n24 
  = 𝒟1n2𝔼3u21n24,  (7.28)

where 𝒟1n2 is the mean-square deviation. The superscript T denotes transposition. 
Note that the approximate formula of Eq. (7.28) involves the input signal u(n) 
rather than the tap-input vector u(n).

Assumption 3 is a statement of the low-pass filtering action of the LMS algorithm. 
Thus, using Eq. (7.28) in Eq. (7.26), we get the approximation

 m∼opt ≈
𝒟1n2𝔼3u21n24

𝔼3e21n24 . (7.29)

The practical virtue of the approximate formula for m∼opt defined in Eq. (7.29) is borne 
out in the fact that simulations as well as real-time implementations have shown that 
Eq. (7.29) provides a good approximation for m∼opt for the case of large filter lengths and 
speech inputs (Mader et al., 2000).

7.3 Step-SIze CoNtroL for aCouStIC eCho CaNCeLLatIoN

Almost all conversations are conducted in the presence of acoustic echoes. An echo may 
be non-noticeable or distinct, depending on the time delay involved. If the delay between 
the speech and its echo is short, the echo is non-noticeable, but perceived as a form of 
spectral distortion referred to as reverberation. If, on the other hand, the delay exceeds 
a few tens of milliseconds, the echo is distinctly noticeable.

Telecommunications environments, which are limited by the unavoidable presence 
of acoustic echoes, include the following (Sondhi & Berkley, 1980; Breining et al., 1999; 
Mader et al., 2000; Hänsler and Schmidt, 2004, 2008):

Telephone circuits. Every telephone set in a given geographical area is  connected 
to a central office by a two-wire line called the customer loop, which serves the 
need for communication between two speakers. However, for telephone circuits lon-
ger than about 35 miles, a separate path is necessary for communication in either 
 direction. Accordingly, there has to be provision for connecting a two-wire circuit to a 
four-wire circuit, which is accomplished by means of a hybrid transformer—basically, 
a bridge circuit with three ports (terminal pairs). When the bridge is not perfectly 
balanced, the input port becomes coupled to an output port, thereby giving rise to 
an electric echo.

Hands-free telephones. In the use of a hands-free telephone, we usually find 
that a loudspeaker and a microphone are placed a significant distance from each 
other, as in a teleconferencing environment. In such an environment, the micro-
phone picks up not only the speech signal radiated by the loudspeaker, but also its 
echoes from the borders of the enclosure. As a result, the electroacoustic circuit may 
become unstable and produce a “howling” sound. Moreover, the users of the system 
become annoyed by having to listen to their own speech, delayed by the round-trip 
time of the system.
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To overcome the annoying presence of acoustic echoes in these telecommuni-
cation environments, the common practice is to use an adaptive echo canceller.2 In 
telephone circuits, the adaptive echo canceller makes it possible to conduct an echo-
free conversation between two speakers, regardless of the distance separating them. In 
hands-free telephones, the howling sound and a speaker’s own delayed speech are both 
minimized.

The basic principle of acoustic cancellation may now be summarized as follows:

 Adaptively synthesize a replica of the echo and subtract it from the echo-corrupted 
signal.

In effect, acoustic echo cancellation is a form of the noise cancellation process described 
in Section 6.3.

To illustrate this principle, consider the block diagram shown in Figure 7.2. The 
diagram pertains to a hands-free telephone environment (Mader et al., 2000). Two main 
functional units are shown in the figure:

	 •	 Loudspeaker–enclosure–microphone (LEM).
	 •	 Echo canceller (EC).

A remote speaker’s signal, denoted by u(n), is radiated by the loudspeaker, picked up 
by the microphone, and convolved with the impulse response of the LEM to produce 
an output denoted by d(n). The signal d(n) is corrupted by an echo, due to reflections 
of u(n) from the surrounding environment.

The echo canceller consists of two components: (1) an FIR filter and (2) an 
adaptation and step-size controller. The FIR filter convolves the remote speaker’s 

2For an exhaustive treatment of acoustic echo and noise control procedures and their practical 
 implementations, see the book by Hänsler and Schmidt (2004). 

FIGure 7.2 Structural diagram of an acoustic echo-control system.
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 signal u(n) with its own impulse response wn (n) to produce an estimate of the echo; 
this estimate is denoted by y(n). Insofar as the operation of the echo canceller is 
concerned, the microphone output d(n) constitutes the “desired response.” The 
“synthetic echo” y(n) produced by the FIR filter is subtracted from the microphone 
output d(n) to produce an error signal e(n). The remote speaker’s signal u(n) and 
the error signal e(n) act on the adaptation and step-size controller to adjust the tap 
weights of the FIR filter so as to minimize the mean-square value of the error signal 
in accordance with the normalized LMS algorithm. The net result is that the error 
signal, constituting the output of the echo canceller, provides an estimate of the 
uncorrupted local speaker’s signal.

Step-Size Control

The normalized LMS algorithm of Eq. (7.10) assumes the use of a constant value for the 
normalized step-size parameter m∼. However, if the characterization of the disturbance 
v(n) in the multiple regression model of Eq. (7.13) changes, which  frequently happens in, 
for example, a hands-free telephone environment, the algorithm may malfunction due 
to the mismatch between the estimation errors ju(n) and e(n). To be specific, suppose 
that there is an increase in the local disturbance v(n). Then, since the error signal e(n) 
grows with v(n), we see from Eq. (7.29) that the increase in e(n) results in a reduction 
in the upper bound on the step-size parameter m∼. As a result, m∼ may become oversized 
for the situation at hand, thereby leading to instability of the echo canceller.

Several factors are responsible for the generation of the disturbance v(n) influenc-
ing the operation of an acoustic echo canceller (Breining et al., 1999):

	 •	 The speech signal produced by the local speaker leads to a disturbance of the 
adaptive filter. When both the local and the far-end speakers are simultaneously 
active, we have double-talk.

	 •	 There can be a permanent local noise (e.g., background noise generated in a car 
cabin), which also disturbs the error signal.

	 •	 In practice, it is difficult, if not impossible, to account for the complete impulse 
response of the surrounding environment, due to the large filter length required. 
The residual echo, with its origin in the part of the system that cannot be modeled, 
represents an additional source of local noise.

	 •	 Fixed-point digital signal processors are often used in the implementation of an 
adaptive filter, to limit the cost. The quantization noise of the fixed-point arith-
metic used in the implementation is yet another source of local disturbance that 
affects the operation of the echo canceller.

To cope with these factors, there has to be a reduction in the step-size parameter m∼.  
However, the use of a permanently small step-size parameter is undesirable for two 
reasons:

 1. In the likely case of a large local disturbance, m∼ may still be too high and therefore 
cause the adaptive filter to become unstable.
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 2. When the local disturbance is small, which is also likely to arise, the use of a small 
step size slows down the rate of convergence of the adaptive filter.

These are compelling reasons for the use of step-size control—hence the need for the 
replacement of m∼ by a time-varying step-size parameter m∼1n2 in Eq. (7.20).

A two-stage control principle is based on the equation

 m∼1n2 = •
0 if m∼opt 1n2 6

1
2
 m∼fix

m∼fix otherwise
,
 (7.30)

where m∼fix is a fixed nonzero step size and m∼opt 1n2 is the optimal step size for adaptation 
cycle n. According to Eq. (7.30), there is no filter adaptation if the computed value of 
m∼opt 1n2 at adaptation cycle n is less than 12m

∼
fix. Otherwise, m∼1n2 is held constant at m∼fix. 

The use of Eq. (7.30) requires knowledge of the optimal step-size m∼opt 1n2. Mader et al.  
(2000) get around this problem by using an approximation of the optimal step size 
instead. A scheme for obtaining this approximation is described next.

As remarked earlier, Eq. (7.29) provides a good approximation of m∼opt 1n2 for 
speech inputs. According to that equation, the estimation of m∼opt 1n2 is reduced to three 
separate estimation problems:

 1. Estimation of the error signal power, 𝔼[e2(n)].
 2. Estimation of the input signal power, 𝔼[u(n)2].
 3. Estimation of the mean-square deviation, d(n).

The input signal u(n) and the error signal e(n) are both accessible; hence, the estimation 
of their respective average powers is straightforward. However, the estimation of d(n) 
needs more detailed consideration, because the parameter vector w of the multiple 
regression model characterizing the LEM environment is unknown.

For the short-term power estimation of a signal denoted by x(n), we may 
use the idea of convex combination to formulate a first-order recursive procedure 
described by

 x21n + 12 = 11 - g2x21n + 12 + gx21n2, (7.31)

where x21n2 is the power estimate at time step n and g is a smoothing constant. Typically, 
g lies inside the interval [0.9, 0.999]. For a prescribed g, we may thus use Eq. (7.31)  
to estimate the error signal power 𝔼[e2(n)] and input signal power 𝔼[u2(n)] by setting 
x(n) = e(n) and x(n) = u(n), respectively.

Turning next to the estimation of the mean-square deviation d(n), we may 
use a procedure involving the insertion of an artificial delay into the LEM system 
(Yamamoto & Kitayama, 1982; Mader et al., 2000). This procedure, in which the remote 
speaker’s signal u(n) is artificially delayed by MD samples, is illustrated in Fig. 7.3.  
The delay is naturally modeled by the adaptive FIR filter in the echo canceller. Thus, 
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the section of the “true” parameter vector w corresponding to the artificial delay is zero, 
in which case we may set the kth element of the error

 ek 1n2 =  -wn k 1n2   for   k =  0, . . . , MD -  1. (7.32)

Next, we utilize the known property that an adaptive filter tends to spread the weight-
error (filter mismatch) vector E(n) evenly over its M taps (Yamamoto & Kitayama, 
1982). Thus, using the known portion of the filter mismatch defined in Eq. (7.32), we 
may approximate the mean-square deviation as

 d1n2 ≈
M

MD
 a

MD - 1

k = 0
wn 2

k 1n2, (7.33)

where M is the length of the normalized LMS algorithm and wn k 1n2 is the kth com-
ponent of the M-by-1 tap-weight vector wn 1n2. Finally, given the estimates of the sig-
nal powers 𝔼[e2(n)] and 𝔼[u2(n)] obtained by using Eq. (7.31) and the estimate of  
d1n2 obtained  by  using Eq. (7.33), the optimal step size m∼opt 1n2 is computed as  
d1n2 𝔼[e2(n)]/𝔼[e2(n)].

In general, the step-size control based on the use of artificial delay as depicted in 
Fig. 7.3 delivers good performance. Specifically, when the error signal e(n) increases due 
to a local excitation, the step-size parameter is reduced, thereby avoiding divergence 
of the filter. Unfortunately, however, a change in the LEM environment may lead to a 
freezing of the system in that a new adaptation of the filter and the “delay” coefficients 

FIGure 7.3 A structure incorporating the means for estimating the mean-square 
deviation D(n); the block labeled z-MD represents an artificial delay of MD samples.
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is prevented. To overcome this problem, an additional detector for LEM change is 
required, which enables the filter to readapt by either setting the delay coefficients or 
the step size to larger values.3

7.4  GeoMetrIC CoNSIderatIoNS pertaINING to  
the CoNVerGeNCe proCeSS for reaL-VaLued data

Returning to Eq. (7.9), which has to do with the weight-vector adjustment dwn 1n +  12 
applied to a normalized LMS algorithm at adaptation cycle n + 1, we make two observations:

 1. The direction of the adjustment dwn 1n +  12 is the same as that of the input vector 
u(n).

 2. The size of the adjustment dwn 1n +  12 is dependent on the sample correlation coef-
ficient between the input vectors u(n) and u(n - 1), which, for real-valued data, is 
defined by

 rsample 1n2 =  
uT

 1n2u1n -  12
7u1n2 7 # 7u1n -  12 7 . (7.34)

(The reason for confining the discussion in this section to real-valued data is merely to 
ease the burden of geometric presentations that follow.)

3Mader et al. (2000) present an example that illustrates the “freezing” phenomenon, which arises in 
the artificial delay method.

Mader et al. also describe another method for estimating the mean-square deviation. The undis-
turbed estimation error ju(n) may be approximated by the error signal e(n) provided that two conditions 
are satisfied:

 • Sufficient excitation power is applied.

 • The local speaker is not active, which requires the use of a reliable single-talk detection scheme.

When a remote single talk is present, a form of recursive smoothing is used to estimate the mean-square 
deviation; otherwise, the old value is maintained. Thus, using dp(n) to denote the mean-square deviation based 
on power estimation, for real-valued data we may write (Mader et al., 2000)

dp  1n2  =  
e2

 1n2 ∙n1n2= 0

u2
 1n2

M • gdp  1n -  12 +  11 -  g2 e2
 1n2

u2
 1n2

   if remote single talk is detected ,

dp  1n -  12    otherwise

where g is a positive constant less than unity. The advantage of step-size control based on this formula is that 
it does not lead to freezing of adaptation if the LEM system is disturbed.
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From a geometric perspective, Eq. (7.34) has an insightful interpretation, as 
depicted in Fig. 7.4(a) for m∼ = 1 and M = 3. Elements of two M-dimensional spaces, 
namely, the input data space and the weight space, are shown in the figure. Specifically, 
πn is the set of all weight vectors wn 1n2 that act on the input vector u(n) to produce the 
output y(n), and similarly for πn-1. The angle u subtended between the hyperplanes πn 
and πn-1 is the same as the angle between the input vectors u(n) and u(n - 1). From 
signal-space theory, we know that the cosine of the angle u between the vectors u(n) 
and u(n - 1) is defined as the inner product uT(n)u(n - 1), divided by the product of the 
Euclidean norms ||u(n)|| and ||u(n - 1)|| (Wozencraft & Jacobs, 1965). Consequently, we 
may expand on observation 2 as follows:

 2.1 When the angle u is ; 90° [i.e, when the input vectors u(n) and u(n - 1) are 
orthogonal to each other], the rate of convergence of the normalized LMS algo-
rithm is the fastest.

 2.2 When the angle u is zero or 180° [i.e., when the input vectors u(n) and u(n - 1) 
point in the same direction or in opposite directions], the rate of convergence of 
the normalized LMS algorithm is the slowest.

To guard against the possibility of the undesired situation described under observation 
2.2—that is, to maintain the rate of convergence essentially constant, independently 
of the angle u between the input vectors u(n) and u(n - 1)—we may use a generaliza-
tion of the normalized LMS algorithm known as the affine projection filter (Ozeki & 
Umeda, 1984), considered in the next section.

A geometric description of the operating principle of this new adaptive filter is 
depicted in Fig. 7.4(b) for the case of m∼ =  1 and M = 3. In the figure, pn ¨ pn - 1 denotes 
the intersection of the hyperplanes πn and πn-1. Comparing the picture portrayed here 
with the corresponding picture of Fig. 7.4(a) pertaining to a normalized LMS algo-
rithm, we observe that in the weight space, the line joining wn 1n +  12 to wn 1n2 is normal 
to pn ¨ pn - 1 rather than πn.

In the context of a multidimensional space, we should distinguish between a sub-
space and an affine subspace. By definition, a subspace passes through the origin of the 
multidimensional space, whereas an affine subspace does not. Referring to Fig. 7.4(b), 
we note that the intersection of the hyperplanes πn and πn-1 does not necessarily con-
tain the origin of the M-dimensional weight space. Thus, pn ¨ pn - 1 is an affine subspace 
and hence the name “affine projection filter,” the algorithmic formulation of which is 
discussed next.4

4The book edited by Gay and Benesty (2000) presents a detailed treatment of the affine projection 
filter, its “fast” implementations, and their applications to acoustic echoing and noise control for telecommu-
nications. In addition to these monochannel acoustic echo cancellers, the book discusses multichannel echo 
cancellers and more elaborate systems involving the use of microphone arrays.

The affine projection filter and its application to echo cancellation are also discussed in the book by 
Benesty et al. (2001).
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FIGure 7.4 Geometric interpretation of (a) the normalized LMS algorithm and (b) the 
affine projection adaptive algorithm. In both parts of the figure, the vector w denotes the 
unknown parameter vector of a multiple regression model.
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7.5 affINe projeCtIoN adaptIVe fILterS

In mathematical terms, we may formulate the criterion for designing an affine projection 
filter as one of optimization subject to multiple constraints, as follows:

Minimize the squared Euclidean norm of the change in the weight vector

 dwn 1n +  12 =  wn 1n +  12 -  wn 1n2, (7.35)

subject to the set of N constraints

 d1n -  k2 =  wn H
 1n +  12u1n -  k2 for k  =  0, 1, . . . , N -  1, (7.36)

 where N is smaller than the dimensionality M of the input data space or, equiva-
lently, the weight space.

This constrained optimization criterion includes that of the normalized LMS algorithm 
as a special case, namely, N = 1. We may view N, the number of constraints, as the order 
of the affine projection adaptive filter.

Following the method of Lagrange multipliers with multiple constraints described 
in Appendix C, we may combine Eqs. (7.35) and (7.36) to set up the following cost func-
tion for the affine projection filter:

  J(n) =  7wn (n +  1) -  wn (n) 7 2 +  a
N - 1

k = 0
Re[l*k (d(n -  k) -  wn H(n +  1)u(n -  k))].  (7.37)

In this function, the lk are the Lagrange multipliers pertaining to the multiple con-
straints. For convenience of presentation, we introduce the following definitions:

	 •	 An N-by-M data matrix A(n) whose Hermitian transpose is defined by

 AH
 1n2 =  3u1n2, u1n -  12, . . . , u1n -  N +  124. (7.38)

	 •	 An N-by-1 desired response vector whose Hermitian transpose is defined by

 dH1n2 =  3d1n2, d1n -  12, . . . , d1n -  N +  124. (7.39)

	 •	 An N-by-1 Lagrange vector whose Hermitian transpose is defined by

 LH =  3l0, l1, . . . , lN - 14. (7.40)

Using these matrix definitions in Eq. (7.37), we may redefine the cost function in the 
more compact form

 J1n2 = 7wn 1n +  12 -  wn 1n2 7 2 +  Re31d1n2 -  A1n2wn 1n +  122H
 L4. (7.41)

Then, following the rules for differentiation with respect to a complex-valued vector of 
the Wirtinger calculus (see Appendix B), we find that the derivative of the cost function 
J(n) with respect to the weight vector wn 1n +  12 is

 
0 J1n2

0 wn H1n + 12 = 21wn 1n + 12 - wn 1n22 - AH
 1n2L. 

Setting this derivative equal to zero, we get

 dwn 1n +  12 =  
1
2

 AH1n2L. (7.42)
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To eliminate the Lagrange vector L from Eq. (7.42), we first use the definitions of 
Eqs. (7.38) and (7.39) to rewrite Eq. (7.36) in the equivalent form

 d1n2 =  A1n2wn 1n +  12. (7.43)

Premultiplying both sides of Eq. (7.42) by A(n) and then using Eqs. (7.35) and (7.43) to 
eliminate the updated weight vector wn 1n +  12 yields

 d1n2 =  A1n2wn 1n2 +  
1
2

 A1n2AH1n2L, (7.44)

from which we deduce the following:

	 •	 The difference between d(n) and A1n2wn 1n2, based on the data available at adapta-
tion cycle n, is the N-by-1 error vector

 e1n2 =  d1n2 -  A1n2wn 1n2. (7.45)

	 •	 The matrix product A(n)AH(n) is an N-by-N matrix with an inverse denoted by 
(A(n)AH(n))-1.

Thus, solving Eq. (7.44) for the Lagrange vector, we have

 L =  21A1n2AH1n22-1e1n2. (7.46)

Substituting this solution into Eq. (7.42) yields the optimum change in the weight vector:

 dwn 1n +  12 =  AH1n21A1n21AH1n22-1e1n2. (7.47)

Finally, we need to exercise control over the change in the weight vector from one 
adaptation cycle to the next, but keep the same direction. We do so by introducing the 
step-size parameter m∼ into Eq. (7.47), yielding

 dwn 1n +  12 =  m∼AH1n21A1n2AH1n2)-1e1n2. (7.48)

Equivalently, we write

 wn 1n +  12 =  wn 1n2 +  m∼AH1n21A1n2AH1n22-1e1n2, (7.49)

which is the desired update equation for the affine projection adaptive filter. Table 7.2 
presents a summary of this algorithm.

affine projection operator

As explained in Section 7.4, the updated weight vector wn 1n +  12 is the result of an affine 
projection operator acting on wn 1n2. To determine this operator, we substitute Eq. (7.45) 
into Eq. (7.49), obtaining

 
wn 1n +  12 =  3 I -  m∼AH1n21A1n2AH1n22-1A1n2]wn 1n2
      + m∼AH1n21A1n2AH1n22-1d1n2,

 (7.50)

where I is the identity matrix. Define the projection operator:

 P =  AH1n21A1n2AH1n22-1A1n2, (7.51)
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which is uniquely determined by the data matrix A(n). For prescribed m∼, A1n2, and 
d(n), the complement projector [I −m∼P] acts on the old weight vector wn 1n2 to produce 
the updated weight vector wn 1n + 12. Most importantly, it is the presence of the second 
term in Eq. (7.50), namely, m∼AH1n21A1n2AH1n22-1 d(n) that makes the complement 
projection into an affine projection rather than just a projection.

In Chapter 9, dealing with the method of least squares, we show that, for N less than 
M, the matrix AH(n)(A(n)AH(n))-1 is the pseudoinverse of the data matrix A(n). Using 
A+(n) to denote this pseudoinverse, we may simplify the updated formula of Eq. (7.50) as

 wn 1n + 12 = 3I - m∼A+1n2A1n24wn 1n2 + m∼A+1n2d1n2. (7.52)

Indeed, it is because of the defining equation (7.52) that we may view the affine projec-
tion filter as an intermediate adaptive filter between the normalized LMS algorithm of 
Section 7.1 and the recursive least-squares (RLS) algorithm of Chapter 10, in terms of 
both computational complexity and performance.

Stability analysis of the affine projection adaptive filter

As with the normalized LMS algorithm, we may base stability analysis of the affine 
projection adaptive filter on the mean-square deviation d(n) defined in Eq. (7.15). 
Subtracting Eq. (7.49) from the unknown weight vector w of the multiple regression 
model serving as a frame of reference, we may write

 E1n +  12 =  E1n2 -  m∼AH1n21A1n2AH1n22-1e1n2. (7.53)

Using this updated equation in the definition of d(n), rearranging and  simplifying terms, 
we get

TAbLe 7.2 Summary of the Affine Projection Adaptive Filter

Parameters: M = number of taps

 m∼ = adaptation constant

 N = number of multiple constraints, which defines the filter order

Initialization:  If prior knowledge on the tap-weight vector wn 102 is available,  
use it to initialize the filter. Otherwise, set wn 102 =  0.

Data:
(a) Given: u(n) = M-by-1 tap-input vector at time step n
 =  3u1n2, u1n -  12, . . . , u1u -  M +  124T.
 d(n) = desired response and time step n.

(b) To be computed: wn 1n +  12 =  estimate of Wiener solution at time step n + 1.

Computation: n = 0, 1, 2, . . .

 AH1n2 =  3u1n2, u1n -  12, . . . , u1n -  z +124
 dH1n2 =  3d1n2, d1n -  12, . . . , d1n -  z +  124

 e1n2 =  d1n2 -  A1n2wn 1n2
 wn 1n +  12 =  wn 1n2 +  m∼AH1n21A1n2AH1n22-1e1n2.
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𝒟1n + 12 - 𝒟1n2 = m∼2𝔼3eH1n21A1n2AH1n22-1e1n24
   -2m∼𝔼 5Re3JH

u 1n21A1n2AH1n22-1e1n246, (7.54)
where

 Ju1n2 =  A1n21w -  wn 1n22 (7.55)

is the undisturbed error vector. From Eq. (7.54) we readily see that the mean-square 
deviation d1n2 decreases monotonically with increasing n, provided that the step-size 
parameter m∼ satisfies the condition

 0 6 m∼ 6
2𝔼5Re3JH

u 1n21A1n2AH1n22-1e1n2]6
𝔼3eH1n21A1n2AH1n24-1e1n24  (7.56)

which contains the corresponding formula of Eq. (7.18) for the normalized LMS algo-
rithm as a special case. The optimal step size is defined by

 m∼opt =
𝔼5Re3JH

u 1n2A1n2AH1n2-1e1n246
𝔼3eH1n21A1n2AH1n22-1e1n24 . (7.57)

To simplify this formula, we expand on Assumptions 1 and 2 for the normalized 
LMS algorithm, proposing two more assumptions:

 Assumption 4. From one adaptation cycle to the next, the fluctuations in the 
inverse of the matrix product A(n)AH(n), which is common to the numerator and 
denominator of m∼opt, are small enough to justify approximating m∼opt as

 m∼opt ≈
𝔼5Re3JH

u 1n2e1n246
𝔼3 7e1n2 7 24 . (7.58)

 Assumption 5. The undisturbed error vector Ju1n2 is uncorrelated with the dis-
turbance (noise) vector

 NH1n2 =  3n1n2, n1n -  12, . . . , n1n -  N +  124. (7.59)

Assumption 3, generalized for complex data, applies equally well to the affine 
projection filter. Hence, invoking Assumptions 3 through 5, we may simplify Eq. (7.57) to

 m∼opt ≈
𝔼57Ju1n2 7 26
𝔼[ 7e1n2 7 2]

 =
a

N - 1

k = 0
𝔼[ ∙Ju1n -  k2 ∙2]

a
N - 1

k = 0
𝔼[ ∙ e1n -  k2 ∙2]

  ≈
a

N - 1

k = 0
d1n -  k2𝔼3 ∙ u1n -  k2 ∙24

a
N - 1

k = 0
𝔼3 ∙ e1n -  k2 ∙24

. (7.60)
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For real-valued data, putting the filter order N = 1 in Eq. (7.60) reduces that formula to 
Eq. (7.29) for the normalized LMS algorithm.

Summarizing remarks on affine projection adaptive filters

The main motivation for using an affine projection adaptive filter is to provide an 
improvement in the rate of convergence over the normalized LMS algorithm. In this 
context, we may make the following observations on the convergence behavior of affine 
projection adaptive filters (Sankaran & Beex, 2000):

 1. The learning curve of an affine projection adaptive filter consists of the sum of 
exponential terms.

 2. An affine projection adaptive filter converges at a rate faster than that of the cor-
responding normalized LMS algorithm.

 3. As more delayed versions of the tap-input vector u(n) are used (i.e., the filter order 
N is increased), the rate of convergence improves, but the rate at which improve-
ment is attained decreases.

In any event, improved convergence behavior is accomplished at the expense of 
increased computational complexity.5

7.6 SuMMary aNd dISCuSSIoN

In this chapter, we extended the family of LMS algorithms by deriving the normal-
ized LMS algorithm and the affine projection filter. The normalized LMS algorithm 
differs from the traditional LMS algorithm in the way in which the step size for 

5The inversion of the N-by-N matrix product A(n)AH(n) in Eq. (7.49) for an affine projection filter 
raises the need for two practical modifications to that updated equation:

 1. Regularization. In a noisy environment, the inversion of the N-by-N matrix product A(n)AH(n) may 
give rise to numerical difficulties. To guard against such a possibility, we modify that product by adding 
to it the term dI, where d is a small positive constant and I is the N-by-N identity matrix. This modifica-
tion is referred to as regularization, on which more is said in Chapter 10.

 2. Fast implementation. As the projection dimension N increases, so does the rate of convergence of 
the affine projection adaptive filter. Unfortunately, this improvement in performance is attained at 
the expense of a corresponding increase in computational complexity. To mitigate the computational 
complexity problem, we may follow one of two approaches:

	 •	 Time-domain approach, which exploits the time-shifting property of the input vector u(n). This 
property embodies the fact that u(n) and its previous value, u(n - 1), share the elements u(n - 1), . . . ,  
u(n - M + 1), where M is the input space dimensionality. The fast affine projection (FAP) filter 
devised by Gay and Tavathia (1995) follows this approach.

	 •	 Frequency-domain approach, which exploits a fast FIR filtering technique based on the idea of “fast 
convolution.” It uses the fast Fourier transform algorithm. The block exact fast affine projection 
(BEFAP) filter devised by Tanaka et al. (1999) follows this second approach.

Unfortunately, regularization and fast implementation of an affine projection filter may conflict in that the 
aforementioned fast versions of the filter rely on a certain approximation that is violated if regularization is 
applied (Rombouts & Moonen, 2000).
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controlling the adjustment to the filter’s tap-weight vector is defined. Whereas in 
the traditional LMS algorithm the step size is a scalar parameter denoted by μ, in 
the general case of a normalized LMS algorithm it is defined by m∼>1 7u1n2 7 2 +  d2, 
where m∼ is dimensionless, ||u(n)|| is the Euclidean norm of the tap-input vector u(n), 
and d is a small positive constant. The advantages of the normalized LMS algorithm 
are twofold:

 1. The normalized LMS algorithm mitigates the gradient noise amplification prob-
lem, which can arise when the tap-input vector u(n) is large.

 2. The rate of convergence of the normalized LMS algorithm is potentially faster 
than that of the traditional LMS algorithm for both uncorrelated and correlated 
input data.

The affine projection filter is a generalization of the normalized LMS algorithm. 
Specifically, the adjustment term m∼u1n2e*1n2>1 7u1n2 7 2 +  d2 applied to the tap-weight 
vector in the normalized LMS algorithm is replaced by the more elaborate term 
m∼AH1n21A1n2AH1n2 +  dI2-1e1n2, where I is the identity matrix, d is a small positive 
constant,

 AH1n2 =  3u1n2, u1n -  12, u1n -  N +  12],

 e1n2 =  d1n2 -  A1n2wn 1n2,

and

 dH1n2 =  3d1n2, d1n -  12, . . . , d1n -  N +  12].

Because of the use of (N - 1) past values of both the tap-input vector u(n) and the 
desired response d(n), the affine projection filter may be viewed as an adaptive filter 
that is intermediate between the normalized LMS algorithm and the recursive least-
squares filter (to be discussed in Chapter 10). Consequently, the affine projection 
filter provides a significant improvement in convergence, which is attained unfor-
tunately at the cost of increased computational complexity—simply put, there is no 
free lunch.

probLeMS

 1. In Section 7.1, we presented a derivation of the normalized LMS algorithm in its own 
right. In this problem, we explore another derivation of that algorithm by modifying the 
method of steepest descent that led to the development of the traditional LMS algorithm. 
The modification involves writing the tap-weight vector update in the method of steepest 
descent as

w1n +  12 =  w1n2 -  
1
2

 m1n2𝛁1n2,

where μ(n) is a time-varying step-size parameter and ∇1n2 is the gradient vector defined by

𝛁1n2 =  23Rw1n2 -  p4,
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in which R is the correlation matrix of the tap-input vector u(n) and p is the cross-correlation 
vector between the tap-input vector u(n) and the desired response d(n).

 (a) At time n + 1, the mean-square error is defined by

J1n +  12 =  𝔼3 ∙e1n +  12 ∙24,
where

e1n +  12 =  d1n +  12 -  wH1n +  12u1n +  12.

Determine the value of the step-size parameter μo(n) that minimizes J(n + 1) as a func-
tion of R and 𝛁1n2.

 (b) Using instantaneous estimates for R and 𝛁1n2 in the expression for μo(n) derived in 
part (a), determine the corresponding instantaneous estimate for μo(n). Hence, for-
mulate the update equation for the tap-weight vector wn 1n2, and compare your result 
with that obtained for the normalized LMS algorithm.

 2. Demonstrate that for real-valued data with the filter order N = 1, Eq. (7.60) reduces to 
Eq. (7.29) for the normalized LMS algorithm.

 3. Two statisticians were asked to formulate the weight updates for the normalized LMS 
 algorithm. Given the step-size parameter m∼, the tap-input vector

u1n2 =  3u1n2, u1n -  12, . . . , u1n -  M +  124T,

and the corresponding desired response d(n), one statistician presented the update formula

 (i) wn k1n +  12 =  wn k1n2 +
m∼

∙ u1n -  k2 ∙2 u1n -  k2e*1n2,    k = 0, 1, . . . , M -  1,

where

e1n2 =  d1n2 -  a
M - 1

k = 0
wn *

k1n2u1n -  k2.

The second statistician presented the different update formula

 (ii) wn k1n +  12 =  wn k1n2 +
m∼

7u1n2 7 2  u1n -  k2e*1n2,  k =  0, 1, . . . , M -  1,

  where e(n) is defined as before and ||u(n)|| is the Euclidean norm of u(n).
The difference between these two formulas lies in the way in which the normalization is per-
formed. In light of the normalized LMS algorithm theory presented in Section 7.1, which of 
the two formulas is the correct one? Justify your answer.

 4. (a) Explain in detail the procedure to find the optimum value of the updated weight vector.
  (b) Explain the procedure for solving a constrained optimization problem.
 5. Explain in detail how an affine projection adaptive filter converges at a rate faster than that 

of the corresponding normalized LMS algorithm.
 6. Illustrate how an adaptive filter performs circular convolution instead of linear convolution.
 7. The affine projection adaptive filtering algorithm is used to estimate the coefficients of an 

autoregressive (AR) process defined by

u1n2 =  a
N - 1

k = 1
w*k u1n -  k2 +  n1n2,

where v(n) is a zero-mean, white-Gaussian-noise process.
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 (a) Formulate the algorithm for computing the AR coefficients w1, w2, . . . , wN - 1, assuming 
that the number of constraints used in the algorithm is N.

 (b) Define the M-by-1 vector

 F1n2=3I -  AH1n21A1n2AH1n22- 1A1n24u1n2,

where

 u1n2 =  3u1n2, u1n -  12, . . . , u1n -  M +  124T

and

 AH1n2 =  3u1n2, u1n -  12, . . . , u1n -  N +  124.
Show that the vector F(n) is a vector whose elements are estimates of zero-mean, white-
Gaussian-noise processes.

 8. In the normalized LMS algorithm, the condition 0 6 m∼ 6 2 is often given as a necessary 
condition for its stability. Examine Eq. (7.19) for the normalized LMS algorithm. Discuss the 
situations for which the upper bound of 2 on m∼ is justifiable.

 9. Explain in detail the importance of normalization in the normalized LMS algorithm over an 
LMS algorithm.

Computer experiments

 10. In this problem, we revisit the computer experiment described in Problem 18 of Chapter 6. 
We are given the AR process

u1n2 =  -a1u1n -  12 -  a2u1n -  22 +  v1n2,

where a1 = 0.1 and a2 = - 0.8. The v(n) is white noise with zero mean and a variance chosen 
to make the variance of u(n) equal to unity.

 (a) Plot the learning curve of the normalized LMS algorithm used to estimate the AR 
parameters a1 and a2. In this computation, use the following parameters:

m∼ =  0.2

  and

d =  0.5.

For the plot, average the squared error signal e(n) over an ensemble of 100 independent 
Monte Carlo runs of the experiment.

 (b) Plot the corresponding errors in tap-weight estimates.
 (c) Repeat the plots in parts (a) and (b) for the regularizing parameter d = 0.25, 0.75. What 

observation can you make on the effect of varying d?

Problems   355
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C H A P T E R  8

Block-Adaptive Filters

In the traditional and normalized least-mean-square (LMS) algorithms described 
in Chapters 6 and 7, the tap weights (free parameters) of a finite-duration impulse 
response (FIR) filter are adapted in the time domain. Recognizing that the Fourier 
transform maps time-domain signals into the frequency domain and that the inverse 
Fourier transform provides the inverse mapping that takes us back into the time 
domain, we see that it is equally feasible to perform the adaptation of filter  parameters 
in the frequency domain. In such a case, we speak of frequency-domain adaptive filter-
ing (FDAF), the origin of which may be traced back to an early paper by Walzman 
and Schwartz (1973).

There are two motivations for seeking adaptation in the frequency domain in one 
form or another:

  Motivation 1. In certain applications, such as acoustic echo cancellation in 
teleconferencing, the adaptive filter is required to have a long impulse response 
(i.e., long memory) to cope with an equally long echo duration. When the LMS 
algorithm is adapted in the time domain, we find that the requirement of a long 
memory results in a significant increase in the computational complexity of the 
algorithm. Frequency-domain adaptive filters provide a possible solution to the 
computational complexity problem.

  Motivation 2. Self-orthogonalizing adaptive filtering, mechanized in a different 
way from that described under Motivation 1, is used to improve the convergence 
performance of the traditional LMS algorithm. We thus have a second motiva-
tion: a more uniform convergence rate is attained by exploiting the orthogonality 
properties of the discrete cosine transform (DCT).

Both of these approaches to linear adaptive filtering are discussed in this chapter.
The chapter also discusses the subband adaptive filter, which is different from 

a self-orthogonalizing adaptive filter. In a subband adaptive filter, filters with high 
stopband rejection are used to band-partition the input signal and hence possibly 
provide an improvement in convergence over the frequency-domain adaptive filter. 
Moreover, by decimating the subband signals (i.e., down-sampling to a lower rate), 
it is possible to achieve a significant reduction in computational complexity. Thus, 
a subband adaptive filter offers an attractive alternative to the frequency-domain 
adaptive filter.
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Frequency-domain adaptive filtering (FDAF), self-orthogonalizing adaptive filter-
ing, and subband adaptive filtering, collectively, form block adaptive filtering, the study of 
which in this chapter is confined to real-valued data in order to simplify the presentation.

8.1 BloCk-AdAPTivE FilTERs: BAsiC idEAs

In a block-adaptive filter, depicted in Fig. 8.1, the incoming data sequence u(n) is 
 sectioned into L-point blocks by means of a serial-to-parallel converter, and the blocks 
of input data so produced are applied to a finite-duration impulse response (FIR) fil-
ter of length M, one block at a time. The tap weights of the filter are updated after the 
collection of each block of data samples, so that adaptation of the filter proceeds on a 
block-by-block basis rather than on a sample-by-sample basis as in the traditional LMS 
algorithm (Clark et al., 1981; Shynk, 1992).

Following the notation introduced in previous chapters, let 

 u1n2 = 3u1n2, u1n -  12, . . . , u1n -  M +  124T (8.1)

denote the input signal vector at time n, where the superscript T denotes transposition. 
Correspondingly, let

 wn 1n2 = 3wn 0 1n2, wn 1 1n2, . . . , wn M - 1 1n24T (8.2)

denote the tap-weight vector of the filter at time n. Let k refer to the block index, which 
is related to the original sample time n as

 
n = kL + i,   i =  0, 1, . . . , L-  1,

  k =  1, 2, . . . ,
 (8.3)

where L is the block length. The input data for block k is thus defined by the set 
5u1kL +  i26L - 1

i = 0 , which is written in matrix form as follows:

 AT
 1k2 = 3u1kL2, u1kL +  12, . . . , u1kL +  L -  124. (8.4)

Figure 8.1 Block-adaptive filter.
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Over this block of input data, the tap-weight vector of the filter is held at the value wn 1k2, 
which is a rewrite of wn 1n2 for n = k. Figure 8.2 illustrates the construction of data matrix 
A(k) for filter length M = 6 and block length L = 4.

The output produced by the filter in response to the input signal vector u(kL + i) 
is defined by

  y1kL +  i2 = wn T
 1k2u1kL +  i2  

  =  a
M - 1

j = 0
wn j 1k2u1kL +  i -  j2,    i = 0, 1, . . . , L -  1. (8.5)

Let d(kL + i) denote the corresponding value of the desired response. An error signal

 e1kL + i2 = d1kL + i2 - y1kL + i2 (8.6)

is produced by comparing the filter output against the desired response. The error signal 
is thus permitted to vary at the sample rate, as in the traditional LMS algorithm. The 
error signal is sectioned into L-point blocks in a synchronous manner with the signal at 
the input end of the block-adaptive filter and is then used to compute the correction to 
be applied to the tap weights of the filter, as depicted in Fig. 8.1.

ExAmPlE 1

To illustrate the operation of the block-adaptive filter, consider the example of a filter for which 
the filter length M and block size L are both equal to 3. We may then express the output sequence 
computed by the filter for three consecutive data blocks, k - 1, k, and k + 1, as follows:

1k - 12th block• £
u13k - 32 u13k - 42 u13k - 52
u13k - 22 u13k - 32 u13k - 42
u13k - 12 u13k - 22 u13k - 32

§ £
w0 1k - 12
w1 1k - 12
w2 1k - 12

§ = £
y13k - 32
y13k - 22
y13k - 12

§ ;

kth block• £
u13k2 u13k - 12 u13k - 22
u13k + 12 u13k2 u13k - 12
u13k + 22 u13k + 12 u13k2

§ £
w01k2
w11k2
w21k2

§ = £
y13k2
y13k + 12
y13k + 22

§ ;

Figure 8.2 Illustrating the construction of data matrix A(k).
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1k + 12th block • £
u13k + 32 u13k + 22 u13k + 12
u13k + 42 u13k + 32 u13k + 22
u13k + 52 u13k + 42 u13k + 32

§ £
w01k + 12
w11k + 12
w21k + 12

§ = £
y13k + 32
y13k + 42
y13k + 52

§ .

Note that the data matrix defined here is a Toeplitz matrix by virtue of the fact that the elements 
on any principal diagonal are all the same.

Block lms Algorithm

From the derivation of the LMS algorithm presented in Chapter 5, we recall the follow-
ing formula for the “adjustment” applied to the tap-weight vector from one adaptation 
cycle of the algorithm to the next (assuming real-valued data):

aadjustment to the
weight vector

b = a step@size
parameter

b * atap@input
vector

b * 1error signal2.

Since, in the block LMS algorithm, the error signal is allowed to vary at the sampling 
rate, it follows that, for each block of data, we have different values of the error signal 
for use in the adaptive process. Accordingly, for the kth block, we may sum the product 
u(kL + i)e(kL + i) over all possible values of i and so define the following update equa-
tion for the tap-weight vector of the block LMS algorithm operating on real-valued data:

 wn 1k + 12 = wn 1k2 + ma
L - 1

i = 0
u1kL + i2e1kL + i2. (8.7)

Here, μ is the step-size parameter. For convenience of presentation (which will become 
apparent in the next section), we rewrite Eq. (8.7) in the form

 wn 1k + 12 = wn 1k2 + mF1k2. (8.8)

The M-by-1 vector F(k) is a cross-correlation defined by

 
F1k2 = a

L - 1

i = 0
u1kL + i2e1kL + i2

  = AT1k2e1k2,
 (8.9)

where the L-by-M data matrix A(k) is defined in Eq. (8.4), and the L-by-1 vector

 e1k2 = [e1kL2, e1kL + 12, . . . , e1kL + L - 12]T (8.10)

is the error signal vector.
A distinctive feature of the block LMS algorithm is that its design incorporates 

the estimate of the gradient vector,

 �n1k2 = -
2
L
 a

L - 1

i = 0
u1kL + i2e1kL + i2, (8.11)

where the factor 2 is included to be consistent with the definition of the gradient vector 
used in Chapters 4 to 6, and the factor 1/L is included for �n1k2 to be an unbiased time 
average. Then we may reformulate the block LMS algorithm in terms of �n1k2 as
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 wn 1k + 12 = wn 1k2 -
1
2
 mB�n1k2, (8.12)

where

 mB = Lm. (8.13)

The new constant μB may be viewed as the “effective” step-size parameter of the block 
LMS algorithm.

Convergence Properties of the Block lms Algorithm

The block LMS algorithm has properties similar to those of the traditional LMS algo-
rithm. The fundamental difference between them lies in the estimates of the gradi-
ent vector used in their respective implementations. Compared to the traditional LMS 
algorithm, we see from Eq. (8.11) that the block LMS algorithm uses a more accurate 
estimate of the gradient vector because of the time averaging, with the estimation accu-
racy increasing as the block size L is increased. However, this improvement does not 
imply faster adaptation, a fact that is revealed by examining the convergence properties 
of the block LMS algorithm.

We may proceed through a convergence analysis of the block LMS algorithm 
in a manner similar to that described in Chapter 6 for the traditional LMS algorithm. 
Indeed, such an analysis follows the same steps as those described there, except for 
a minor modification, namely, the summation of certain expectations over the index  
i = 0, 1, . . . , L - 1, which is related to the sample time n as in Eq. (8.3) and the use of 
which arises by virtue of Eq. (8.6). We may thus summarize the results of “small-step-
size” statistical analysis of the block LMS algorithm as follows:

 1. Time constants. The kth time constant of the block LMS algorithm is

 tmse,av =
L

2mBlakv
,  k = 1, 2, . . . , M. (8.14)

Here, lakv is the kth value of the M eigenvalues of the correlation matrix

R =  �3u1n2uT
 1n24.

The corresponding formula for the kth time constant of the traditional LMS algorithm 
operating with step-size parameter μ is given by Eq. (6.105), which is reproduced here:

tmse,k =
1

2mlk
.

For given correlation matrix R, the kth eigenvalue lk is the same for both the traditional 
LMS algorithm and the block LMS algorithm. Hence, comparing this formula with that 
of Eq. (8.14) and keeping the relation of Eq. (8.13) in mind, we find that for a given lk 
these two algorithms have the same kth time constant.

For the zero-order formula of Eq. (8.14) to hold, the effective step-size parameter 
μB of the block LMS algorithm has to be small compared to 2/lmax, where lmax is the 
largest eigenvalue of the correlation matrix R. Suppose now that we have a requirement 
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for fast adaptation and therefore a small tmse,k, but the required block size L is so large 
that the value of μB calculated from Eq. (8.14) is correspondingly large. In such a situa-
tion, it is possible that the calculated value of μB is so large that the higher-order effects 
become significant enough for the use of the block LMS algorithm to be impractical 
because of instability problems.

 2. Misadjustment. The misadjustment produced by the block LMS algorithm is

 m =
mB

2L
 tr3R4, (8.15)

where tr[R] denotes the trace of the correlation matrix R. Here again, in light 
of Eq. (8.13), we find that the misadjustment of Eq. (8.15) is identical to that of 
Eq. (6.102) derived in Chapter 6 for the traditional LMS algorithm.

Choice of Block size

Thus far in the discussion of block LMS algorithms, we have not imposed a restriction 
on the block size L in relation to the length M of the adaptive filter. In this context, we 
recognize three possible choices, each with its own practical implications:

 1. L = M, which is the optimal choice from the viewpoint of computational complexity.
 2. L 6 M, which offers the advantage of reduced processing delay. Moreover, by 

making the block size smaller than the filter length, we still have an adaptive 
filtering algorithm computationally more accurate than the traditional LMS 
algorithm.

 3. L 7 M, which gives rise to redundant operations in the adaptive process, because 
the estimation of the gradient vector (computed over L points) now uses more 
information than the filter itself.

Henceforth, we confine our attention to the case of L = M, which is the preferred choice 
in most practical applications of block adaptive filtering.

When we speak of computational complexity, we mean the number of fast Fourier 
transformations and the size of each transformation that is needed for frequency-
domain implementation of the block LMS algorithm.1 This method of implementation 
is discussed next.

8.2 FAsT BloCk lms AlgoRiTHm

Given an adaptive signal-processing application for which the block LMS algorithm 
is a satisfactory solution, the key question to be addressed is how to implement  
it in a computationally efficient manner. Referring to Eqs. (8.5) and (8.9), where  

1Benesty et al. (2001) develop a general framework for frequency-domain adaptive filters, using a 
recursive least-squares criterion. Novel features of the theory presented therein include the following:

	 •	 The choice of block size is independent of the length of the adaptive filter.

	 •	 Various approximations applied to the theory lead to the fast block LMS algorithm, unconstrained 
block LMS algorithm, and multiple-delay adaptive filter.

	 •	 Some of these configurations are generalized to the multichannel scenario.

M08_HAYK4083_05_SE_C08.indd   362 21/06/13   8:36 AM



Section 8.2 Fast Block LMS Algorithm   363

2In Sommen and Jayasinghe (1988), a simplified form of the overlap-add method is described, saving 
two inverse discrete Fourier transforms (DFTs).

the computational burden of the block LMS algorithm lies, we observe the 
following:

	 •	 Equation (8.5) defines a linear convolution of the tap inputs and tap weights of 
the filter.

	 •	 Equation (8.9) defines a linear correlation between the tap inputs of the filter and 
the error signal.

From digital signal-processing theory, we know that the fast Fourier transform (FFT) 
algorithm provides a powerful tool for performing fast convolution and fast correlation 
(Oppenheim & Schafer, 1989). These observations point to a frequency- domain method 
for efficient implementation of the block LMS algorithm. Specifically, rather than per-
forming the adaptation in the time domain as described in the previous section, the filter 
parameters are actually adapted in the frequency domain by using the FFT algorithm. 
The block LMS algorithm so implemented is referred to as the fast block LMS algorithm, 
which was developed independently by Clark et al. (1981, 1983) and Ferrara (1980).

From digital signal-processing theory, we also know that the overlap-save method 
and overlap-add method provide two efficient procedures for fast convolution—
that is, the computation of linear convolution using the discrete Fourier transform 
(Oppenheim & Schafer, 1989). The overlap-save method is the more common one of 
the two for nonadaptive filtering. Also, it is noteworthy that although the filter can be 
implemented with any amount of overlap, the use of 50 percent overlap (i.e., block size 
equal to the number of weights) is the most efficient. Henceforth, we focus our attention 
on the overlap-save method with 50 percent overlap.2

According to the overlap-save method, the M tap weights of the filter are padded 
with an equal number of zeros, and an N-point FFT is used for the computation, where

N = 2M.

Thus, let the N-by-1 vector

 Wn 1k2 = FFT cwn 1k2
0

d  (8.16)

denote the FFT coefficients of the zero-padded, tap-weight vector wn 1k2. Here, 0 is the 
M-by-1 null vector and FFT [ ] denotes fast Fourier transformation. Note that the frequency-
domain weight vector Wn 1k2 is twice as long as the time-domain weight vector wn 1k2. 
Correspondingly, let

    
U(k) =  diag{FFT 3u(kM - M), . . . , u(kM - 1), u(kM), . . . , u(kM +  M -  1)46

        (k - 1)th block kth block
 (8.17)

denote an N-by-N diagonal matrix obtained by Fourier transforming two successive 
blocks of input data. We could use a vector to define the transformed version of the input 
signal vector u(M); however, for our present needs the matrix notation of Eq. (8.17) is 

(++++++)++++++* (+++++1)++1+++*
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considered to be more appropriate. Hence, applying the overlap-save method to the 
linear convolution of Eq. (8.5) yields the M-by-1 vector

 
yT

 1k2 = 3y1kM2, y1kM + 12, c, y1kM + M - 124
   = last M elements of IFF T 3U1k2Wn 1k24,  (8.18)

where IFFT [ ] denotes inverse fast Fourier transformation. Only the last M elements in 
Eq. (8.18) are retained, because the first M elements correspond to a circular convolution.

Consider next the linear correlation of Eq. (8.9). For the kth block, define the  
M-by-1 desired response vector

 d1k2 = 3d1kM2, d1kM + 12, . . . , d1kM + M - 124T (8.19)

and the corresponding M-by-1 error signal vector

 
e1k2 = 3e1kM2, e1kM + 12, . . . , e1kM + M - 124T

  = d1k2 - y1k2.  (8.20)

Noting that, in implementing the linear convolution described in Eq. (8.18), the first M 
elements are discarded from the output, we may transform the error signal vector e(k) 
into the frequency domain as follows:

 E1k2 = FFT c0
e1k2 d . (8.21)

Next, recognizing that linear correlation is basically a “reversed” form of linear con-
volution, we find that applying the overlap-save method to the linear correlation of 
Eq. (8.9) yields

 F1k2 = first M elements of IFF T [UH1k2E1k2], (8.22)

where the superscript H denotes Hermitian transposition (i.e., the operation of 
 transposition combined with complex conjugation). Observe that, whereas in the case 
of linear convolution considered in Eq. (8.18) the first M elements are discarded, in the 
case of Eq. (8.22) the last M elements are discarded.

Finally, consider Eq. (8.8) for updating the tap-weight vector of the filter. Noting 
that in the definition of the frequency-domain weight vector [Wn 1k2 of Eq. (8.16)] the 
time-domain weight vector wn 1k2 is followed by M zeros, we may correspondingly trans-
form Eq. (8.8) into the frequency domain as follows:

 
Wn 1k + 12 = Wn 1k2 + mFF T cF1k2

0
d . (8.23)

Equations (8.16) through (8.23), in that order, define the fast block LMS algo-
rithm. Figure 8.3 shows a signal-flow graph representation of the fast block LMS  
algorithm (Shynk, 1992). This algorithm represents a precise frequency-domain imple-
mentation of the block LMS algorithm. As such, its convergence properties are identical 
to those of the block LMS algorithm discussed in Section 8.1.
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Computational Complexity

The computational complexity of the fast block LMS algorithm operating in the 
 frequency domain is now compared with that of the traditional LMS algorithm oper-
ating in the time domain. The comparison is based on a count of the total number 
of multiplications involved in each of these two implementations for a block size M. 
Although in an actual implementation there are other factors to be considered (e.g., 
the number of additions and the storage requirements), the use of multiplications pro-
vides a reasonably accurate basis for comparing the computational complexity of the 
two algorithms.

Figure 8.3 Overlap-save FDAF. This frequency-domain adaptive filter is based on 
the overlap-save sectioning procedure for implementing linear convolutions and linear 
correlations. (Taken from IEEE SP Magazine with permission of the IEEE.)
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Consider first the traditional LMS algorithm, with M tap weights operating on 
real data. In this case, M multiplications are performed to compute the output, and a 
further M multiplications are performed to update the tap weights, for a total of 2M 
multiplications per adaptation cycle. Hence, for a block of M output samples, the total 
number of multiplications is 2M2.

Now consider the fast block LMS algorithm. Each N-point FFT (and IFFT) 
requires approximately N log2N real multiplications (Oppenheim & Schafer, 1989), 
where N = 2M. According to the structure of the fast block LMS algorithm shown in 
Fig. 8.3, there are five frequency transformations performed, which therefore account for 
5N log2N multiplications. In addition, the computation of the frequency-domain output 
vector requires 4N multiplications, and so does the computation of the cross-correlations 
relating to the gradient vector estimation. Hence, the total number of multiplications 
performed in the fast block LMS algorithm is

5N log2N + 8N = 10M log212M2 + 16M

= 10M log2M + 26M.

The complexity ratio for the fast block LMS to the traditional LMS algorithm is 
therefore (Shynk, 1992)

complexity ratio =
10M log2M + 26M

2M2

=
5 log2M + 13

M
.

For example, for M = 1024, the use of this equation shows that the fast block LMS algo-
rithm is roughly 16 times faster than the traditional LMS algorithm in computational 
terms. We may therefore make the following statement:

The fast block LMS algorithm provides a computational cost per adaptation cycle 
below that of the traditional LMS algorithm.

improvement in Convergence Rate

Basically, the fast block LMS algorithm is an efficient frequency-domain implementa-
tion of the block LMS algorithm. It therefore follows that both algorithms have the 
same convergence properties: necessary condition for convergence, rate of convergence, 
and misadjustment. However, the convergence rate of the fast block LMS algorithm 
can be improved by assigning a different step size to each adjustable weight without 
affecting the minimum mean-square error (Sommen et al., 1987; Lee & Un, 1989). In 
particular, the use of the overlap-save method is not only responsible for reducing the 
computational complexity of the implementation, but it also provides a practical basis 
for improving the convergence rate of the fast block LMS algorithm. The improve-
ment is achieved by compensating for variations in the average signal power across the 
individual frequency bins. Specifically, we make all the modes of the adaptive process 
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converge essentially at the same rate by assigning to each weight an individual step-size 
parameter of its own, defined by

 mi =
a

Pi
,  i = 0, 1, . . . , 2M - 1, (8.24)

where a is a constant and Pi is an estimate of the average power in the ith frequency bin. 
Note that, for real signals, we have symmetry in the frequency domain, which means that 
the first M values of Pi in Eq. (8.24) suffice.

The condition of Eq. (8.24) applies when the environment in which the fast block 
LMS algorithm operates is wide-sense stationary. When, however, the environment is 
nonstationary, or when an estimate of the average input power in each bin is not avail-
able, we may use the following simple recursion (based on the idea of convex combi-
nation) to estimate the performance of the fast LMS block algorithm (Griffiths, 1978; 
Shynk, 1992):

 Pi 1k2 = gPi 1k - 12 + 11 - g2 � Ui 1k2 �2,    i = 0, 1, . . . , 2M - 1. (8.25)

Here, Ui(k) is the input applied to the ith weight in the fast block LMS algorithm at time 
k, g is a constant chosen in the range 0 6 g 6 1, and the parameter g is a forgetting factor 
that controls the effective “memory” of the iterative process described in the equation. 
In particular, we may express the input power Pi(k) as an exponentially weighted sum 
of the squares of the magnitude of the input values:

 Pi1k2 = 11 - g2a
∞

l = 0
gl � Ui1k - l2�2. (8.26)

Thus, given the estimate Pi1k2 of the average signal power in the ith bin, the 
step-size parameter μ is replaced by an M-by-M diagonal matrix in accordance with 
Eq. (8.24) as

 M1k2 = aD1k2, (8.27)

where

 D1k2 = diag 3P  

-1
 0  1k2, P 

-1
 1  1k2, . . . , P 

-1
 

 

2M - 11k24. (8.28)

Correspondingly, the fast block LMS algorithm is modified as follows (Ferrara, 1985; 
Shynk, 1992):

 1. In Eq. (8.22), involving the computation of the cross-correlation vector F(k), the 
product term UH(k)E(k) is replaced by D(k)UH(k)E(k), yielding

 F1k2 = first M elements of IFFT 3D1k2UH1k2E1k24 . (8.29)

 2. In Eq. (8.23), μ is replaced by the constant a; otherwise, the computation of the 
frequency-domain weight vector Wn 1k2 is the same as before.

Table 8.1 presents a summary of the fast block LMS algorithm, incorporating the modi-
fications described herein (Shynk, 1992).
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8.3 UnConsTRAinEd FREqUEnCy-domAin AdAPTivE FilTERs

The fast block LMS algorithm described by the signal-flow graph of Fig. 8.3 may be 
viewed as a constrained form of FDAF. Specifically, two of the five FFTs involved in 
the operation of the algorithm are needed to impose a time-domain constraint for the 
purpose of performing a linear correlation as specified in Eq. (8.9). The time-domain 
constraint consists of the following operations:

	 •	 Discarding the last M elements of the inverse FFT of UH(k)E(k), as described in 
Eq. (8.22).

	 •	 Replacing the elements so discarded by a block of M zeros before reapplying the 
FFT, as described in Eq. (8.23).

The combination of operations described herein is contained inside the dashed rect-
angle of Fig. 8.3; this combination is referred to as a gradient constraint, in recognition 
of the fact that it is involved in computing an estimate of the gradient vector. Note that 
the gradient constraint is actually a time-domain constraint which basically ensures that 

TABLe 8.1 Summary of the Fast Block LMS Algorithm Based on Overlap-Save Sectioning  
(Assuming Real-Valued Data)

Initialization:
 Wn 102 = 2M-by-1 null vector

 Pi 102 = di, where the @i are small positive constants and i = 0, . . . , 2M - 1

Notations:
 0 = M-by-1 null vector
 FFT = fast Fourier transformation
 IFFT = inverse fast Fourier transformation
 a = adaptation constant

Computation: For each new block of M input samples, compute:

Filtering:

 U1k2 = diag 5FFT 3u1kM - M2, . . . , u1kM - 12, u1kM2, . . . , u1kM + M - 124T6
 yT

 1k2 = last M elements of IFFT 3U1k2Wn 1k24.
Error estimation:

 e1k2 = d1k2 - y1k2

 E1k2 = FFT c0
e1k2 d .

Signal-power estimation:

 Pi1k2 = gPi 1k - 12 + 11 - g2 � Ui 1k2 �2,    i = 0, 1, . . . , 2M - 1

 D1k2 = diag 3P 

-1
 0  1k2, P 

-1
 1  1k2, . . . , P 

-1
 2M - 1 1k24.

Tap-weight adaptation:

 F1k2 = first M elements of IFFT3D1k2UH
 1k2E1k24

 Wn 1k + 12 = Wn 1k2 + a FFT cF1k2
0

d .
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the 2M frequency-domain weights correspond to only M time-domain weights. This is 
the reason why a zero block is appended in the gradient constraint in the figure.

In the unconstrained frequency-domain adaptive filter (Mansour & Gray, 1982), the 
gradient constraint is removed completely from the signal-flow graph of Fig. 8.3. The net 
result is a simpler implementation that involves only three FFTs. Thus, the combination 
of Eqs. (8.22) and (8.23) in the fast block LMS algorithm is now replaced by the much 
simpler algorithm

 Wn 1k + 12 = Wn 1k2 + mUH
 1k2E1k2. (8.30)

It is important to note, however, that the estimate of the gradient vector computed here 
no longer corresponds to a linear correlation as specified in Eq. (8.9); rather, we now 
have a circular correlation.

Consequently, we find that, in general, the unconstrained FDAF algorithm of 
Eq. (8.30) deviates from the fast block LMS algorithm, in that the tap-weight vector 
no longer approaches the Wiener solution as the number of block adaptation cycles 
approaches infinity (Sommen et al., 1987; Lee & Un, 1989; Shynk, 1992). Another point 
to note is that, although the convergence rate of the unconstrained FDAF algorithm is 
increased with time-varying step sizes, the improvement is offset by a worsening of the 
misadjustment. Indeed, according to Lee and Un (1989), the unconstrained algorithm 
requires twice as many adaptation cycles as the constrained algorithm to produce the 
same level of misadjustment.

8.4 sElF-oRTHogonAlizing AdAPTivE FilTERs

In the previous sections, we addressed the issue of how to use frequency-domain tech-
niques to improve the computational accuracy of the LMS algorithm when the appli-
cation of interest requires a long filter memory. In this section, we consider another 
important adaptive filtering issue, namely, that of improving the convergence properties 
of the LMS algorithm. This improvement is, however, attained at the cost of an increase 
in computational complexity.

To motivate the discussion, consider an input signal vector u(n) characterized by 
the correlation matrix R. The self-orthogonalizing adaptive filtering algorithm for such 
a wide-sense stationary environment is described by (Chang, 1971; Cowan, 1987)

 wn 1n + 12 = wn 1n2 + aR-1u1n2e1n2, (8.31)

where R-1 is the inverse of the correlation matrix R and e(n) is the error signal defined 
in the usual way. [Equation (8.31) is related to Newton’s method, which was discussed 
in Section (4.6).] The constant a lies in the range 0 6 a 6 1; according to Cowan (1987), 
it may be set at the value

 a =
1

2M
, (8.32)

where M is the filter length. An important property of the self-organizing filtering 
 algorithm of Eq. (8.31) is that, in theory, it guarantees a constant rate of convergence, 
irrespective of the input statistics.
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To prove this useful property, define the weight-error vector

 E1n2 = wo - wn 1n2, (8.33)

where the weight vector wo is the Wiener solution. We may rewrite the algorithm of 
Eq. (8.31) in terms of E(n) as

 E1n + 12 = (I - aR-1u1n2uT
 1n2)E1n2 - aR-1u1n2eo 1n2, (8.34)

where I is the identity matrix and eo(n) is the optimum value of the error signal that is 
produced by the Wiener solution. Applying the statistical expectation operator to both 
sides of Eq. (8.34) and invoking Kushner’s direct-averaging method under the assump-
tion of small a (see Section 6.4), we obtain the following result:

 �[E1n + 1)] ≈ (I - aR-1�[u1n2uT
 1n2])�[E1n2] - aR-1�[u1n2eo 1n2]. (8.35)

We now recognize the following points (for real-valued data):

	 •	 From the definition of the correlation matrix for a wide-sense stationary process, 
we have

�[u1n2uT
 1n2] = R.

	 •	 From the principle of orthogonality, we have (see Section 2.2)

�[u1n2eo1n2] = 0.

Accordingly, we may simplify Eq. (8.35) as follows:

�[E1n + 1)] = (I - aR-1R)�[E1n2]

 = 11 - a2�3E1n24. (8.36)

Equation (8.36) represents an autonomous first-order difference equation, the solution 
of which is

 �3E1n24 = 11 - a2n
 �3E1024, (8.37)

where E(0) is the initial value of the weight-error vector. Hence, with the value of a lying 
in the range 0 6 a 6 1, we may write

 lim
nS∞

�3E1n24 = 0 (8.38)

or, equivalently,

 lim
nS∞

�3wn 1n24 = wo. (8.39)

Most importantly, we note from Eq. (8.37) that the rate of convergence is completely 
independent of the input statistics, as stated previously.

ExAmPlE 2 White noise input

To illustrate the convergence properties of the self-organizing adaptive filtering algorithm, con-
sider the case of a white-noise input, whose correlation matrix is defined by

 R = s2I, (8.40)
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where s2 is the noise variance and I is the identity matrix. For this input, the use of Eq. (8.31) 
(with a = 1/2M) yields

 wn 1n + 12 = wn 1n2 +
1

2Ms2 u1n2e1n2. (8.41)

This algorithm is recognized as the traditional LMS algorithm with a step-size parameter 
defined by

 m =
1

2Ms2. (8.42)

In other words, for the special case of a white noise sequence characterized by an eigenvalue 
spread of unity, the traditional LMS algorithm behaves in the same way as the self- orthogonalizing 
adaptive filtering algorithm.

Two-stage Adaptive Filter

This last example suggests that we may mechanize a self-orthogonalizing adaptive filter 
for an arbitrary environment by proceeding in two stages (Narayan et al., 1983; Cowan &  
Grant, 1985):

 1. The input vector u(n) is transformed into a corresponding vector of uncorrelated 
variables.

 2. The transformed vector is used as the input to an LMS algorithm.

From the discussion presented on eigenanalysis in Appendix E, we note that, in theory, 
the first objective may be realized by using the Karhunen–Loève transform (KLT). 
Given an input vector u(n) of zero mean, drawn from a wide-sense stationary process, 
the ith output of the KLT is defined (for real-valued data) by

 vi 1n2 = qT
i u1n2,    i = 0, 1, . . . , M - 1, (8.43)

where qi is the eigenvector associated with the ith eigenvalue li belonging to the correla-
tion matrix R of the input vector u(n). The individual outputs of the KLT are zero-mean, 
uncorrelated variables, as shown by

 �3vi 1n2vj 1n24 = eli, j = i
0, j ≠ i

. (8.44)

Accordingly, we may express the correlation matrix of the M-by-1 vector v(n) produced 
by the KLT as the diagonal matrix

 
� = �3v1n2vT

 1n24
= diag3l0, l1, c, lM - 14.  (8.45)

The inverse of ∂ is also a diagonal matrix:

 �-1 = diag cl-1
 0 , l-1

 1 , . . . , l-1
M - 1 d . (8.46)
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Consider now the self-orthogonalizing adaptive filtering algorithm of Eq. (8.31) 
with the transformed vector v(n) and its inverse correlation matrix ∂-1 used in place of 
u(n) and R-1, respectively. Under these new circumstances, Eq. (8.31) takes the form

 wn 1n + 12 = wn 1n2 + a�-1v1n2e1n2, (8.47)

the ith element of which may written as

 wn i 1n + 12 = wn i 1n2 +
a

li
 vi1n2e1n2,    i = 0, 1, . . . , M - 1. (8.48)

Note that the meaning of wn 1n2 in Eq. (8.47) is different from that in Eq. (8.31) because 
of the transformed input vector v(n). Equation (8.48) is immediately recognized as a new 
normalized form of the LMS algorithm. Normalization here means that each tap-weight 
is assigned its own step-size parameter that is related to the corresponding eigenvalue 
of the correlation matrix of the original input vector u(n). Thus, Eq. (8.48) takes care of 
the second point mentioned at the beginning of this subsection. Note, however, that the 
algorithm described herein is different from the traditional normalized LMS algorithm 
discussed in Chapter 7.

The KLT is a signal-dependent transformation, the implementation of which 
requires the estimation of the correlation matrix of the input vector, the diagonalization 
of this matrix, and the construction of the required basis vectors. These computations 
make the KLT impractical for real-time applications. Fortunately, the discrete cosine 
transform (DCT) provides a predetermined set of basis vectors that, together, are a 
good approximation of the KLT. Indeed, for a stationary zero-mean, first-order Markov 
process that is deemed to be sufficiently general in signal-processing studies, the DCT 
is asymptotically equivalent to the KLT,3 both as the sequence length increases and as 
the adjacent correlation coefficient tends toward unity (Rao & Yip, 1990); the adjacent 
correlation coefficient of a stochastic process is defined as the autocorrelation function 
of the process for a unit lag, divided by the autocorrelation function of the process for 
zero lag (i.e., the mean-square value). Whereas the KLT is signal dependent, the DCT 
is signal independent and can therefore be implemented in a computationally efficient 
manner. The DCT basis vectors are a good approximation to the KLT for some signals.

We are now equipped with the tools we need to formulate a practical approxima-
tion to the self-orthogonalizing adaptive filter that combines the desirable properties 
of the DCT with those of the LMS algorithm. Figure 8.4 shows a block diagram of 
such a filter. The filter consists of two stages, with stage 1 providing the implementa-
tion of a sliding DCT algorithm and stage 2 implementing a normalized version of the 
LMS algorithm (Beaufays & Widrow, 1994; Beaufays, 1995a). In effect, stage 1 acts as 
a preprocessor that performs the orthogonalization of the input vector, albeit in an 
approximate manner.

3Grenander and Szegö (1958) and Gray (1972). Note that the asymptotic eigenvalue spread for the 
DFT with fast-order Markov inputs is much worse than that for the DCT, which makes the DCT the pre-
ferred approximation to the KLT. Specifically, for such inputs, the asymptotic eigenvalue spread is equal to 
[(1 + r)/(1 - r)] for the DFT versus (1 + r) for the DCT, where r is the adjacent correlation coefficient of 
the input (Beaufays, 1995a).
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sliding dCT

The DCT we have in mind for our present application uses a sliding window, with the 
computation being performed for each new input sample. This, in turn, enables the LMS 
algorithm (following the DCT) to operate at the incoming data rate as in its traditional 
form. Thus, unlike the fast block LMS algorithm, the FDAF algorithm described here is 
a nonblock algorithm and therefore not as computationally accurate.

From Fourier transform theory, we know that the discrete Fourier transform of 
an even function results in the discrete cosine transform. We may exploit this simple 
property to develop an efficient algorithm for computing the sliding DCT. To proceed, 
consider a sequence of M samples denoted by u(n), u(n - 1), . . . , u(n - M + 1). We may 
construct an extended sequence a(i) that is symmetric about the point n - M + 1/2 as 
follows (see Fig. 8.5):

a1i2 = eu1i2,  i = n, n - 1, . . . , n - M + 1
u1- i + 2n - 2M + 12, i = n - M, n - M - 1, . . . , n - 2M + 1

. (8.49)

For convenience of presentation, we define

 W2M = exp a- j2p

2M
b . (8.50)

The mth element of the 2M-point discrete Fourier transform (DFT) of the extended 
sequence in Eq. (8.49) at time n is defined by

 Am 1n2 = a
n

i = n - 2M + 1
a1i2W m1n - i2

2M . (8.51)

Using Eq. (8.49) in Eq. (8.51), we may write

 Am 1n2 = a
n

i = n - M + 1
a1i2W m1n - i2

2M + a
n - M

i = n - 2M + 1
a1i2W m1n - i2

2M

 = a
n

i = n - M + 1
u1i2W m1n - i2

2M + a
n - M

i = n - 2M + 1
u1- i + 2n - 2M + 12W m1n - i2

2M  (8.52)

 = a
n

i = n - M + 1
u1i2W m1n - i2

2m + a
n

i = n - M + 1
u1i2W m1i- n + 2M - 12

2M .

Figure 8.4 Block diagram of the DCT-LMS algorithm.
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Factoring out the term W m1M - 1 >  22
2M  and combining the two summations, we may redefine

 
Am 1n2 = W m1M - 1 >  22

2M a
n

i = n - M + 1
u1i2aW -m1i- n + M - 1 >  22

2M + W m1i- n + M - 1 >  22
2M b

   = 21-12m
 W -m >  2

2M a
n

i = n - M + 1
u1i2 cos am1i - n + M - 1 >  22p

M
b ,

 (8.53)

where, in the last line, we have used the definition of W2M and Euler’s formula for a 
cosine function. Except for a scaling factor, the summation in Eq. (8.53) is recognized 
as the DCT of the sequence u(n) at time n; specifically, we have

 Cm 1n2 = km a
n

i = n - M + 1
u1i2cos am1i - n + M - 1 >  22p

M
b , (8.54)

where the constant

 km = e1>22,        m = 0
1, otherwise

. (8.55)

Accordingly, in light of Eqs. (8.53) and (8.54), the DCT of the sequence u(n) is related 
to the DFT of the extended sequence a(n) as follows:

 Cm 1n2 =
1
2
 km 1-12m W m >  2

 2M  Am 1n2,    m = 0, 1, . . . , M - 1. (8.56)

The DFT of the extended sequence a(n) given in Eq. (8.52) may be viewed as the 
sum of two complementary DFTs:

 Am 1n2 = A112
 m 1n2 + A122

 m 1n2. (8.57)

Here,

 A112
 m 1n2 = a

n

i = n - M + 1
u1i2W m1n - i2

 2M  (8.58)

and

 A122
 m 1n2 = a

n

i = n - M + 1
u1i2W m1i- n + 2M - 12

 2M . (8.59)

Figure 8.5 Construction of the extended sequence a(i).
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Consider first the DFT, A112
 m 1n2. Separating out the sample u(n), we may rewrite this 

DFT (computed at time n) as

 A112
 m 1n2 = u1n2 + a

n - 1

i = n - M + 1
u1i2W m1n - i2

 2M . (8.60)

Next, we note from Eq. (8.58) that the previous value of the DFT, computed at time 
n - 1, is given by

A112
 m 1n - 12 = a

n - 1

i = n - M
u1i2W m1n - 1 - i2

 2M

 = 1-12mW -m
2Mu1n - M2 + W -m

2M a
n

i = n - M + 1
u1i2W m1n - i2

 2M , 
(8.61)

where, in the first term of the last line, we have used the fact that

W mM
 2M = e-jmp = 1-12m.

Multiplying Eq. (8.61) by the factor W m
2M and subtracting the result from Eq. (8.60), we 

get (after rearranging terms)

A(1)
 m (n) = W m

 2M A(1)
 m (n - 1) + u(n) - (-1)m

 u(n - M), m = 0, 1, . . . , M - 1. (8.62)

Equation (8.62) is a first-order difference equation that may be used to update the 
computation of A112

 m 1n2, given its previous value A112
 m 1n - 12, the new sample u(n), and 

the very old sample u(n - M).
Consider next the recursive computation of the second DFT, A122

 m  1n2, defined in 
Eq. (8.59). We recognize that W 2mM

 2M = 1 for all integer m. Hence, separating out the 
term that involves the sample u(n), we may express this DFT in the form

 A122
 m 1n2 = W -m

2Mu1n2 + W -m
2M a

n - 1

i = n - M + 1
u1i2W m1i- n2

2M . (8.63)

Now, using Eq. (8.59) to evaluate this second DFT at time n - 1 and then proceeding to 
separate out the term involving the sample u(n - M), we may write

A122
 m 1n - 12 = a

n - 1

i = n - M
u1i2W m1i- n2

 2M

= W mM
 2M u1n - M2 + a

n - 1

i = n - M + 1
u1i2W m1i- n2

 2M  (8.64)

= 1-12m
 u1n - M2 + a

n - 1

i = n - M + 1
u1i2W m1i- n2

2M .

Multiplying Eq. (8.64) by the factor W -m
 2M and then subtracting the result from Eq. (8.63), 

we get (after rearranging terms)

 A122
 m 1n2 = W -m

2MA122
 m 1n - 12 + W -m

2M(u1n2 - 1-12m
 u1n - M2). (8.65)
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Finally, using Eqs. (8.56), (8.57), (8.62), and (8.65), we may construct the block diagram 
shown in Fig. 8.6 for the recursive computation of the discrete cosine transform Cm(n) 
of the sequence u(n). The construction is simplified by noting the following two points:

 1. The operations involving the present sample u(n) and the old sample u(n - M) 
are common to the computations of both discrete Fourier transforms A112

 m 1n2 and 
A122

 m 1n2—hence the common front end of Fig. 8.6.
 2. The operator z-M in the forward path in the figure is multiplied by bM(-1)m, where 

b is a new parameter. In contrast, the operator z-1 inside each of the two feedback 
loops in the figure is multiplied by b. The reason for including this new parameter 
is explained shortly.

The discrete-time network of Fig. 8.6 is called a frequency-sampling filter. It exhibits a 
form of structural symmetry that is inherited from the mathematical symmetry built into 
the definition of the discrete cosine transform.

The transfer function of the filter shown in Fig. 8.6 from the input u(n) to the mth 
DCT output, Cm(n), is given (with b = 1) by

 Hm (z) =
1
2
 km£  exp  a- jmp

2M
b  

1-12m - z-M

1 -  exp a jmp

M
b  z-1

 +  exp a jmp

2M
b  

1-12m -  z-M

1 -  exp a- jmp

M
b  z-1

≥. 

(8.66)

The common numerator of Eq. (8.66), namely, the factor (-1)m – z-M represents a set 
of zeros that are uniformly spaced around the unit circle in the z-plane. These zeros are 
given by

 zm = exp a jpm

M
b ,    m = 0, {1, . . . , {1M - 12. (8.67)

The first partial fraction in Eq. (8.66) has a single pole at z = exp(jmπ/M), whereas the 
second partial fraction has a single pole at zm = exp(-jmπ/M). Accordingly, each of 

Figure 8.6 Indirect computation of the sliding discrete cosine transform.
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these poles exactly cancels a particular zero of the numerator term. The net result is that 
the filter structure of Fig. 8.6 is equivalent to two banks of narrowband all-zero filters 
operating in parallel, with each filter bank corresponding to the M bins of the DCT. 
Figure 8.7(a) shows the frequency responses of the frequency-sampling filters pertain-
ing to two adjacent bins of the DCT represented by the coefficients m = 0 and m = 1, 
and Fig. 8.7(b) shows the corresponding impulse responses of the filters for M = 8 bins.

With b = 1, the frequency-sampling filters described herein are “marginally” stable, 
because, for each bin of the DCT, the poles of the two feedback paths in Fig. 8.6 lie 
exactly on the unit circle, and round-off errors (however small) may give rise to insta-
bility by pushing one or the other (or both) of these poles outside the unit circle. This 
problem is alleviated by shifting the zeros of the forward path and the poles of the feed-
back paths slightly inside the unit circle (Shynk & Widrow, 1986)—hence the inclusion of 
parameter b in the figure, with 0 6 b 6 1. For example, with b = 0.99, all of the poles and 
zeros of the two terms in the partial-fraction expansion of the transfer function Hm(z) of 
a frequency-sampling filter, as in Eq. (8.66), are now made to lie on a circle with radius 
b = 0.99; the stability of the frequency-sampling filters is thereby ensured, even if exact 
pole–zero cancellations are not realized (Shynk, 1992).

Eigenvalue Estimation

The only issue that remains to be considered in the design of the DCT-LMS algorithm 
is how to estimate the eigenvalues of the correlation matrix R of the input vector u(n). 
These eigenvalues define the step sizes used to adapt the individual weights in the LMS 
algorithm of Eq. (8.48). Assuming that the stochastic process responsible for generating 
the input vector u(n) is ergodic, we may define an estimate of its correlation matrix R 
(for real-valued data) as

 Rn 1n2 =
1
n
 a

n

i = 1
u1i2uT

 1i2, (8.68)

which is known as the sample correlation matrix. The coefficients of the DCT provide 
an approximation to the M-by-M matrix Q whose columns represent the eigenvectors 
associated with the eigenvalues of the correlation matrix R. Let Qn  denote this approxi-
mating matrix. Then the vector of outputs C0(n), C1(n), . . . , CM − 1(n) produced by the 
DCT in response to the input vector u(n) may be expressed as

  vn1n2 = 3C0 1n2, C1 1n2, . . . , CM - 1 1n24T 

  = Qn  u1n2.  
(8.69)

Furthermore, the approximation to the orthogonal transformation realized by the 
DCT may be written [in light of Eqs. (8.68) and (8.69)] in the form

 �n 1n2 = Qn  Rn  1n2Qn  
T  

 =
1
n
 a

n

i = 1
Qn  u(i)uT

 1i2QT (8.70)

 =
1
n
 a

n

i = 1
vn1i2vnT

 1i2.  
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Figure 8.7 (a) Magnitude responses of frequency-sampling filters for m = 0 and m = 1.  
(b) Corresponding impulse responses h0(n) and h1(n) of the two frequency-sampling filters.
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Equivalently, we have

 lnm 1n2 =
1
n
 a

n

i = 1
C2

m1i2,    m = 0, 1, . . . , M - 1. (8.71)

Equation (8.71) may be cast into a recursive form by writing

 lnm 1n2 =
1
n
 C2

m 1n2 +
1
n
 a

n - 1

i = 1
C2

m1i2 (8.72)

 =
1
n

 C2
m (n) +

n - 1
n

 #  1
n - 1

 a
n - 1

i = 1
C2

m (i). 

From the defining equation (8.71), we note that

lnm 1n - 12 =
1

n - 1
 a

n - 1

i = 1
C2

m1i2.

Accordingly, we may rewrite Eq. (8.72) in the recursive form

 lnm 1n2 = lnm1n - 12 +
1
n
 (C2

m1n2 - lnm 1n - 12). (8.73)

Equation (8.73) applies to a wide-sense stationary environment. To account for 
adaptive filtering operation in a nonstationary environment, we modify the recursive 
equation (8.73) to produce (Chao et al., 1990)

 lnm 1n2 = glnm 1n - 12 +
1
n
 (C2

m1n2 - glnm 1n - 12),    m = 0, 1, . . . , M - 1, 

(8.74)

where g is a forgetting factor that lies in the range 0 6 g 6 1. Equation (8.74) is the desired 
formula for recursive computation of the eigenvalues of the correlation matrix of the 
input vector u(n).

summary of the dCT-lms Algorithm

We are now ready to summarize the steps involved in computing the DCT-LMS algo-
rithm. The summary is presented in Table 8.2, which follows from Figure 8.6, Eqs. (8.48) 
and (8.74), and Eqs. (8.62) and (8.65).

8.5 ComPUTER ExPERimEnT on AdAPTivE EqUAlizATion

In this computer experiment, we revisit the adaptive channel equalization example 
discussed in Section 6.7, where the traditional LMS algorithm was used to perform 
the adaptation. This time, we use the DCT-LMS algorithm derived in Section 8.4. (For 
details of the channel impulse response and the random sequence applied to the chan-
nel input, see Section 6.7.)
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The experiment is in two parts:

	 •	 In part 1, we study the transient behavior of the DCT-LMS algorithm for different 
values of the eigenvalue spread of the correlation matrix of the equalizer input.

	 •	 In part 2, we compare the transient behavior of the DCT-LMS algorithm to that 
of the traditional LMS algorithm.

TABLe 8.2 Summary of the DCT-LMS algorithm:

Initialization:

For m = 0, 1, . . . , M - 1, set
 A(1)

 m  102 = A(2)
 m 102 = 0

 lnm 102 = 0

 wn m 102 = 0

 km = e 1>22,        m = 0
1,  otherwise

Selection of parameters:

 a =
1

2M
 b = 0.99

 0 6 g 6 1

Sliding DCT:
For m = 0, 1, . . . , M - 1, and n = 1, 2, . . . , compute

 A112
 m  1n2 = bWm

2MA112
 m 1n - 12 + u1n2 - bM

 (-1)mu1n - M2
 A122

 m 1n2 = bW -m
2MA(2)

 m 1n - 12 + W -m
2M  1u1n2 - bM

 1-12m
 u1n - M22

 Am 1n2 = A(1)
 m 1n2 + A122

 m  1n2

 Cm 1n2 =
1
2
 km1-12mWm >  2

2M  Am1n2,

where W2M is defined by

 W2M = exp a - j2p

2M
b .

LMS algorithm:

 y1n2 = a
M - 1

m = 0
Cm 1n2wn m 1n2

 e1n2 = d1n2 - y1n2

 lnm 1n2 = glnm 1n - 12 +
1
n

 1C2
m 1n2 - glnm 1n - 122

 wn m 1n + 12 = wn m 1n2 +
a

lnm 1n2
 Cm 1n2e1n2.

Note. In computing the updated weight wn m 1n + 12, care should be taken to prevent instability of the LMS algorithm, 
which can arise if some of the eigenvalue estimates are close to zero. Adding a small constant @ to lnm 1n2 could do the 
trick, but it appears that a better strategy is to condition the correlation matrix of the input signal vector by adding a 
small amount of white noise (F. Beaufays, private communication, 1995).
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Throughout these experiments, the signal-to-noise ratio is maintained at the high value 
of 30 dB, and the parameter b is set equal to 0.99.

Experiment 1: Transient Behavior of the DCT-LMS Algorithm. In Fig. 8.8, 
the ensemble-average learning curve of the DCT-LMS algorithm is plotted for vary-
ing channel parameter W. (The parameter W used in this experiment must not be 
confused with the parameter W used for the DCT.) Specifically, we have W = 2.9, 
3.1, 3.3, and 3.5, a sequence that corresponds to the eigenvalue spread x(R) = 6.078, 
11.124, 21.713, and 46.822. (See Table 6.2.) The results presented in the figure clearly 
show that, unlike the traditional LMS algorithm, the ensemble-average transient 
behavior of the DCT-LMS algorithm is less sensitive to variations in the eigenvalue 
spread of the correlation matrix R of the input vector u(n) applied to the chan-
nel equalizer. This desirable property is due to the orthonormalizing action (i.e., 
orthogonalization combined with normalization) of the DCT as a preprocessor to 
the LMS algorithm.

Figure 8.8 Learning curves of the DCT-LMS algorithm for varying eigenvalue spread x(R).
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Experiment 2: Comparison of the DCT-LMS Algorithm with Other Adaptive 
Filtering Algorithms. Figures 8.9(a) through 8.9(d) present a comparison of the 
ensemble- average error performance of the DCT-LMS algorithm to two other algo-
rithms: the traditional LMS algorithm and the recursive least-squares (RLS) algorithm 
for four different values of channel parameter W. The operation of the traditional LMS 
algorithm follows the theory presented in Chapter 6. The theory of the RLS algorithm 
is presented in Chapter 10; we have included it here as another interesting frame of 
reference. On the basis of the results presented in Fig. 8.9, we may make the following 
observations on the transient performance of the three adaptive filtering algorithms 
considered here: 

	 •	 The traditional LMS algorithm consistently behaves worst, in that it exhibits the 
slowest rate of convergence, the greatest sensitivity to variations in the parameter 
W [and therefore the greatest sensitivity to the eigenvalue spread x(R)], and the 
largest excess mean-square error.

Figure 8.9 Comparison of the learning curves of the traditional LMS, DCT-LMS, and RLS 
algorithms: (a) x(R) = 6.078. This figure is continued on the next two pages.
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Figure 8.9(b) x(R) = 11.124.

Figure 8.9(c) x(R) = 21.713.
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Figure 8.9(d) x(R) = 46.822.

	 •	 The RLS algorithm consistently achieves the fastest rate of convergence and the 
smallest excess mean-square error, with the least sensitivity to variations in the 
eigenvalue spread x(R).

	 •	 For a prescribed eigenvalue spread x(R), the transient behavior of the DCT-LMS 
algorithm lies between those of the traditional LMS and RLS algorithms. Most 
importantly, however, we note the following:

 (i) The rate of convergence of the DCT-LMS algorithm is relatively insensi-
tive to variations in the eigenvalue spread x(R), as already noted under 
experiment 1.

(ii) The excess mean-square error produced by the DCT-LMS algorithm is much 
smaller than that of the traditional LMS algorithm and close to that of the RLS 
algorithm.

Summarizing: the DCT-LMS algorithm improves statistical efficiency of the traditional 
LMS algorithm, bringing it closer to that of the RLS algorithm at the expense of increased 
computational complexity.
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8.6 sUBBAnd AdAPTivE FilTERs

As with self-organizing adaptive filters, the motivation for the use of a subband adap-
tive filter, based on the LMS algorithm because of its simplicity of implementation, is 
to improve the convergence behavior of the filter.4 Subband adaptive filters build on 
multirate digital filters, which involve an analysis and a synthesis section. The analysis 
section, illustrated in Fig. 8.10(a), consists of two functional blocks:

 1. The analysis filter bank, which consists of a bank of L digital filters with a  
common input. The transfer functions of the analysis filters are denoted by  

4In a loose sense, if we were to add decimators and memory to the block labeled “discrete Fourier 
transform (DFT)” in Fig. 8.23 of the 1985 book by Widrow and Stearns, which depicts an adaptive filter with 
preprocessing to produce orthogonal signals, we get a system that looks somewhat similar to a subband adaptive 
filter. Clearly, this is not the real thing, but it could be viewed as a connection with historical interest.

In a strict sense, however, work on subband adaptive filtering is traceable to early papers by Kellermann 
(1985), Yasukawa and Shimada (1987), Chen et al. (1988), Gilloire and Vetterli (1992), and Petraglia and Mittra 
(1993). The 1992 paper by Gilloire and Vetterli is regarded by some researchers as a pioneering paper in sub-
band adaptive filters; the paper was not perfect, but the ideas were right. Other contributions to the design 
of subband adaptive filters include the papers by de Courville and Duhamel (1998), and Pradhan and Reddy 
(1999) as well as Farhang-Boroujeny’s (1998) book. The material presented in Section 8.6 is based on the 
paper by Pradhan and Reddy.

Figure 8.10 Multirate digital filter: (a) analysis section; (b) synthesis section.
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H1(z), H2(z), . . . , HL(z), and are designed to have slightly overlapping frequency 
responses. The input signal u(n) is thereby partitioned into a new set of signals 
denoted by 5uk 1n26L

k = 1, which are called subband signals.
 2. The bank of decimators, which down-sample the subband signals by virtue of the 

fact that their bandwidths are all smaller than the bandwidth of the full-band 
signal u(n). The kth L-fold decimator takes a subband signal uk(n) to produce 
an output signal

 uk, D 1n2 = uk 1Ln2,    k = 1, 2, c, L. (8.75)

Only those samples of uk(n) that occur at instants of time equal to multiples of L are 
retained by the decimator. Figure 8.11 illustrates the decimation process for L = 2. In 
Fig. 8.11(a), the L-fold decimators are represented by downward arrows, followed by 
the decimation factor L.

The practical virtue of the analysis section of the multirate digital filter in  
Fig. 8.10(a) is that it permits the processing of each decimated signal uk, D(n) in such 
a way that the special properties of the kth decimated subband signal (e.g., its energy 
levels or perceptual significance) are exploited. The signals that result from this pro-
cessing are then applied to the synthesis section of the multirate digital filter for 
further processing.

Figure 8.11 Decimation process for L = 2: (a) original sequence; (b) decimated sequence.
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Figure 8.12 Expansion process for L = 2: (a) original sequence; (b) expanded sequence.

The synthesis section consists of two functional blocks of its own, as illustrated in 
Fig. 8.10(b):

 1. The bank of expanders, which up-sample their respective inputs. The kth L-fold 
expander takes the input signal vk(n) to produce an output signal

 vk, E1n2 = evk 1n >  L2 if n is an integer multiple of L
0 otherwise

. (8.76)

Figure 8.12 illustrates the expansion process for L = 2. In Fig. 8.12(b), the L-fold 
expanders are represented by upward arrows, followed by the expansion factor L. 
Each expander is essential to performing the process of interpolation; however, 
a filter is needed to convert the zero-valued samples of the expander into inter-
polated samples and thereby complete the interpolation. To explain this need, 
we recognize, from the time-frequency duality, which is an inherent property of 
Fourier transformation, that the spectrum Vk, E1ejv2 of the kth expander output 
is an L-fold compressed version of the spectrum Vk,  E 

1ejv2 of the expander input. 
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In particular, multiple images of the compressed spectrum are created by the 
expanders— hence the need for filters in the synthesis section to suppress the 
undesired images.

 2. The synthesis filter bank, which consists of the parallel connection of a set of L 
digital filters with a common output. The transfer functions of the synthesis filters 
are denoted by F1 1z2, F2 1z2, c, FL 1z2, and the resulting output of the synthesis 
section is denoted by un(n).

The output signal un1n2 differs from the input signal u(n) due to (1) the external 
processing performed on the decimated signals in the analysis section and (2) aliasing 
errors. In the context of our present discussion, aliasing refers to the phenomenon of 
a high-frequency component taking on the identity of a lower-frequency component 
in the spectrum of its decimated version. This phenomenon, arising because of the 
nonideal nature of the analysis filters, also includes the aliasing of a low-frequency 
band (e.g., H1) into a high-frequency band (e.g., H2 or H3) because the decimation 
creates multiple copies. It is also possible for a low-frequency-band signal to show up 
somewhere else.

Let T(z) denote the overall transfer function of the multirate digital filter. Suppose 
that, in the absence of any external processing performed on the output signals of the 
analysis section, the transfer functions H1(z), H2(z), . . . , HL(z) of the analysis filters and 
the corresponding transfer functions F11z2, F2 1z2, c, FL1z2 of the synthesis filters are 
chosen in such a way that T(z) is forced to be a pure delay, that is,

 T1z2 = cz-∆, (8.77)

where c is a scaling factor and Δ is the processing delay (i.e., latency) introduced by the 
cascaded use of analysis and synthesis filters. When this condition is satisfied, the alias-
free multirate digital filter is said to have the perfect reconstruction property.

In subband adaptive filters, calculations of the error signals are performed at the 
decimator outputs of a multirate digital filter, whereby a significant reduction in com-
putational complexity is achieved by virtue of the decimated sampling rate. Moreover, 
through the use of well-designed analysis and synthesis filters that closely satisfy the per-
fect reconstruction property of Eq. (8.77), it is possible to attain a significant improvement 
in convergence behavior of the adaptive filter. However, for certain applications, such as 
acoustic echo cancellation, upon which interest in subband adaptive filters is focused, it 
is important that the processing delay Δ be kept under control—a task that may not be 
easy to accomplish (Pradhan & Reddy, 1999). To describe the composition of a subband 
adaptive filter, we have chosen the system identification problem depicted in Fig. 8.13(a). 
We are given an unknown linear dynamic model with a long impulse response, and the 
problem is to design an LMS subband adaptive filter that provides an approximation to 
the unknown system such that the variance of the error signal e(n) (i.e., the difference 
between the response of the unknown system, playing the role of a desired response, and 
the actual response of the LMS algorithm) is minimized. The subband adaptive filter 
performs the calculations of error signals in the subbands of a multirate digital filter, 
as illustrated in Fig. 8.13(b) for the example of two subbands (i.e., L = 2). Specifically, 
the output signals produced by the unknown system H(z) and the LMS algorithm  
Wn 1z2 are (1) divided into subbands by the two pairs of analysis filters, H1(z) and  
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Figure 8.13 Subband adaptive filter for two subbands: (a) system identification;  
(b) subband implementation of the adaptive filter.

H2(z); (2) decimated by the factor L = 2; and then (3) subtracted to produce the pair 
of error signals, e1(n) and e2(n). Next, these two error signals are (1) expanded by the 
factor L = 2; (2) processed by the pair of synthesis filters, F11z2 and F21z2; and (3) finally 
combined to produce the error signal e(n), which, in turn, is used to adjust the free 
parameters of the adaptive filter in accordance with the LMS algorithm. The analysis 
filters H1(z) and H2(z) and the synthesis filters F11z2 and F21z2 are chosen to form a 
perfect reconstruction pair.
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A computationally efficient implementation of the filter banks is made possible 
by a polyphase decomposition, according to Bellanger et al. (1976). In subband adap-
tive filtering, the polyphase decomposition is applied to the LMS algorithm. Now, by 
definition, we have

 Wn 1z2 = a
M - 1

k = 0
wn kz-k, (8.78)

where 5wn k6M
k = 0 is the impulse response of the LMS algorithm of length M, assumed to be 

even. Hence, by separating the even-numbered coefficients of the impulse response wn n 
from the odd-numbered coefficients, we may rewrite Eq. (8.78) in the decomposed form

 Wn 1z2 = Wn1 1z22 + z-1Wn21z22, (8.79)

where, with wn 2k = wn 1, k,

 Wn11z22 = a
(M - 2) >  2

k = 0
wn 1, kz-2k (8.80)

and, with wn 2k + 1 = wn 2, k,

 Wn21z22 = z-1 a
1M - 22 >  2

k = 0
wn 2, kz-2k. (8.81)

The use of polyphase decomposition prepares the way for the application of noble 
identities,5 which are depicted in Fig. 8.14. Identity 1, shown in Fig. 8.14(a), states that 
a filter of transfer function G (zL) followed by an L-fold decimator is equivalent to an 
L-fold decimator followed by a filter of transfer function G(z). Identity 2, shown in  
Fig. 8.14(b), states that an L-fold expander followed by a filter of transfer func-
tion G (zL) is equivalent to a filter of transfer function G(z) followed by an L-fold 
expander.

Figure 8.14 Noble identities for multirate systems: (a) identity 1; (b) identity 2.

5For a detailed discussion of multirate systems and filter banks, including noble identities and polyno-
mial decomposition, see the book by Vaidynathan (1993).
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Accordingly, applying the polynomial decomposition and noble identity 1 to the 
subband adaptive filter of Fig. 8.13(b), we may restructure it into the form shown in  
Fig. 8.15 (Pradhan & Reddy, 1999). This new adaptive subband filter distinguishes itself 
in the following ways6:

	 •	 The components x11(n), x12(n), x21(n), and x22(n) are the subbands of the input sig-
nal u(n); together, these components account for the output signals of the analysis 
filters H1(z) and H2(z).

	 •	 Two copies of Wn1 1z22 and Wn21z22, each of length M/2, where M is the length of 
Wn 1z2, are used in the configuration of Fig. 8.15.

Figure 8.15 Modified form of the subband adaptive filter resulting from application of 
noble identity 1 to the filter of Fig. 8.13(b).

6Another novel feature of the subband adaptive filter shown in Fig. 8.15 is that it avoids the use of 
“cross-filters” between the adjacent subbands. In Gilloire and Vetterli (1992), it is shown that the convergence 
performance of subband adaptive filters involving the use of cross-filters is worse than that of full-band adap-
tive filters.
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subband-lms Adaptive Filtering Algorithm

The stage is now set for describing an algorithm for adapting the weights of the fil-
ters represented by Wn1 1z22 and Wn21z22 in the two-subband system of Fig. 8.15. From 
the figure, we find that the z-transforms of the error signals e1(n) and e2(n) are given, 
respectively, by

 E1 1z2 = Y1 1z2 - X111z2Wn11z22 - X121z2Wn21z22 (8.82)

and

 E21z2 = Y21z2 - X211z2Wn11z22 - X221z2Wn21z22. (8.83)

With a form of LMS adaptation in mind, we define the instantaneous cost function to 
be minimized as

J1n2 =
1
2
 eT

 1n2Pe1n2,

where

e1n2 = 3e1 1n2, e2 1n24T

is the error signal vector, and P is a positive definite matrix. Choosing

P = ca1 0
0 a2

d ,

we may write

 J1n2 =
1
2
 1a1e

2
 1 1n2 + a2e

2
2 1n2), (8.84)

where the weighting coefficients a1 and a2 are proportional to the inverse powers of 
the signals b1(n) and b2(n) produced at outputs of the analysis filters H1(z) and H2(z) 
in Fig. 8.15, respectively. The gradient-based algorithm for adjusting the coefficients of 
the filters Wn11z22 and Wn2 1z22 is defined by

 wn 1, k 1n + 12 = wn 1, k 1n2 - m 
0 J1n2

0wn 1, k 1n2,   k = 0, 1, c, 
M
2

- 1, (8.85)

and

 wn 2, k 1n + 12 = wn 2, k 1n2 - m 
0 J1n2

0 wn 2, k 1n2,   k = 0, 1, . . . , 
M
2

- 1, (8.86)

where wn 1, k 1n2, and wn 2, k 1n2 are the kth coefficients of the two filters Wn1 (z2) and Wn2 (z2), 
respectively, computed at adaptation cycle n. Using Eq. (8.84), the partial derivatives 
0 J 1n2> 0 wn1, k 1n2 and 0 J1n2> 0 wn2, k 1n2 are given, respectively, by

 
0J1n2

0wn 1, k 1n2 = a1e11n2 
0e1 1n2

0wn 1, k1n2 + a2e21n2 
0e2 1n2

0wn 1, k 1n2 (8.87)
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and

 
0 J1n2

0 wn2, k 1n2 = a1e11n2 
0 e1 1n2

0 wn2, k1n2 + a2e21n2 
0 e2 1n2

0 wn2, k 1n2. (8.88)

Moreover, from Eqs. (8.82) and (8.83), we deduce the following set of partial derivatives:

 
0Ei1n2
0 wnj, k

= -Xij (z)z-k,   
i = 1, 2
j = 1, 2

k = 0, 1, . . . , 
M
2

- 1

. (8.89)

Taking the inverse z-transform of Eq. (8.89), we get

 
0 ei1n2
0 wnj, k

= -xij (n - k),   
i = 1, 2
j = 1, 2

k = 0, 1, . . . , 
M
2

- 1

. (8.90)

Substituting Eq. (8.90) into Eqs. (8.87) and (8.88), and then applying the LMS rule for 
adaptation we obtain the following subband LMS algorithm for the system of Fig. 8.15:

 wn 1, k1n + 12 = wn 1, k1n2 + m3a1e1 1n2x111n - k2 + a2e21n2x211n - k24; (8.91)

 wn 2, k1n + 12 = wn 2, k1n2 + m3a1e1 1n2x121n - k2 + a2e21n2x221n - k24. (8.92)

In Eqs. (8.91) and (8.92), the LMS algorithm for both subbands is assumed to have the 
same structure, with k = 0, 1, . . . , (M/2) - 1.

The two-subband adaptive filter of Fig. 8.15 and the accompanying LMS algo-
rithms of Eqs. (8.91) and (8.92) may be readily expanded to the general case of L sub-
bands. The computational complexity of the resulting adaptive filter is nearly the same 
as that of the full-band LMS algorithm. Pradhan and Reddy (1999) present a conver-
gence analysis of the new algorithm, including computer simulations and demonstrating 
the improved convergence behavior of the subband adaptive algorithm, compared to 
the traditional LMS algorithm.

8.7 sUmmARy And disCUssion

Frequency-domain adaptive filtering (FDAF) techniques provide an alternative 
route to LMS adaptation in the time domain. The fast block LMS algorithm, based 
on the idea of block-adaptive filtering, provides a computationally efficient algo-
rithm for building an adaptive FIR filter with a long memory. This algorithm exploits 
the computational advantage offered by a fast convolution technique known as the 
overlap- save method, which relies on the fast Fourier transform algorithm for its 
implementation. The fast block LMS algorithm exhibits convergence properties simi-
lar to those of the traditional LMS algorithm. In particular, the converged weight 
vector, misadjustment, and individual time constants of the fast block LMS algorithm 
are exactly the same as their counterparts in the traditional LMS algorithm. The main 
differences between the two algorithms are that (1) the fast block LMS algorithm 
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394   Chapter 8  Block-Adaptive Filters

has a tighter stability bound than the traditional LMS algorithm and (2) the fast 
block LMS algorithm provides a more accurate estimate of the gradient vector than 
the traditional LMS algorithm does, with the accuracy of estimation increasing with 
the block size. Unfortunately, this improvement does not imply a faster convergence 
behavior, because the eigenvalue spread of the correlation matrix of the input vector, 
which determines the convergence behavior of the algorithm, is independent of the  
block size.

The other FDAF technique discussed in the chapter exploits the asymptotic equiv-
alence of the discrete cosine transform to the statistically optimum Karhunen–Loéve 
transform (KLT). The algorithm, termed the DCT-LMS algorithm, provides a close 
approximation to the method of self-orthogonalizing adaptive filtering. Unlike the fast 
block LMS algorithm, the DCT-LMS algorithm is a nonblock algorithm that operates at 
the incoming data rate; therefore, it is not as computationally efficient as the fast block 
LMS algorithm.

The fast block LMS algorithm and the DCT-LMS algorithm have a feature in 
common: They are both convolution-based, FDAF algorithms. As an alternative, we 
may use subband adaptive filters, discussed in Section 8.6. One motivation for such an 
approach is to achieve computational efficiency by decimating the signals before per-
forming the adaptive process. Decimation refers to the process of digitally converting 
the sampling rate of a signal of interest from a given rate to a lower rate. The use of 
this approach makes it possible to implement an adaptive FIR filter of long memory 
that is also computationally efficient. In this endeavor, the task of designing a single 
long filter is replaced by one of designing a bank of smaller filters that operate in 
parallel at a lower rate.

PRoBlEms

 1. Demonstrate that the fast block LMS algorithm provides a computational cost per adaptation 
cycle below that of the traditional LMS algorithm.

 2. The purpose of this problem is to develop a matrix formulation of the fast block LMS algo-
rithm described by the signal-flow graph of Fig. 8.3.

 (a) To define one time-domain constraint built into the operation of the algorithm, let

G1 = c I O
O O

d ,

where I is the M-by-M identity matrix and O is the M-by-M null matrix. Show that the 
weight-update equation (8.23) may be rewritten in the compact form

Wn 1k + 12 = Wn 1k2 + mGUH
 1k2W(k),

where the matrix G, which represents a constraint imposed on the computation of the 
gradient vector, is defined in terms of G1 by the formula

G = FG1F
-1,

in which the matrix operator F signifies discrete Fourier transformation and F -1 signifies 
inverse discrete Fourier transformation.
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 (b) To define the other time-domain constraint built into the operation of the fast block LMS 
algorithm, let

G2 = 3O, I4,
where, as before, I and O denote the identity and null matrices, respectively. Show that 
Eq. (8.21) may be redefined in the compact form

E1k2 = FGT
2 e1k2.

 (c) Using the time-domain constraints represented by the matrices G1 and G2, formulate 
the corresponding matrix representations of the steps involved in the fast block LMS 
algorithm.

 (d) What is the value of matrix G for which the fast block LMS algorithm reduces to the 
unconstrained FDAF algorithm of Section 8.3?

 3. Explain the operation of a block-adaptive filter whose filter length M and block size L are 3. 
Also show that the data matrix defined is a Toeplitz matrix.

 4. Figure P8.1 shows the block diagram of a transform-domain LMS algorithm (Narayan et al., 
1983). The tap-input vector u(n) is first applied to a bank of bandpass digital filters, implemented 

Figure P8.1
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by means of the discrete Fourier transform (DFT). Let x(n) denote the transformed vector 
produced at the DFT output. In particular, element k of the vector x(n) is given by

xk  (n) = a
M - 1

i = 0
u1n - i2e-j(2p >  M)ik,    k = 0, 1, . . . , M - 1,

where u(n – i) is element i of the tap-input vector u(n). Each xk(n) is normalized with respect 
to an estimate of its average power. The inner product of the vector x(n) and a frequency-
domain weight vector h(n) is formed, obtaining the filter output

y1n2 = hH
 1n2x1n2.

The weight vector update equation is

h1n + 12 = h1n2 + mD-1
 1n2x1n2e*1n2,

where
D(n) =  M-by-M diagonal matrix whose kth element denotes the average power estimate of 

the DFT output xk(n) for k = 0, 1, . . ., M - 1
and

μ = adaptation constant.

The asterisk in the update equation denotes complex conjugation, with the estimation error 
defined by

e1n2 = d1n2 - y1n2,

where d(n) is the desired response.
 (a) Show that the DFT output xk(n) may be computed recursively, using the relation

xk  1n2 = ej(2p >  M)kxk  1n - 12 + u1n2 - u(n - M),    k = 0, 1, . . . , M - 1.

 (b) Assuming that μ is chosen properly, show that the weight vector h(n) converges to the 
frequency-domain optimum solution

ho = Qwo,

where wo is the (time-domain) Wiener solution and Q is a unitary matrix defined by the 
DFT. Determine the components of Q.

 (c) The use of the matrix D-1 in controlling the adjustment applied to the frequency-domain 
weight vector, in conjunction with the DFT, has the approximate effect of prewhitening 
the tap-input vector u(n). Do the following:

 (i)  Demonstrate the prewhitening effect.
 (ii)  Discuss how prewhitening compresses the eigenvalue spread of the DFT output 

vector x(n).
 (iii)  The transform-domain LMS algorithm has a faster rate of convergence than the 

traditional LMS algorithm. Why?
 5. The discrete cosine transform Cm(n) of the sequence u(n) may be decomposed as

Cm 1n2 =
1
2
 km3C(1)

m  1n2 + C(2)
 m 1n24,

  where km is defined by Eq. (8.55).
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 (a) Show that C(1)
 m  1n2 and C(2)

 m  1n2 may be computed recursively as

C(1)
 m  (n) = W m >  2

2M [W m >  2
2M C(1)

 m 1n - 12 + 1-12m
 u1n2 - u1n - M2]

  and

C(2)
 m  (n) = W -m >  2

2M [W -m >  2
2M C(2)

 m 1n - 12 + 1-12m
 u1n2 - u1n - M2],

  respectively, where

W2M = exp a-  
j2p

2M
b .

 (b) How is the computation of Cm(n) modified in light of the multiplying factors associated 
with the operator z-M in the forward path and the operator z-1 in the feedback paths of 
Fig. 8.6, where 0 6 b 6 1?

 6. Show that the traditional LMS algorithm behaves the same as the self-orthogonalizing adap-
tive algorithm.

 7. The subband LMS algorithm described in Eqs. (8.91) and (8.92) applies to real-valued data. 
Extend the algorithm to complex-valued data.

 8. Illustrate the operation of a subband-LMS adaptive filtering algorithm.
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C h a p t e r  9

Method of Least Squares

In this chapter, we use a model-dependent procedure known as the method of least 
squares to solve the linear filtering problem, without invoking assumptions on the 
 statistics of the inputs applied to the filter. To illustrate the basic idea of least squares, 
suppose we have a set of measurements u(1), u(2), c, u(N), made at times t1, t2, c, tN, 
respectively, and the requirement is to construct a curve that is used to fit these points 
in some optimum fashion. Let the time dependence of this curve be denoted by f(ti). 
According to the method of least squares, the “best” fit is obtained by minimizing the 
sum of the squares of the difference between f(ti) and u(i) for i = 1, 2, c, N.

The method of least squares may be viewed as an alternative to Wiener filter the-
ory. Basically, Wiener filters are derived from ensemble averages, with the result that one 
filter (optimum in a statistical sense) is obtained for all realizations of the operational 
environment. The underlying environment is assumed to be wide-sense stationary. On 
the other hand, the method of least squares is deterministic in approach. Specifically, it 
involves the use of time averages, with the result that the filter depends on the number 
of samples used in the computation. In computational terms, the method of least squares 
is a batch-processing approach, in that the least-squares filter is designed by processing 
a batch (block) of input data. The filter is adapted to nonstationary data by repeating 
the computation on a block-by-block basis, which makes it computationally much more 
demanding than its recursive counterpart. Nevertheless, the batch-processing approach 
is becoming increasingly more attractive, due to the fact that computing power is no 
longer the impediment that it used to be in yesteryears.

We begin the discussion by outlining the essence of the least-squares estimation 
problem.

9.1 StateMent of the Linear LeaSt-SquareS eStiMation probLeM

Consider a physical phenomenon that is characterized by two sets of variables, d(i) and 
u(i). The variable d(i) is observed at time i in response to the subset of variables u(i), 
u(i - 1), c, u(i - M + 1), applied as inputs. That is, d(i) is a function of the inputs  
u(i), u(i - 1), c, u(i - M + 1). This functional relationship is hypothesized to be linear. 
In particular, the response d(i) is modeled as

 d1i2 = a
M - 1

k = 0
w*oku1i - k2 + eo 1i2, (9.1)
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Section 9.1 Statement of the Linear Least-Squares Estimation Problem   399

where the wok are unknown parameters of the model and eo(i) represents the measurement 
error to which the statistical nature of the phenomenon is ascribed. The asterisk denotes 
complex conjugation. Each term in the summation in Eq. (9.1) represents a scalar inner 
product. In effect, the model of Eq. (9.1) says that the variable d(i) may be determined as a 
linear combination of the input variables u(i), u (i - 1), c, u(i - M + 1), except for the error 
eo(i). This model, represented by the signal-flow graph shown in Fig. 9.1, is called a multiple 
linear regression model. (The multiple linear regression model was used in Chapter 2 and in 
Chapters 6 and 7 on least-mean-square (LMS) algorithms for the generation of training data.)

The measurement error eo(i) is an unobservable random variable that is introduced 
into the model to account for its inaccuracy. It is customary to assume that the measure-
ment error process eo(i) is white with zero mean and variance s2. That is,

 𝔼3eo1i24 = 0  for all i 

and

 𝔼3eo 1i2e*o  1k24 = es
2, i = k

0, i  k
. 

The implication of this assumption is that we may rewrite Eq. (9.1) in the ensemble-
average form

 𝔼3d1i24 = a
M - 1

k = 0
w*oku1i - k2, 

FigurE 9.1 Multiple linear  
regression model.
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where the values of u(i), u (i - 1), c, u(i - M + 1) are known (i.e., deterministic). Hence, 
the mean of the response d(i), in theory, is uniquely determined by the model.

The problem we have to solve is to estimate the unknown parameters wok of the 
multiple linear regression model of Fig. 9.1, given the two observable sets of  variables: u(i) 
and d(i), i = 1, 2, c, N. To do this, we postulate the finite-duration impulse response (FIR) 
filter of Fig. 9.2 as the model of interest. By forming inner scalar products of the tap inputs 
u(i), u (i - 1), c, u(i - M + 1) and the corresponding tap weights w0, w1, c, wM-1, and 
by utilizing d(i) as the desired response, we define the estimation error or residual e(i) as 
the difference between the desired response d(i) and the filter output y(i); that is,

 e1i2 = d1i2 - y1i2, (9.2)

where

 y1i2 = a
M - 1

k = 0
w*ku1i - k2. (9.3)

Substituting Eq. (9.3) into Eq. (9.2) yields

 e1i2 = d1i2 - a
M - 1

k = 0
w*ku1i - k2. (9.4)

In the method of least squares, we choose the tap weights wk of the FIR filter so as to 
minimize a cost function that consists of the sum of error squares, viz.,

 e1w0, c, wM - 12 = a
i2

i = i1

∙ e1i2 ∙2, (9.5)

where i1 and i2 define the index limits at which the error minimization occurs; this sum 
may also be viewed as an error energy. The values assigned to these limits depend on the 

FigurE 9.2 FIR filter model.
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type of data windowing employed, to be discussed in Section 9.2. Basically, the problem 
we have to solve is to substitute Eq. (9.4) into Eq. (9.5) and then minimize the result-
ing cost function e1w0, c, wM - 12 with respect to the tap weights of the FIR filter in  
Fig. 9.2. For this minimization, the tap weights of the filter w0, w1, c, wM - 1 are held 
constant during the interval i1 … i … i2. The filter resulting from the minimization is called 
a linear least-squares filter.

9.2 Data WinDoWing

Given M as the number of tap weights used in the FIR filter model of Fig. 9.2, the rectan-
gular matrix constructed from the input data u(1), u (2), c, u(N) may assume different 
forms, depending on the values assigned to the limits i1 and i2 in Eq. (9.5). In particular, 
we may distinguish four different methods of windowing the input data:

 1. The covariance method, which makes no assumptions about the data outside the 
interval [1, N]. Thus, by defining the limits of interest as i1 = M and i2 = N, we may 
arrange the input data in the matrix form

 Du1M2 u1M + 12 g u1N2
u1M - 12 u1M2 g u1N - 12

f f  f f
u112 u122 g u1N - M + 12

T . 

 2. The autocorrelation method, which makes the assumption that the data prior to 
time i = 1 and the data after i = N are zero. Thus, with i1 = 1 and i2 = N + M - 1, the 
matrix of input data takes on the formDu112

  0
  
f

  0

u122
u112
  
f

  0

g
g
 f
g

u1M2
u1M - 12
  
f

u112

u1M + 12
u1M2
  

f
u122

g
g
 f
g

u1N2
u1N - 12
  
f

u1N - M + 12

  0
u1N2
f
u1N - M2

g
g
 f
g

  0
  0
  

f
u1N2

T .

 3. The prewindowing method, which makes the assumption that the input data prior 
to i = 1 are zero, but makes no assumption about the data after i = N. Thus, with  
i1 = 1 and i2 = N, the matrix of the input data assumes the form

 Du112
  0
  
f

  0

u122
u112
  
f

  0

g
g
 f
g

u1M2
u1M - 12
  
f

u112

u1M + 12
u1M2
  
f

u122

g
g
 f
g

u1N2
u1N - 12
  

f
u1N - M + 12

T . 

 4. The postwindowing method, which makes no assumption about the data prior to 
time i = 1, but makes the assumption that the data after i = N are zero. Thus, with i1 
= M and i2 = N + M - 1, the matrix of input data takes on the form
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402   Chapter 9  Method of Least Squares

 Du1M2
u1M - 12
  
f

u112

u1M + 12
u1M2
  
f

u122

g
g
 f
g

u1N2
u1N - 12
  
f

u1N - M + 12

0
u1N2
  
f

u1N - M2

g
g
 f
g

  0
  0
  

f
u1N2

T . 

The terms “covariance method” and “autocorrelation method” are commonly used 
in the speech-processing literature (Makhoul, 1975; Markel & Gray, 1976). However, the 
use of these two terms is not based on the standard definition of the covariance function 
as the correlation function with the means removed. Rather, the two terms derive their 
names from the way we interpret the meaning of the known parameters contained in the 
system of equations that results from minimizing the index of performance of Eq. (9.5). 
The covariance method derives its name from control theory, in which, with zero-mean 
tap inputs, these known parameters represent the elements of a covariance matrix. The 
autocorrelation method, on the other hand, derives its name from the fact that, for the 
conditions stated, the known parameters represent the short-term autocorrelation func-
tion of the tap inputs. It is of interest to note that, among the four windowing methods 
just described, the autocorrelation method is the only one that yields a Toeplitz correla-
tion matrix for the input data.

In the remainder of this chapter, except for Problem 4, which deals with the auto-
correlation method, we will be concerned exclusively with the covariance method. The 
prewindowing method is considered in subsequent chapters.

9.3 prinCipLe of orthogonaLity reviSiteD

When we developed Wiener filter theory in Chapter 2, we proceeded by first deriving 
the principle of orthogonality (in the ensemble sense) for wide-sense stationary discrete-
time stochastic processes, which were then used to derive the Wiener-Hopf equations 
that provide the mathematical basis of Wiener filters. In this chapter, we proceed in a 
similar fashion by first deriving the principle of orthogonality on the basis of time aver-
ages and then using the principle to derive a system of equations known as the normal 
equations, which affords the mathematical basis of linear least-squares filters. The devel-
opment of this theory will be done for the covariance method.

The cost function, or the sum of the error squares, in the covariance method is 
defined by

 e1w0, c, wM - 12 = a
N

i = M
∙ e1i2 ∙2. (9.6)

By choosing the limits on the time index i in this way, we in effect make sure that, for 
each value of i, all the M tap inputs of the FIR filter in Fig. 9.2 have nonzero values. As 
mentioned previously, the problem we have to solve is to determine the tap weights of 
that FIR filter for which the sum of the error squares is minimum. Toward that end, we 
first rewrite Eq. (9.6) as

 e1w0, c, wM - 12 = a
N

i = M
e1i2e*1i2, (9.7)
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where the estimation error e(i) is defined in Eq. (9.4). Let the kth tap weight be expressed 
in terms of its real and imaginary parts as

 wk = ak + jbk,  k = 0, 1, c, M - 1. (9.8)

Then, substituting Eq. (9.8) into Eq. (9.4), we get

 e1i2 = d1i2 - a
M - 1

k = 0
1ak - jbk2u1i - k2. (9.9)

We define the kth component of the gradient vector ∇e as the derivative of the cost 
function e(w0, c, wM - 1) with respect to the real and imaginary parts of tap weight wk:

 ∇ke =
0e
0ak

+ j 
0e
0bk

. (9.10)

Substituting Eq. (9.7) into Eq. (9.10) and recognizing that the estimation error e(i) is, in 
general, complex valued, we get

 ∇ke = - a
n

i = M
c e1i2 

0e*1i2
0ak

+ e*1i2 
0e1i2
0ak

+ je1i2 
0e*1i2

0bk
+ je1i2 

0e1i2
abk

d . (9.11)

Next, differentiating e(i) in Eq. (9.9) with respect to the real and imaginary parts of wk, 
separately, we get the following four partial derivatives:

  
0e1i2
0ak

= -u1i - k2;  

  
0e*1i2

0ak
= -u*1i - k2;  

(9.12)

  
0e1i2
0bk

= ju1i - k2; 

  
0e*1i2

0bk
= - ju*1i - k2. 

The substitution of these four partial derivatives into Eq. (9.11) yields the result

 ∇ke = -2 a
N

i = M
u1i - k2e*1i2. (9.13)

For the minimization of the cost function e1w0, c, wM - 12 with respect to the tap 
weights w0, c, wM - 1 of the FIR filter in Fig. 9.2, we require that the following condi-
tions be satisfied simultaneously:

 ∇ke = 0,  k = 0, 1, c, M - 1. (9.14)

Let emin(i) denote the special value of the estimation error e(i) that results when the 
cost function e1w0, c, wM - 12 is minimized (i.e., the FIR filter is optimized) in accor-
dance with Eq. (9.14). Then, from Eq. (9.13), we readily see that the set of conditions in  
Eq. (9.14) is equivalent to the formula

 a
N

i = M
u1i - k2e*min 1i2 = 0,  k = 0, 1, c, M - 1. (9.15)
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1To be precise in the use of the term “time average,” we should divide the sum on the left-hand side 
of Eq. (9.15) by the number of terms N − M + 1 used in the summation. Clearly, such an operation has no 
effect on the equation. We have chosen to ignore this scaling factor merely for convenience of presentation.

Equation (9.15) is the mathematical description of the temporal version of the  principle 
of orthogonality. The time average1 on the left-hand side of Eq. (9.15) represents the 
cross-correlation between the tap input u(i - k) and the minimum estimation error 
emin(i) over the values of time i in the interval [M, N], for a fixed value of k. Accordingly, 
we may state the principle of orthogonality as follows:

The minimum-error time series emin(i) is orthogonal to the time series u(i - k) 
applied to tap k of an FIR filter of length M for k = 0, 1, c, M - 1 when the filter 
is operating in its least-squares condition.

This principle provides the basis of a simple test that we can carry out in practice 
to check whether or not the FIR filter is operating in its least-squares condition. We 
merely have to determine the time-average cross-correlation between the estima-
tion error and the time series applied to each tap input of the filter. It is only when 
all these M cross-correlation functions are identically zero that we find that the cost 
function e1w0, c, wM - 12 is minimal.

Corollary

Let wn 0, wn 1, c, wn M - 1 denote the special values of the tap weights w0, w1, c, wM - 1 that 
result when the FIR filter of Fig. 9.2 is optimized to operate in its least-squares condition. 
The filter output, obtained from Eq. (9.3), is

 ymin 1i2 = a
M - 1

k = 0
wn *ku1i - k2. (9.16)

This output provides a least-squares estimate of the desired response d(i); the estimate 
is said to be linear because it is a linear combination of the tap inputs u(i), u (i - 1), c, 
u(i - M + 1). Let ui denote the space spanned by u(i), c, u(i - M + 1). Let dn(i ∙  ui) 
denote the least-squares estimate of the desired response d(i), given the tap inputs 
spanned by the space ui. We may then write

 dn1i ∙  ui2 = ymin 1i2, (9.17)

or, equivalently,

 dn1i ∙  ui2 = a
M - 1

k = 0
wn *ku1i - k2. (9.18)

Now suppose we multiply both sides of Eq. (9.15) by wn *k  and then sum the result 
over the values of k in the interval [0, M - 1]. We then get (after interchanging the order 
of summation)

 a
N

i = M
 c a

M - 1

k = 0
wn *ku1i - k2 d e*min 1i2 = 0. (9.19)
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The summation term inside the square brackets on the left-hand side of Eq. (9.19) is 
recognized to be the least-squares estimate dn1i ∙  ui2 of Eq. (9.18). Accordingly, we may 
simplify Eq. (9.19) to

 a
N

i = M
dn1i ∙  ui2e*min 1i2 = 0. (9.20)

Equation (9.20) is a mathematical description of the corollary to the principle of orthog-
onality. We recognize that the time average on the left-hand side of the equation is  
the cross-correlation of the two time series: dn1i ∙  ui2 and emin(i). Accordingly, we may 
state the corollary to the principle of orthogonality as follows:

When an FIR filter operates in its least-squares condition, the least-squares esti-
mate of the desired response, produced at the filter output and represented by 
the time series dn1i ∙  ui2, and the minimum estimation error time series emin(i) are 
orthogonal to each other over time i.

A geometric illustration of this corollary is deferred to Section 9.6.

9.4 MiniMuM SuM of error SquareS

The principle of orthogonality, given in Eq. (9.15), describes the least-squares condition 
of the FIR filter in Fig. 9.2 when the cost function e1w0, c, wM - 12 is minimized with 
respect to the tap weights w0, c, wM - 1 in the filter. To find the minimum value of this 
cost function—that is, the minimum sum of error squares emin—it is obvious that we 
may write

 d1i2  =   dn1i ∙  ui2  +    emin 1i2 
 (1)1* (+)+* (1)1* 
 desired estimate of estimation. (9.21)
 response desired error 
  response  

Evaluating the energy of the time series d(i) for values of time i in the interval [M, N] 
and using the corollary to the principle of orthogonality [i.e., Eq. (9.20)], we get the 
infinitively satisfying result

 ed = eest + emin, (9.22)

where

  ed = a
N

i = M
∙ d1i2 ∙2,  (9.23)

  eest = a
N

i = M
∙ dn1i ∙  ui2 ∙2, (9.24)

and

 emin = a
N

i = M
∙ emin 1i2 ∙2. (9.25)
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Rearranging Eq. (9.22), we may express the minimum sum of error squares emin in 
terms of the energy ed and the energy eest contained in the time series d(i) and dn1i ∙  ui2, 
respectively:

 emin = ed - eest. (9.26)

Clearly, given the specification of the desired response d(i) for varying i, we may use 
Eq. (9.23) to evaluate the energy ed. As with the energy eest contained in the time series 
dn(i ∙  ui) representing the estimate of the desired response, we shall defer its evaluation 
to the next section.

Since emin is nonnegative, it follows that the second term on the right-hand side 
of Eq. (9.26) can never exceed ed. Indeed, that term reaches the value of ed only when 
the measurement error eo(i) in the multiple linear regression model of Fig. 9.1 is zero 
for all i, which is a practical impossibility.

Another case for which emin equals ed occurs when the least-squares problem 
is underdetermined. Such a situation arises when there are fewer data points than 
parameters, in which case the estimation error, and therefore eest, is zero. Note, how-
ever, that when the least-squares problem is underdetermined, there is no unique 
solution to the problem. Discussion of this issue is deferred to the latter part of the 
chapter.

9.5 norMaL equationS anD Linear LeaSt-SquareS fiLterS

There are two different, and yet basically equivalent, methods of describing the least-
squares condition of the FIR filter in Fig. 9.2. The principle of orthogonality, described 
in Eq. (9.15), represents one method; the system of normal equations represents the 
other. (Interestingly enough, the system of normal equations derives its name from 
the corollary to the principle of orthogonality.) Naturally, we may derive this system of 
equations in its own independent way by formulating the gradient vector ∇e in terms of 
the tap weights of the filter and then solving for the tap-weight vector wn  for which ∇e 
is zero. Alternatively, we may derive the system of normal equations from the principle 
of orthogonality. We shall pursue the latter (indirect) approach in this section, leaving 
the former (direct) approach to the interested reader as Problem 7.

The principle of orthogonality in Eq. (9.15) is formulated in terms of a set of tap 
inputs and the minimum estimation error emin(i). Setting the tap weights in Eq. (9.4) to 
their least-squares values, we get

 emin 1i2 = d1i2 - a
M - 1

t = 0
wn *t u1i - t2, (9.27)

where we have purposely used t as the dummy summation index on the right-hand side. 
Substituting Eq. (9.27) into Eq. (9.15) and then rearranging terms, we get a system of 
M simultaneous equations:

 a
M - 1

t = 0
wn t a

N

i = M
u1i - k2u*1i - t2 = a

N

i = M
u1i - k2d*1i2,    k = 0, c, M - 1. (9.28)
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The two summations in Eq. (9.28) involving the index i represent time averages, except 
for a scaling factor. They have the following interpretations:

 1. The time average (over i) on the left-hand side of the equation represents the 
time-average autocorrelation function of the tap inputs in the FIR filter of Fig. 9.2. 
In particular, we may write

 f1t, k2 = a
N

i = M
u1i - k2u*1i - t2,    0 … 1t, k2 … M - 1. (9.29)

 2. The time average (also over i) on the right-hand side of Eq. (9.28) represents the 
time-average cross-correlation between the tap inputs and the desired response. In 
particular, we may write

 z1-k2 = a
N

i = M
u1i - k2d*1i2,    0 … k … M - 1. (9.30)

Accordingly, we may rewrite the system of simultaneous equations (9.28) as follows:

 a
M - 1

t = 0
wn tf1t, k2 = z1-k2,    k = 0, 1, c, M - 1. (9.31)

The system of equations (9.31) represents the expanded system of the normal equations 
for linear least-squares filters.

Matrix formulation of the normal equations

We may recast the system of equations (9.31) in matrix form by first introducing the 
following definitions:

 1. The M-by-M time-average correlation matrix of the tap inputs u(i), u(i - 1), c, 
u(i - M + 1):

 𝚽 = Df10, 02
f10, 12
 

f
f10, M - 12

f11, 02
f11, 12
  

f
f11, M - 12

g
g
 f
g

f1M - 1, 02
f1M - 1, 12
  

f
f1M - 1, M - 12

T .  (9.32)

 2. The M-by-1 time-average cross-correlation vector between the tap inputs u(i),  
u (i - 1), c, u(i - M + 1) and the desired response d(i):

 z = 3z102, z1-12, c, z1-M + 124T. (9.33)

 3. The M-by-1 tap-weight vector of the least-squares filter:

 wn = 3wn 0, wn 1, c, wn M - 14T
 , (9.34)

  where the superscript T denotes transposition.

We may now rewrite the system of M simultaneous equations (9.31) in terms of these 
matrix definitions simply as

 𝚽wn = z. (9.35)

Equation (9.35) is the matrix form of the normal equations for linear least-squares filters.
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Assuming that 𝚽 is nonsingular and therefore that the inverse matrix 𝚽-1 exists, 
we may solve Eq. (9.35) for the tap-weight vector of the linear least-squares filter:

 wn = 𝚽-1z. (9.36)

The condition for the existence of the inverse matrix 𝚽-1 is discussed in Section 9.6.
Equation (9.36) is a very important result: It is the linear least-squares counterpart to 

the solution of the matrix form of the Wiener-Hopf equations (2.36). Basically, Eq. (9.36) 
states that the tap-weight vector wn  of a linear least-squares filter is uniquely defined by the 
product of the inverse of the time-average correlation matrix 𝚽 of the tap inputs of the fil-
ter and the time-average cross-correlation vector z between the tap inputs and the desired 
response. Indeed, this equation is fundamental to the development of all recursive formu-
lations of the linear least-squares filter, as pursued in subsequent chapters of the book.

Minimum Sum of error Squares

Equation (9.26) defines the minimum sum of error squares emin. We now complete the 
evaluation of emin, expressed as the difference between the energy ed of the desired 
response and the energy eest of its estimate. Usually, ed is determined from the time 
series representing the desired response. To evaluate eest, we write

  eest = a
N

i = M
∙ dn1i ∙  ui4 ∙2  

  = a
N

i = M
a

M - 1

t = 0
a

M - 1

k = 0
wn twn *ku1i - k2u*1i - t2 

  = a
M - 1

t = 0
a

M - 1

k = 0
wn twn *k a

N

i = M
u1i - k2u*1i - t2, (9.37)

where, in the second line, we have made use of Eq. (9.18). The innermost summation 
over time i in the final line of Eq. (9.37) represents the time-average autocorrelation 
function f(t, k). [See Eq. (9.29).] Hence, we may rewrite Eq. (9.37) as

  eest = a
M - 1

t = 0
a

M - 1

k = 0
wn *kf1t, k2wn t 

  = wn H𝚽wn ,  (9.38)

where wn  is the least-squares tap-weight vector, 𝚽 is the time-average correlation matrix 
of the tap inputs, and the superscript H denotes Hermitian transposition (i.e., the opera-
tion of transposition combined with complex conjugation). We may further simplify the 
formula for eest by noting that, from the normal equations (9.35), the matrix product 
𝚽wn  equals the cross-correlation vector z. Accordingly, we have

  eest = wn Hz  

  = zHwn . (9.39)

Finally, substituting Eq. (9.39) into Eq. (9.26) and then using Eq. (9.36) for wn , we get

  emin = ed - zHwn  

  = ed - zH𝚽-1z. (9.40)
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Equation (9.40) is the formula for the minimum sum of error squares, expressed in 
terms of three known quantities: the energy ed of the desired response, the time-average 
correlation matrix 𝚽 of the tap inputs, and the time-average cross-correlation vector z 
between the tap inputs and the desired response.

9.6 tiMe-average CorreLation Matrix 𝚽

The time-average correlation matrix, or simply the correlation matrix 𝚽 of the tap 
inputs, is shown in its expanded form in Eq. (9.32), with the element f(t, k) defined in 
Eq. (9.29). The index k in f(t, k) refers to the row number in the matrix 𝚽, and t refers 
to the column number. Let the M-by-1 tap-input vector

 u1i2 = 3u1i2, u1i - 12, c, u1i - M + 124T
 . (9.41)

We may use Eqs. (9.29) and (9.41) to redefine the correlation matrix 𝚽 as the time aver-
age of the outer product u(i)uH(i) over i as follows:

 𝚽 = a
N

i = M
u1i2uH

 1i2. (9.42)

To restate what we said earlier in footnote 1, the summation in Eq. (9.42) should be 
divided by the scaling factor (N - M + 1) for the correlation matrix 𝚽 to be a time 
average in precise terms. In the statistics literature, the scaled form of 𝚽 is referred 
to as the sample correlation matrix. In any event, on the basis of the definition given 
in Eq. (9.42), we may readily establish the following properties of the correlation 
matrix:

Property 1. The correlation matrix 𝚽 is Hermitian; that is,

 𝚽H = 𝚽. 

This property follows directly from Eq. (9.42).

Property 2. The correlation matrix 𝚽 is nonnegative definite; that is,

 xH 𝚽x Ú 0 

for any M-by-1 vector x.
Using the definition of Eq. (9.42), we may derive Property 2 as follows:

  xH𝚽x = a
N

i = M
xHu1i2uH

 1i2x  

  = a
N

i = M
3xHu1i24[xHu1i2]* 

  = a
N

i = M
∙ xHu1i2 ∙2 Ú 0.  
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Property 3. The correlation matrix 𝚽 is nonsingular if and only if its determinant 
is nonzero.

A square matrix is said to be nonsingular if its inverse exists. The inverse of 𝚽, 
denoted by 𝚽-1, is defined by

 𝚽-1 =
adj1𝚽2
det1𝚽2, (9.43)

where adj(𝚽) is the adjoint matrix of 𝚽 whose entries are the respective cofactors of the 
elements in det(𝚽). From Eq. (9.43) we readily see that the inverse matrix 𝚽-1 exists if 
and only if det(𝚽)  0. It follows therefore that the correlation matrix 𝚽 is nonsingular 
if and only if det(𝚽)  0.

Property 4. The eigenvalues of the correlation matrix 𝚽 are all real and nonnegative.
The real requirement on the eigenvalues of 𝚽 follows from Property 1. The fact 

that all these eigenvalues are also nonnegative follows from Property 2.

Property 5. The correlation matrix is the product of two rectangular Toeplitz 
 matrices that are the Hermitian transpose of each other.

The correlation matrix 𝚽 is, in general, non-Toeplitz, which is clearly seen by 
examining the expanded form of the matrix given in Eq. (9.32). The elements on the 
main diagonal, f(0, 0), f(1, 1), c, f(M - 1, M - 1), have different values; this also 
applies to secondary diagonals above or below the main diagonal. However, the matrix 
𝚽 has a special structure in the sense that it is the product of two Toeplitz rectangular 
matrices. To prove this property, we first use Eq. (9.42) to express the matrix 𝚽 in the 
expanded form:

 𝚽 = 3u1M2, u1M + 12, c, u1N24DuH
 1M2

uH
 1M - 12

f
uH

 1N2
T . 

Next, for convenience of presentation, we introduce a data matrix A, whose Hermitian 
transpose is defined by

 AH = 3u1M2, u1M + 12, g , u1N24

  = Du1M2
u1M - 12
  

f
u112

u1M + 12
u1M2
  

f
u122

g
g

 

g

u1N2
u1N - 12
  

f
u1N - M + 12

T . (9.44)

The expanded matrix on the right-hand side of Eq. (9.44) is recognized to be the matrix 
of input data for the covariance method of data windowing. (See Section 9.2.) Thus, 
using the definition of Eq. (9.44), we may redefine 𝚽 in the compact form

 𝚽 = AHA. (9.45)
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From the expanded form of the matrix given in the second line of Eq. (9.44), we see 
that AH consists of an M-by-(N - M + 1) rectangular Toeplitz matrix. The data matrix 
A itself is likewise an (N - M + 1)-by-M rectangular Toeplitz matrix. According to  
Eq. (9.45), therefore, the correlation matrix 𝚽 is the product of two rectangular Toeplitz 
matrices that are the Hermitian transpose of each other. This completes the derivation 
of Property 5.

9.7  reforMuLation of the norMaL equationS in terMS 
of Data MatriCeS

The system of normal equations for a least-squares FIR filter is given by Eq. (9.35) in 
terms of the correlation matrix 𝚽 and the cross-correlation vector z. We may refor-
mulate the normal equations in terms of data matrices by using Eq. (9.45) for the 
correlation matrix 𝚽 of the tap inputs and a corresponding relation for the cross-
correlation vector z between the tap inputs and the desired response. To do this, we 
introduce a desired data vector d, consisting of the desired response d(i) for values of 
i in the interval [M, N]:

 dH = 3d1M2, d1M + 12, c, d1N24. (9.46)

Note that we have purposely used Hermitian transposition rather than ordinary transpo-
sition in the definition of vector d, to be consistent with the definition of the data matrix 
A in Eq. (9.44). With the definitions of Eqs. (9.44) and (9.46) at hand, we may now use 
Eqs. (9.30) and (9.33) to express the cross-correlation vector

 z = AHd. (9.47)

Furthermore, we may use Eqs. (9.45) and (9.47) in Eq. (9.35) and so express the 
system of normal equations in terms of the data matrix A and the desired data vec-
tor d as

 AHAwn = AHd. 

From this equation we see that the system of equations used in the minimization of the 
cost function e may be represented by Aŵ  = d. Furthermore, assuming that the inverse 
matrix (AH A)-1 exists, we may solve this system of equations by expressing the tap-
weight vector as

 wn = 1AHA2-1
 AHd. (9.48)

We may complete the reformulation of our results for the linear least-squares 
problem in terms of the data matrices A and d by substituting Eqs. (9.45) and (9.47) 
into Eq. (9.40) and Eq. (9.46) into Eq. (9.23). In so doing, we may rewrite the formula 
for the minimum sum of error squares as

 emin = dHd - dHA1AHA2-1AHd. (9.49)

Although this formula looks somewhat cumbersome, its nice feature is that it is expressed 
explicitly in terms of the data matrix A and the desired data vector d.
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exaMpLe 1   

Consider the example of a linear least-squares filter with two taps (i.e., M = 2) and a real-valued 
input time series consisting of four samples (i.e., N = 4). Hence, N - M + 1 = 3. The input data 
matrix A and the desired data vector d have the following values:

  A = Cu122 u112
u132 u122
u142 u132

S  

  = C 2 3
1 2

-1 1
S ;  

projection operator

Equation (9.48) defines the least-squares tap-weight vector wn  in terms of the data matrix 
A and the desired data vector d. The least-squares estimate of d is therefore given by

  dn = Awn  

  = A1AHA2-1
 AHd. (9.50)

Accordingly, we may view the multiple matrix product A(AH A)-1 AH as a projection 
operator onto the linear space spanned by the columns of the data matrix A, which is 
the same space ui mentioned previously for i = N. Denoting this projection operator 
by P, we may thus write

 P = A1AHA2-1
 AH. (9.51)

The matrix difference

 I - A1AHA2-1
 AH = I - P 

is the orthogonal complement projector. Note that both the projection operator and its 
complement are uniquely determined by the data matrix A. The projection  operator, 
P, applied to the desired data vector d, yields the corresponding estimate dn. On the 
other hand, the orthogonal complement projector, I - P, applied to the desired data 
vector d, yields the estimation error vector emin = d - dn. Figure 9.3 illustrates the 
functions of the projection operator and the orthogonal complement projector as 
described herein.

 

FigurE 9.3 Projection operator P 
and orthogonal complement  
projector I − P.
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  d = Cd122
d132
d142

S  

  = C2
1
1 >  34

S . 

The purpose of this example is to evaluate the projection operator and the orthogonal comple-
ment projector and use them to illustrate the principle of orthogonality.

The use of Eq. (9.51), reformulated for real data, yields the value of the projection opera-
tor as

  P = A1ATA2-1
 AT  

  =
1
35

 C 26 15 - 2
15 10 5
-3 5 34

S . 

The corresponding value of the orthogonal complement projector is

 I - P =
1
35

 C 9 -15 3
-15 25 -5
-3 -5 1

S . 

Accordingly, the estimate of the desired data vector and the estimation error vector have the 
following values, respectively:

  dn = Pd  

  = C1.91
1.15

0
S ;  

  emin = 1I - P2d  

  = C 0.09
-0.15

0.03
S . 

Figure 9.4 depicts three-dimensional geometric representations of the vectors dn and 
emin for the example just considered. The figure clearly shows that these two vectors are 
normal (i.e., perpendicular) to each other, in accordance with the corollary to the principle 
of orthogonality (hence the terminology “normal” equations). This condition is the geomet-
ric portrayal of the fact that, in a linear least-squares filter, the inner product eH

mind is zero. 
The figure also depicts the desired data vector d as the vector sum of the estimate dn and the 
error emin. Note also that the vector emin is orthogonal to span(A), defined as the set of all 
linear combinations of the column vectors of the data matrix A. The estimate dn is just one 
vector in the span(A).
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uniqueness theorem

The linear least-squares problem of minimizing the sum of error squares e1n2 always 
has a solution. That is, for given values of the data matrix A and the desired data vec-
tor d, we can always find a vector wn  that satisfies the normal equations. It is therefore 
important that we know if and when the solution is unique. This requirement is covered 
by the following uniqueness theorem (Stewart, 1973):

The least-squares estimate wn  is unique if and only if the nullity of the data matrix 
A equals zero.

Let A be a K-by-M matrix; in the case of the data matrix A defined in Eq. (9.44), 
let K = N - M + 1. We define the null space of matrix A, written n(A), as the space of 
all vectors x such that Ax = 0. We define the nullity of matrix A, written null(A), as the 
dimension of the null space n(A). In general,

 null1A2  null1AH2. 

FigurE 9.4 Three-dimensional geometric interpretations of vectors d, dn, and emin for Example 1.
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In light of the uniqueness theorem, which is intuitively satisfying, we may expect 
a unique solution to the linear least-squares problem only when the data matrix  
A has linearly independent columns—that is, when the data matrix A is of full column 
rank. This implies that the matrix A has at least as many rows as columns; that is,  
(N - M + 1) Ú M. The latter condition means that the system of equations represented 
by Awn = d and used in the minimization is overdetermined, in that it has more equa-
tions than unknowns. Thus, provided that the data matrix A is of full column rank, the 
M-by-M matrix AHA is nonsingular, and the least-squares estimate has the unique 
value given in Eq. (9.48).

When, however, the matrix A has linearly dependent columns (i.e., the matrix is rank 
deficient), the nullity of the matrix A is nonzero, and an infinite number of solutions can be 
found for minimizing the sum of error squares. In such a situation, the linear least-squares 
problem becomes quite involved, in that we now have the new problem of deciding which 
particular solution to adopt. We defer discussion of this issue to Section 9.14; in the mean-
time, we assume that the data matrix A is of full column rank, so that the least-squares 
estimate wn  has the unique value defined by Eq. (9.48).

9.8 propertieS of LeaSt-SquareS eStiMateS

The method of least squares has a strong intuitive feel that is reinforced by several out-
standing properties, assuming that the data matrix A is known with no uncertainty. These 
properties, four in number, are described next (Miller, 1974; Goodwin & Payne, 1977).

Property 1. The least-squares estimate wn  is unbiased, provided that the measure-
ment error process eo(i) has zero mean.

From the multiple linear regression model of Fig. 9.1, we have [using the defini-
tions of Eqs. (9.44) and (9.46)]

 d = Awo + Eo, (9.52)

where

 EH
o = 3eo 1M2, eo 1M + 12, c, eo 1N24. 

Hence, substituting Eq. (9.52) into Eq. (9.48), we may express the least-squares estimate as

  wn = 1AHA2-1
 AHAwo + 1AHA2-1

 AHEo 

  = wo + 1AHA2-1
 AHEo.  (9.53)

The matrix product 1AHA2-1
 AH is a known quantity, since the data matrix A is com-

pletely defined by the set of given observations u(1), u (2), c, u(N). [See Eq. (9.44).] 
Hence, if the measurement error process eo(i) or, equivalently, the measurement error 
vector Eo, has zero mean, we find, by taking the expectation of both sides of Eq. (9.53), 
that the estimate wn  is unbiased; that is,

 𝔼3wn 4 = wo. (9.54)

Property 2. When the measurement error process eo(i) is white with zero mean and 
variance s2, the covariance matrix of the least-squares estimate wn  equals s2𝚽−1.
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Using the relation of Eq. (9.53), we find that the covariance matrix of the least-
squares estimate wn  equals

  cov 3wn 4 = 𝔼31wn - wo21wn - wo2H4  

  = 𝔼31AHA2-1
 AHEoE

H
o A1AHA2-14  

  = 1AHA2-1
 AH𝔼3EoE

H
o 4A1AHA2-1. (9.55)

With the measurement error process eo(i) assumed to be white with zero mean and 
variance s2, we have

 𝔼3EoE
H
o 4 = s2I, (9.56)

where I is the identity matrix. Hence, Eq. (9.55) reduces to

  cov 3wn 4 = s21AHA2-1
 AHA1AHA2-1 

  = s21AHA2-1  

  = s2𝚽-1,  (9.57)

which establishes Property 2.

Property 3. When the measurement error process eo(i) is white with zero mean, 
the least-squares estimate wn  is the best linear unbiased estimate.

Consider any linear unbiased estimator that is defined by

 w∼ = Bd, (9.58)

where B is an M-by-(N - M + 1) matrix. Substituting Eq. (9.52) into Eq. (9.58), we get

 w∼ = BAwo + BEo. (9.59)

With the measurement error vector Eo assumed to have zero mean in accordance with 
Property 1, we find that the expectation of w∼ is

 𝔼3w∼4 = BAwo. 

For the linear estimator w∼ to be unbiased, we therefore require that the matrix B satisfy 
the condition

 BA = I. 

Accordingly, we may rewrite Eq. (9.59) as

 w∼ = wo + BEo. 

The covariance matrix of w∼ is

  cov 3w∼4 = 𝔼31w∼ - wo21w∼ - wo2H4 
  = 𝔼3BEoE

H
o BH4  

  = s2BBH.  (9.60)

Here, we have made use of Eq. (9.56), which assumes that the elements of the mea-
surement error vector Eo are uncorrelated and have a common variance s2; that is, 
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the measurement error process eo(i) is white. We next define a new matrix 𝚿 in terms 
of B as

 𝚿 = B - 1AHA2-1
 AH. (9.61)

Now we form the matrix product 𝚿𝚿H and note that BA = I:

  𝚿𝚿H = 3B - 1AHA2-1
 AH43BH - A1AHA2-14  

  = BBH - BA1AHA2-1 - 1AHA2-1
 AHBH + 1AHA2-1 

  = BBH - 1AHA2-1.  

Since the diagonal elements of 𝚿𝚿H are always nonnegative, we may use this relation 
to write

 s2 diag 3BBH4 Ú s2 diag 31AHA2-14. (9.62)

The term s2BBH equals the covariance matrix of the linear unbiased estimate w∼, as in 
Eq. (9.60). From Property 2, we also know that the term s21AHA2-1 equals the covariance 
matrix of the least-squares estimate wn . Thus, Eq. (9.62) shows that, within the class of lin-
ear unbiased estimates, the least-squares estimate wn  is the “best” estimate of the unknown 
parameter vector wo of the multiple linear regression model, in the sense that each element 
of wn  has the smallest possible variance. Accordingly, we may make the following statement:

When the measurement error process eo contained in this model is white with zero 
mean, the least-squares estimate wn  is the best linear unbiased estimate (BLUE).

Thus far, we have not made any assumption about the statistical distribution of the 
measurement error eo(i) other than that it is a zero-mean white-noise process. By making 
the further assumption that the measurement error eo(i) is Gaussian distributed, we obtain 
a stronger result on the optimality of the linear least-squares estimate, as discussed next.

Property 4. When the measurement error process eo(i) is white and Gaussian 
with zero mean, the least-squares estimate wn  achieves the Cramér−Rao lower bound for 
unbiased estimates.

Let fE (Eo) denote the joint probability density function of the measurement error 
vector Eo. Let w∼ denote any unbiased estimate of the unknown parameter vector wo of the 
multiple linear regression model. Then the covariance matrix of w∼ satisfies the inequality

 cov 3w∼4 Ú J-1, (9.63)

where
 cov 3w∼4 = 𝔼31w∼ - wo21w∼ - wo2H4. (9.64)

The matrix J is called Fisher’s information matrix and is defined by2

 J = 𝔼 c a 0l

0wH
o
ba 0l

0wo
b d , (9.65)

where
 l = ln fE1Eo2 (9.66)

2Fisher’s information matrix is discussed in Appendix D for the case of real parameters.
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418   Chapter 9  Method of Least Squares

is the log-likelihood function—that is, the natural logarithm of the joint probability 
density function of Eo.

Since the measurement error eo(n) is white, the elements of the vector Eo are 
uncorrelated. Furthermore, since eo(n) is Gaussian, the elements of Eo are statistically 
independent. With eo(i) assumed to be complex with a mean of zero and variance s2, 
we have (see Section 1.11)

 fE1Eo2 =
1

1ps221N - M + 12 exp c -  
1
s2 a

N

i = M
∙eo 1i2 ∙2 d . (9.67)

The log-likelihood function is therefore

  l = F -
1
s2 a

N

i = M
∙ eo 1i2 ∙2 

  = F -
1
s2 EH

o Eo,  (9.68)

where

 F = -1N - M + 12 ln1ps22 

is a constant. From Eq. (9.52), we have

 Eo = d - Awo. 

Using this relation in Eq. (9.68), we may rewrite l in terms of wo as

 l = F -
1
s2 dHd +

1
s2 wH

o AHd +
1
s2 dHAwo -

1
s2 wH

o AHAwo. (9.69)

Differentiating l, defined in Eq. (9.68),with respect to wH
o  and formally treating wo as a 

constant in accordance with the Wirtinger calculus in Appendix B, we get

  
0l

0wH
o

=
1
s2 AH

 1d - Awo2 

  =
1
s2 AHEo.  (9.70)

Substituting Eq. (9.70) into Eq. (9.65) yields Fisher’s information matrix for the problem 
at hand:

  J =
1

s4 𝔼 c a 1
s2AHEoba 1

s2AHEob
H

d  

  =
1

s4 A
H𝔼3EoE

H
o 4A  (9.71)

  =
1
s2 AHA  

  =
1
s2 𝚽.  
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Note that in the third line of Eq. (9.71) we have made use of Eq. (9.56) describing 
the assumption that the measurement error process eo(i) is white with zero mean and 
variance s2. Accordingly, the use of Eq. (9.63) shows that the covariance matrix of the 
unbiased estimate w∼ satisfies the inequality

 cov 3wn 4 Ú s2𝚽-1. (9.72)

However, from Property 2, we know that s2𝚽-1 equals the covariance matrix of the least-
squares estimate wn . Accordingly, wn  achieves the Cramér-Rao lower bound. Moreover, 
using Property 1, we conclude by saying:

When the measurement error process eo(i) is a zero-mean Gaussian white-noise pro-
cess, the least-squares estimate wn  is a minimum-variance unbiased estimate (MVUE).

9.9  MiniMuM-varianCe DiStortionLeSS reSponSe (MvDr) 
SpeCtruM eStiMation

In the method of least squares, as described up to this point, no constraints are imposed on 
the solution. In certain applications, however, the use of such an approach may be unsatis-
factory, in which case we may resort to a constrained version of the method. For example, 
in adaptive beamforming that involves spatial processing, we may wish to minimize the 
variance (i.e., the average power) of a beamformer output, while a distortionless response 
is maintained along the direction of a target signal of interest. Correspondingly, in the tem-
poral counterpart to this problem, we may be required to minimize the average power of a 
spectrum estimator, while a distortionless response is maintained at a particular frequency. 
In such applications, the resulting solution is referred to as a minimum-variance distortion-
less response (MVDR) estimator, for obvious reasons. To be consistent with the material 
presented heretofore, we will formulate the temporal version of the MVDR algorithm.

Consider, then, an FIR filter, as depicted in Fig. 9.5. Let the filter output be 
denoted by y(i). This output is in response to the tap inputs u(i), u(i - 1), c, u(i - M). 
Specifically, we have

 y1i2 = a
M

t = 0
a*t u1i - t2, (9.73)

where a0, a1, c, am are the FIR filter coefficients. Then, assuming the use of the covari-
ance method of data windowing, the requirement is to minimize the output energy

 eout = a
N

i = M + 1
∙ y1i2 ∙2, 

subject to the constraint

 a
M

k = 0
a*ke-jkv0 = 1, (9.74)

where v0 is an angular frequency of special interest. As in the traditional method of 
least squares, the filter coefficients a0, a1, c, aM are held constant for the observation 
interval 1 … i … N, where N is the total data length.
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420   Chapter 9  Method of Least Squares

To solve this constrained minimization problem, we use the method of Lagrange 
multipliers; this optimization procedure is discussed in Appendix C. Specifically, we 
define the constrained cost function

 e = a
N

i = M + 1
∙ y1i2 ∙2 + laa

M

k = 0
a*ke-jkv0 - 1b , 

(9.75)
 (++)++* (++1+)+1++* 
 output energy linear constraints 

where l is a complex Lagrange multiplier. Note that in the constrained approach 
described herein, there is no desired response; in place of it, we have a set of linear 
constraints. Note also that in the absence of a desired response and therefore a frame 
of reference, the principle of orthogonality loses its meaning.

To solve for the optimum values of the filter coefficients, we first determine the 
gradient vector ∇e with respect to a*k  and then set it equal to zero. Thus, proceeding in 
a manner similar to that described in Section 9.3, we find that the kth element of the 
gradient vector for the constrained cost function of Eq. (9.75) is

 ∇ke = 2 a
N

i = M + 1
u1i - k2y*1i2 + l*e-jkv0. (9.76)

Next, substituting Eq. (9.73) into Eq. (9.76) and rearranging terms, we get

  ∇ke = 2a
M

t = 0
at a

N

i = M + 1
u1i - k2u*1i - t2 + l*e-jkv0 

  = 2a
M

t = 0
atf1t, k2 + l*e-jkv0,  (9.77)

where, in the first term of the second line, we have made use of the definition of  
Eq. (9.29) for the time-average autocorrelation function f(t, k) of the tap inputs. To 
minimize the constrained cost function e, we set

 ∇ke = 0,   k = 0, 1, c, M. (9.78)

FigurE 9.5 FIR filter.
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Accordingly, we find from Eq. (9.77) that the tap-weights of the optimized FIR filter 
satisfy the following system of M + 1 simultaneous equations:

 a
M

t = 0
ant f1t, k2 = -  

1
2

 l*e-jkv0,    k = 0, 1, c, M. (9.79)

Using matrix notation, we may rewrite this system of equations in the compact form

 𝚽an = -
1
2

 l*s1v02, (9.80)

where 𝚽 is the (M + 1)-by-(M + 1) time-average correlation matrix of the tap inputs, an 
is the (M + 1)-by-1 vector of optimum tap weights, and

 s1v02 = 31, e-jv0, c, e-jMv04T (9.81)

is the (M + 1)-by-1 fixed frequency vector. Assuming that 𝚽 is nonsingular and 
therefore that its inverse 𝚽-1 exists, we may solve Eq. (9.80) for the optimum tap-
weight vector:

 an = -  
1
2

 l*𝚽-1
 s1v02. (9.82)

There remains only the problem of evaluating the Lagrange multiplier l. To solve for l, 
we use the linear constraint in Eq. (9.74) for the optimized FIR filter, written in matrix 
form as

 anHs1v02 = 1. (9.83)

Evaluating the inner product of the vector s1v02 and the vector an in Eq. (9.82), setting 
the result equal to unity and solving for l, we get

 l* = -  
2

sH
 1v02𝚽-1

 s1v02
. (9.84)

Finally, substituting this value of l into Eq. (9.82), we obtain the MVDR solution:

 an =
𝚽-1s1v02

sH
 1v02𝚽-1s1v02

. (9.85)

Thus, given the time-average correlation matrix 𝚽 of the tap inputs and the frequency 
vector s(v0), we may use the MVDR formula of Eq. (9.85) to compute the optimum 
tap-weight vector an of the FIR filter in Fig. 9.5.

Let SMVDR 1v02 denote the minimum value of the output energy eout, which 
results when the MVDR solution an of Eq. (9.85) is used for the tap-weight vector 
under the condition that the response is tuned to the angular frequency v0 . We may 
then write

 SMVDR 1v02 = anH𝚽an. (9.86)
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Substituting Eq. (9.85) into Eq. (9.86) and then simplifying the result, we finally get

 SMVDR 1v02 =
1

sH
 1v02𝚽-1s1v02

. (9.87)

Equation (9.87) may be given a more general interpretation. Suppose that we 
define a frequency-scanning vector as

 s1v2 = 31, e-jv, c, e-jvM4T,  -p 6 v … p, (9.88)

where the angular frequency v is now variable in the interval (-π, π). For each v, let the 
tap-weight vector of the FIR filter be assigned a corresponding MVDR estimate. The 
output energy of the optimized filter becomes a function of v. Let SMVDR 1v2 describe 
this functional dependence; accordingly, we may write3

 SMVDR 1v2 =
1

sH
 1v2𝚽-1s1v2. (9.89)

We refer to Eq. (9.89) as the MVDR spectrum estimate and to the solution given in  
Eq. (9.85) as the MVDR estimate of the tap-weight vector for v = v0 . Note that at any v, 
the power due to other frequencies is minimized; hence, the MVDR spectrum computed 
in accordance with Eq. (9.89) exhibits relatively sharp peaks.

9.10 reguLarizeD MvDr beaMforMing

The MVDR formula of Eq. (9.85) also provides the basis for adaptive beamforming 
in radar, sonar, and wireless communications. The motivation for these applications is 
twofold:

	 •	 Fast speed of convergence.
	 •	 Ability to cope with a complicated interference environment in which the number 

of interfering sources is large.

Consider an adaptive beamformer built around a linear array of M antenna ele-
ments, as depicted in Fig. 9.6. Let s(u) denote the prescribed beam-steering vector (i.e., 
the vector of linear phase shifts applied to elements of the array) for a look direction 
of interest that is presented by the electrical angle u lying in the range -π/2 6 u … π/2. 
The angle u is related to the actual direction of arrival w, measured with respect to the 
normal to the array, by

 u =
2pd
l

 w, (9.90)

where d is the interelement spacing between adjacent elements of the array and l is 
the wavelength of the incident electromagnetic wave. (See “Background and Preview,” 

3The method for computing the spectrum in Eq. (9.89) is also referred to in the literature as Capon’s 
method (Capon, 1969). The term “minimum-variance distortionless response” owes its origin to Owsley 
(1985).
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Fig. 9). Then, adapting Eq. (9.85) for the problem at hand, we may express the MVDR 
solution to the weight vector of the beamformer as

 wn =
𝚽-1s1u2

sH
 1u2𝚽-1s1u2, (9.91)

which readily lends itself to a batch (block) form of implementation. Suppose now, we 
are given a block of input data denoted by 5u1n26K

n = 1, where each of the K entries may 
be viewed as a “snapshot” of the environment. Given such a block of data, we compute 
the time-average correlation matrix 𝚽 by using the formula

 𝚽 = a
K

n = 1
u1n2uH

 1n2, (9.92)

which is plugged into Eq. (9.91) to produce the corresponding value of the weight vector 
wn . To cope with statistical variations in the environment, the whole “estimate and plug” 
procedure is repeated for every block of K snapshots. As mentioned in the introductory 
remarks to this chapter, although a block method is more computationally intensive than 
its recursive counterpart, computational complexity is no longer considered to be an 
issue of practical concern, due to continued advances in computer technology.

FigurE 9.6 MVDR beamformer built around a linear array of antenna elements.
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regularization

The MVDR weight vector of Eq. (9.85) is the solution to an ill-posed inverse estimation 
problem; we say so for two reasons:

 1. The problem is an inverse problem because, in going from the input data to the 
weight vector, we are actually proceeding in the direction opposite that of the 
physical process responsible for generating the data.

 2. The problem is ill posed due to inadequacy of the input data and the presence 
of noise and interfering signals, the combination of which results in a nonunique 
solution.

Accordingly, using Eq. (9.91) may lead to an antenna pattern (i.e., a plot of the beam-
former’s power response versus the look direction) with high sidelobes that are 
un acceptable. Moreover, the antenna pattern may fluctuate randomly from one block 
of snapshots to the next, with a devastating effect on subsequent signal processing.

To mitigate the ill-posedness of an estimator (e.g., an adaptive beamformer), we 
need to stabilize the solution through the use of regularization (Tikhonov, 1963, 1973).4 
The basic principle is to augment the usual data-dependent cost function by a structure-
dependent regularization component, the purpose of which is to impose a smoothing 
constraint on the input–output mapping realized by the estimator and thereby stabilize 
the solution. In words, the cost function for the regularized estimator is written as follows:£ regularized

cost
function

≥ = adata@dependent
cost function

b + aregularization
parameter

b * § structure@
dependent

regularization
term

¥. (9.93)

In a sense, we may view the regularization parameter as an indicator of the sufficiency of 
the input data in specifying the solution. In particular, as the regularization parameter 
approaches zero, the solution is completely determined by the input data. On the other 
hand, as the regularization parameter approaches infinity, the smoothness constraint 
imposed through regularization is sufficient to specify the solution, which is another way 
of saying that the input data are unreliable. In practice, the regularization parameter is 
assigned a value somewhere between these two limiting conditions.

regularized adaptive beamformer with Controlled Sidelobes

With regard to MVDR beamforming, we present a refined form of regularization 
designed with the following objective in mind (Hughes & McWhirter, 1995; McWhirter 
et al., 2000):

Objective.  Prevent the spatial response corresponding to the MVDR solution devi-
ating unnecessarily from a quiescent response—the one that would have been speci-
fied for a nonadaptive beamformer if we had knowledge of the prevalent environment.

4For a detailed treatment of regularization theory, the reader is referred to Chapter 7 of the book by 
Haykin (2009).
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Satisfying this objective has the effect of removing unnecessary degrees of freedom from 
the least-squares solution in a meaningful way. In particular, we may now formulate 
the problem of designing a regularized MVDR beamformer, configured in the manner 
shown in Fig. 9.6:

Determine the optimum weight factor wn  that minimizes the energy of the beam-
former’s output:

a
K

n = 1
∙ wHu1n2 ∙2    for a block of K snapshots,

subject to the constraint

wHs1u2 = 1,    s1u2 = beam@steering vector,

and the requirement that the sidelobes be controlled in accordance with the 
objective outlined above.

In the case of a linear array, the constraint and the requirement on sidelobes are 
satisfied by the following choice of regularization (McWhirter et al., 2000):

  aregularization
component

b = L
p >  2

-p >  2
h1u2 ∙ 1w - wq2H

 s1u2 ∙2
 du 

  = 1w - wq2H
 Z1w - wq2.  (9.94)

Here, wq is the quiescent weight vector and

 Z = L
p >  2

-p >  2
h1u2s1u2sH

 1u2du (9.95)

is an M-by-M matrix. The scalar function h(u) is designed to apply a nonnegative weight-
ing to the beamformer’s field of view. Thus, incorporating the regularization component 
of Eq. (9.94) into the constrained cost function for the MVDR problem, in accordance 
with Eq. (9.93), we write

 ereg1w2 = a
K

n = 1
∙ wHu1n2 ∙2 + l1wHs1u2 - 12 + d1w - wq2H

 Z1w - wq2, (9.96)

where l is the Lagrange multiplier and d is the regularization parameter. Following the 
generalized Wirtinger calculus in Appendix B, we differentiate ereg 1w2 with respect 
to wH and formally treat w as a constant. Then, setting the resulting partial derivative to 
zero and solving for the optimum w, we get

 wn = 1𝚽 + dZ2-1adZwq - ls1u2b , (9.97)

where 𝚽 is the time-average correlation matrix defined in Eq. (9.92). Using Eq. (9.97) 
to satisfy the constraint

 wn Hs1u2 = 1 

and solving for the Lagrange multiplier l, we get
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 -l =
1 - dwH

q Z1𝚽 + dZ2-1
 s1u2

sH
 1u21𝚽 + dZ2-1

 s1u2 , (9.98)

where we have used the Hermitian property of the M-by-M augmented correlated 
matrix 𝚽 + dZ. Finally, substituting Eq. (9.98) into Eq. (9.97), we obtain the regularized 
MVDR solution:

  wn =
1𝚽 + dZ2-1

 s1u2
sH

 1u21𝚽 + dZ2-1
 s1u2 + d1𝚽 + dZ2-1Zwq 

  -  
dwH

q Z1𝚽 + dZ2-1s1u21𝚽 + dZ2-1
 s1u2

sH
 1u21𝚽 + dZ2-1

 s1u2 .  (9.99)

The following points from Eq. (9.99) are noteworthy:

	 •	 In the limiting case of d = 0 (i.e., no regularization), Eq. (9.99) reduces to the 
unregularized MVDR solution defined in Eq. (9.85).

	 •	 Despite the complicated appearance of Eq. (9.99), practical implementation of 
this regularized solution is much less computationally demanding than a subspace 
projection algorithm based on singular-value decomposition (McWhirter et al., 
2000). (Singular value decomposition is discussed in the next section.)

Figure 9.7, which plots the power response versus the actual direction of arrival, 
w, illustrates the impressive performance that is attainable with a regularized MVDR 

FigurE 9.7 Sidelobe stabilization using the regularized MVDR beamformer. Solid curve 
shows the quiescent beampattern. (Reproduced with the permission of the British Crown.)
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beamformer based on Eq. (9.99). The results presented herein, due to McWhirter et al. 
(2000), were computed for the following specifications:

	 •	 16-element linear array with uniform half-wavelength spacing.
	 •	 Look direction w = 0.
	 •	 Additive white Gaussian noise, spatially uncorrelated from one antenna element 

to the next.
	 •	 Single jammer at w = 45°, with a power of 30 dB relative to the noise at each 

antenna element of the array.
	 •	 Number of snapshots used in the computation K = 32.
	 •	 Weighting function

 h1u2 = e cosu for u 7 0°
0 for u 6 0°

. 

  For u 7 0°, the use of this weighting function constrains the antenna pattern to 
lie close to that of a fixed Chebyshev pattern with a sidelobe level of -30 dB. The 
antenna pattern was left unregularized for u 6 0° for illustration purposes only, as 
there was no jammer present in that field of view.

	 •	 The quiescent weight vector wq is specified by the Dolph–Chebyshev antenna pat-
tern (Dolph, 1946).

	 •	 Regularization parameter d = 30K = 960.

From the figure, we see that the use of regularization for w 7 0° has a profound effect on 
the antenna pattern for the field of view. Specifically, the fluctuations in the weight vector 
from one block of input data to the next are dramatically reduced, while the sidelobes are 
controlled to lie close to the prescribed Dolph–Chebyshev levels. By the same token, for 
the unregularized field of view represented by w 6 0° with no jammers, we see significant 
fluctuations in the antenna pattern, as well as a poor sidelobe performance. Moreover, 
the regularized beamformer is still producing a response of 0 dB in the prescribed look 
direction of w = 0° and forming a null in the direction of the jammer at w = 45°.

9.11 SinguLar-vaLue DeCoMpoSition

We complete the discussion of the method of least squares by describing a computa-
tional tool known as singular-value decomposition. The analytic power of this tool lies in 
the fact that it applies to square as well as rectangular matrices, be they real or complex. 
Hence, singular-value decomposition is extremely well suited to the numerical solution 
of linear least-squares problems, in the sense that it can be applied directly to the data 
matrix.

In Sections 9.5 and 9.7, we described two different forms of the normal equations 
for computing the linear least-squares solution:

 1. The form given in Eq. (9.36), namely,

 wn = 𝚽-1z, 
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  where wn  is the least-squares estimate of the unknown parameter vector of a multiple 
linear regression model, 𝚽 is the time-average correlation matrix of the tap inputs of 
an FIR filter performing the estimation, and z is the time-average cross- correlation 
vector between the tap inputs and the desired response.

 2. The form given in Eq (9.48) directly in terms of data matrices, namely,

 wn = 1AHA2-1
 AHd, 

  where A is the data matrix representing the time evolution of the tap-input vectors and 
d is the desired data vector representing the time evolution of the desired response.

These two forms are indeed mathematically equivalent, yet they point to different 
computational procedures for evaluating the least-squares solution wn . Equation (9.36) 
requires knowledge of the time-average correlation matrix 𝚽 that involves computing 
the product of AH and A. On the other hand, in Eq. (9.48), the entire term 1AHA2-1

 A 
can be interpreted, in terms of the singular-value decomposition applied directly to the 
data matrix A, in such a way that the solution computed for wn  has twice the number of 
correct digits as the solution computed by means of Eq. (9.36) for the same numerical 
precision. To be specific, if we define the matrix

 A+ = 1AHA2-1
 AH, (9.100)

then we may rewrite Eq. (9.36) simply as

 wn = A+d. (9.101)

The matrix A+ is called the pseudoinverse, or the Moore–Penrose generalized inverse, 
of the matrix A (Stewart, 1973; Golub & Van Loan, 1996). Equation (9.101) represents 
a convenient way of saying:

The vector wn  solves the linear least-squares problem.

Indeed, it was with the simple format of that equation in mind and also the desire to 
be consistent with definitions of the time-average correlation matrix 𝚽 and the cross- 
correlation vector z used in Section 9.5 that we defined the data matrix A and the 
desired data vector d in the manner shown in Eqs. (9.44) and (9.46), respectively.

In practice, we often find that the data matrix A contains linearly dependent columns. 
Consequently, we are faced with a new situation in which we now have to decide which  
of an infinite number of possible solutions to the least-squares problem to work with.  
This issue can indeed be resolved by using the singular-value decomposition technique  
to be described in Section 9.14.

the Singular-value Decomposition theorem

The singular-value decomposition (SVD) of a matrix is one of the most elegant algo-
rithms in numerical algebra for providing quantitative information about the structure 
of a system of linear equations (Klema & Laub, 1980). The system of linear equations 
that is of specific interest to us is described by

 Awn = d, (9.102)
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in which A is a K-by-M matrix, d is a K-by-1 vector, and wn  (representing an estimate 
of the unknown parameter vector) is an M-by-1 vector. Equation (9.102) represents a 
simplified matrix form of the normal equations. In particular, premultiplication of both 
sides of the equation by the vector AH yields the normal equations for the least-squares 
weight vector wn , as defined in Eq. (9.48).

Given the data matrix A, there are two unitary matrices V and U such that

 UHAV = c 𝚺 0
0 0

d , (9.103)

where
 𝚺 = diag 1s1, s2, c, sW2 (9.104)

is a diagonal matrix. The s’s are ordered as s1 Ú s2 Ú c Ú sW 7 0. Equation (9.103) is 
a mathematical statement of the singular-value decomposition theorem, also referred to 
as the Autonne–Eckart–Young theorem in recognition of its originators.5

Figure 9.8 presents a diagrammatic interpretation of the singular-value decompo-
sition theorem, as described in Eq. (9.103). In this diagram, we have assumed that the 
number of rows, K, contained in the data matrix A is larger than the number of columns, 
M, and that the number of nonzero singular values W is less than M. We may, of course, 
restructure the diagrammatic interpretation of the singular-value decomposition theo-
rem by expressing the data matrix in terms of the unitary matrices U and V and the 
diagonal matrix 𝚺; this is left as an exercise for the reader.

The subscript W in Eq. (9.104) is the rank of matrix A, written as rank(A); it is 
defined as the number of linearly independent columns in A. Note that we always have 
rank(AH) = rank(A).

FigurE 9.8 Diagrammatic interpretation of the singular-value decomposition theorem.

5Singular-value decomposition was introduced in its general form by Autonne in 1902, and an important 
characterization of it was described by Eckart and Young (1936). For additional notes on the history of the 
singular-value decomposition, see Klema and Laub (1980).
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Since it is possible to have K 7 M or K 6 M, there are two distinct cases to be 
considered. We prove the singular-value decomposition theorem by considering both 
cases, independently of each other. For the case when K 7 M, we have an overdetermined 
system, in that we have more equations than unknowns. On the other hand, when K 6 M, 
we have an underdetermined system, in that we have more unknowns than equations. In 
what follows, we consider these two cases in turn.

Case 1: Overdetermined System. For the case when K 7 M, we form the 
M-by-M matrix AHA by premultiplying the matrix A by its Hermitian transpose AH. 
Since the matrix AHA is Hermitian and nonnegative definite, its eigenvalues are all 
real  nonnegative numbers. Let these eigenvalues be denoted by s2

 1, s
2
2, c, s 2

M, where 
s1 Ú s2 Ú c Ú sW 7 0 and sW + 1, sW + 2, c are all zero, with 1 … W … M. The matrix 
AHA has the same rank as A; hence, there are W nonzero eigenvalues. Let v1, v2, c, vM 
denote a set of orthonormal eigenvectors of AHA that are associated with the eigen-
values s2

 1, s
2
2, c, s 2

M, respectively. Also, let V denote the M-by-M unitary matrix whose 
columns are made up of the eigenvectors v1, v2, c, vM. Then, using the eigendecomposi-
tion of the matrix AHA, we may write

 VHAHAV = c 𝚺2 0
0 0

d . (9.105)

Let the unitary matrix V be partitioned as

 V = 3V1, V24, (9.106)

where

 V1 = 3v1, v2, c, vW4 (9.107)

is an M-by-W matrix and

 V2 = 3vW + 1, vW + 2, c, vM4 (9.108)

is an M-by-(M - W) matrix, with

 VH
 1 V2 = 0. (9.109)

We may make the following two deductions from Eq. (9.105):

 1. For matrix V1, we have

 VH
1 AHAV1 = 𝚺2. 

  Consequently,

 𝚺-1VH
 1 AHAV1𝚺-1 = I. (9.110)

 2. For matrix V2, we have

 VH
2 AHAV2 = 0. 

  Consequently,

 AV2 = 0. (9.111)
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We now define a new K-by-W matrix

 U1 = AV1𝚺-1. (9.112)

Then, from Eq. (9.110), it follows that

 UH
 1 U1 = I, (9.113)

which means that the columns of the matrix U1 are orthonormal with respect to each 
other. Next, we choose another K-by-(K - W) matrix U2 such that the K-by-K matrix 
formed from U1 and U2, namely,

 U = 3U1, U24, (9.114)

is a unitary matrix. This means that

 UH
1 U2 = 0. (9.115)

Accordingly, we may use Eqs. (9.106), (9.114), (9.111), (9.112), and (9.115), in that order, 
and so write

  UHAV = cU
H
1

UH
 2
dA3V1, V24  

  = cU
H
 1 AV1 UH

 1 AV2

UH
 2 AV1 UH

 2 AV2
d  

  = c 1𝚺-1VH
1 AH2AV1 UH

1  102
UH

2  1U1𝚺2 UH
2  102 d  

  = c 𝚺 0
0 0

d ,  

which proves Eq. (9.103) for the overdetermined case.

Case 2: Underdetermined System. Consider next the case when K 6 M. This 
time we form the K-by-K matrix AAH by postmultiplying the matrix A by its Hermitian 
 transpose AH. The matrix AAH is also Hermitian and nonnegative definite, so its 
eigenvalues are likewise real nonnegative numbers. The nonzero eigenvalues of AAH 
are the same as those of AHA. We may therefore denote the eigenvalues of AAH as 
s2

 1, s
2
2, c, s2

K, where s1 Ú s2 Ú c Ú sW 7 0 and sW+1, sW+2, c are all zero, with  
1 … W … K. Let u1, u2, c, uK denote a set of orthonormal eigenvectors of the matrix 
AAH that are associated with the eigenvalues s2

 1, s
2
2, c, s2

K, respectively. Also, let U 
denote the unitary matrix whose columns are made up of the eigenvectors u1, u2, c, uK. 
Thus, using the eigendecomposition of AAH, we may write

 UHAAHU = c 𝚺2 0
0 0

d . (9.116)

Let the unitary matrix U be partitioned as

 U = 3U1, U24, (9.117)
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where

  U1 = 3u1, u2, c, uW4,  (9.118)

  U2 = 3uW + 1, uW + 2, c, uK4, (9.119)

and

 UH
1 U2 = 0. (9.120)

We may therefore make two deductions from Eq. (9.116):

 1. For matrix U1, we have

 UH
1  AAHU1 = 𝚺2. 

  Consequently,

 𝚺-1UH
1 AAHU1𝚺-1 = I. (9.121)

 2. For matrix U2, we have

 UH
 2 AAHU2 = 0. 

  Consequently,

 AHU2 = 0. (9.122)

We now define an M-by-W matrix

 V1 = AHU1𝚺-1. (9.123)

Then, from Eq. (9.121), it follows that

 VH
1 V1 = I, (9.124)

which means that the columns of the matrix V1 are orthonormal with respect to each 
other. Next, we choose another M-by-(M - W) matrix V2 such that the M-by-M matrix 
formed from V1 and V2, namely,

 V = 3V1, V24, (9.125)

is a unitary matrix. This means that

 VH
 2 V1 = 0. (9.126)

Accordingly, we may use Eqs. (9.117), (9.125), (9.122), (9.123), and (9.126), in that order, 
and so write

  UHAV = cU
H
1

UH
2
dA3V1, V24  

  = cU
H
 1 AV1 UH

 1 AV2

UH
2 AV1 UH

2 AV2
d  

  = cU
H
 1 A1AHU1𝚺-12 1𝚺VH

1 2V2

102V1 102V2
d  

  = c 𝚺 0
0 0

d .  
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This proves Eq. (9.103) for the underdetermined case, and with it, the proof of the 
singular-value decomposition theorem is completed.

terminology and relation to eigenanalysis

The numbers s1, s2, c, sW, constituting the diagonal matrix 𝚺, are called the singular 
values of the matrix A. The columns of the unitary matrix V (i.e., v1, v2, c, vM) are 
the right singular vectors of A, and the columns of the second unitary matrix U (i.e.,  
u1, u2, c, uK) are the left singular vectors of A. We note from the preceding discus-
sion that the right singular vectors v1, v2, c, vM are eigenvectors of AHA, whereas the 
left singular vectors u1, u2, c, uK are eigenvectors of AAH. Note that the number of 
positive singular values is equal to the rank of the data matrix A. The singular-value 
decomposition therefore provides the basis of a practical method for determining the 
rank of a matrix.

Since UUH equals the identity matrix, we find, from Eq. (9.103), that

 AV = U c 𝚺 0
0 0

d . 

Therefore,

 Avi = siui,    i = 1, 2, c, W, 

and (9.127)

 Avi = 0,    i = W + 1, c, K. 

Correspondingly, we may express the data matrix A in the expanded form

 A = a
W

i = 1
siuiv

H
 i . (9.128)

Since VVH equals the identity matrix, we also find from Eq. (9.103) that

 UHA = c 𝚺 0
0 0

dVH 

or, equivalently,

 AHU = V c 𝚺 0
0 0

d . 

It follows that

 AHui = sivi,  i = 1, 2, c, W, 

and (9.129)

 AHui = 0,     i = W + 1, c, M. 
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In this case, we may express the Hermitian transpose of the data matrix A in the 
expanded form

 AH = a
W

i = 1
siviu

H
i , (9.130)

which checks exactly with Eq. (9.128), as it should.

exaMpLe 2

In this example, we use the SVD to deal with the different facets of matrix rank. Let A be a 
K-by-M data matrix with rank W. Then A is said to be of full rank if

 W = min 1K, M2. 

Otherwise, the matrix A is rank deficient. As mentioned previously, the rank W is simply the 
number of nonzero singular values of matrix A.

Consider next a computational environment that yields a numerical value for each element 
of A that is accurate to within ±E. Let B denote the approximate value of A so obtained. We define 
the e-rank of matrix A (Golub & Van Loan, 1996) as

 rank1A, e2 = min
7A - B7 6  e

 rank1B2, (9.131)

where ||A - B|| is the spectral norm of the error matrix A - B that results from the use of inaccurate 
computations. Extending the definition of the spectral norm of the matrix introduced in Appendix E 
to the situation at hand, we find that the spectral norm ||A - B|| equals the largest singular value of 
the difference A - B. In any event, the K-by-M matrix A is said to be numerically rank deficient if

 rank1A, e2
7A - B7 6  e

6 min 1K, M2. 

The SVD provides a sensible method for characterizing the e-rank and the numerical rank defi-
ciency of the matrix, because the singular values resulting from its use indicate, in a simple fashion, 
how close a given matrix A is to another matrix B of lower rank.

9.12 pSeuDoinverSe

Our interest in the SVD is to formulate a general definition of the pseudoinverse. Let 
A denote a K-by-M matrix that has the SVD described in Eq. (9.103). We define the 
pseudoinverse of the data matrix A (Stewart, 1973; Golub & Van Loan, 1996) as

 A+ = V c 𝚺-1 0
0 0

dUH, (9.132)

where

 𝚺-1 = diag 1s-1
1 , s-1

2 , c, s-1
W 2 

and W is the rank of A. The pseudoinverse A+ may be expressed in the expanded form

 A+ = a
W

i = 1

1
si

 viu
H
i . (9.133)

We next identify two special cases that can arise.
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Case 1: Overdetermined System. In this case, K 7 M, and we assume that the 
rank W equals M, so that the inverse matrix 1AHA2-1 exists. The pseudoinverse of the 
data matrix A is then defined by

 A+ = 1AHA2-1
 AH. (9.134)

To demonstrate the validity of this special formula, we note respectively from  
Eqs. (9.110) and (9.112) that

 1AHA2-1 = V1𝚺-2VH
1  

and

 AH = V1𝚺UH
1 . 

Therefore, using this pair of relations, we may express the right-hand side of  
Eq. (9.134) as

  1AHA2-1
 AH = 1V1𝚺-2VH

1 21V1𝚺UH
1 2 

  = V1𝚺-1UH
1  

  = V c 𝚺-1 0
0 0

dUH  

  = A+.  

Case 2: Underdetermined System. In this second case, we have M 7 K, and we 
assume that the rank W equals K, so that the inverse matrix 1AAH2-1 exists. The pseu-
doinverse of the data matrix A is now defined by

 A+ = AH
 1AAH2-1. (9.135)

To demonstrate the validity of this second special formula, we note from  
Eqs. (9.121) and (9.123), respectively, that

 1AAH2-1 = U1𝚺-2UH
1  

and

 AH = V1𝚺UH
1 . 

Therefore, using this pair of relations in the right-hand side of Eq. (9.135), we get

  AH
 1AAH2-1 = 1V1𝚺UH

1 21U1𝚺-2UH
1 2 

  = V1𝚺-1UH
1  

  = V c 𝚺-1 0
0 0

dUH  

  = A+.  

Note that the pseudoinverse A+ as described in Eq. (9.132) or, equivalently,  
Eq. (9.133) is of general application in that it applies whether the data matrix A refers 
to an overdetermined or an underdetermined system and regardless of what the rank 
W is. Most importantly, it is numerically stable.
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9.13 interpretation of SinguLar vaLueS anD SinguLar veCtorS

Consider a K-by-M data matrix A, for which the SVD is given in Eq. (9.103) and the 
pseudoinverse is correspondingly given in Eq. (9.132). We assume that the system is 
overdetermined, and we define a K-by-1 vector y and an M-by-1 vector x that are related 
to each other by the transformation matrix A:

 y = Ax. (9.136)

The vector x is constrained to have a Euclidean norm of unity; that is,

 7x 7 = 1. (9.137)

Given the transformation of Eq. (9.136) and the constraint of Eq. (9.137), we wish to 
find the resulting locus of the points defined by the vector y in a K-dimensional space.

Solving Eq. (9.136) for x, we get

 x = A+y, (9.138)

where A+ is the pseudoinverse of A. Substituting Eq. (9.133) into Eq. (9.138), we get

  x = a
W

i = 1

1
si

 viu
H
i y  

  = a
W

i = 1

1uH
i y2
si

 vi, (9.139)

where W is the rank of matrix A and the inner product uH
i y is a scalar. Imposing the 

constraint of Eq. (9.137) on Eq. (9.139) and recognizing that the right singular vectors 
v1, v2, c, vW form an orthonormal set, we obtain

 a
W

i = 1

∙ yHui ∙2

s2
i

= 1. (9.140)

Equation (9.140) defines the locus traced out by the tip of vector y in a K-dimensional 
space. Indeed, this is the equation of a hyperellipsoid.

To see this interpretation in a better way, we define the complex scalar

  zi = yHui  (9.141)

  = a
K

k = 1
y*kuik,    i = 1, c, W. 

In other words, zi is a linear combination of all possible values of the elements of 
the left singular vector ui, so zi is referred to as the “span” of ui. We may thus rewrite  
Eq. (9.140) as

 a
W

i = 1

∙ zi ∙2

s2
i

= 1. (9.142)

This is the equation of a hyperellipsoid with coordinates |z1|, c, |zW| and with semiaxes 
whose lengths are the singular values s1, c, sW, respectively. Figure 9.9 illustrates the 
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locus traced out by Eq. (9.140) for the case of W = 2 and s1 7 s2, assuming that the data 
matrix A is real.

9.14 MiniMuM-norM SoLution to the Linear LeaSt-SquareS probLeM

Having equipped ourselves with the general definition of the pseudoinverse of a matrix 
A in terms of its SVD, we are now ready to tackle the solution to the linear least-squares 
problem even when null(A)  ∅, where ∅ denotes the null set. Recapping, we define the 
solution to the least-squares problem as in Eq. (9.101), reproduced here for convenience:

 wn = A+d. (9.143)

The pseudoinverse matrix A+ is itself defined by Eq. (9.132). We thus find that, out of the 
many vectors that solve the least-squares problem when null(A)  ∅, the one defined 
by Eq. (9.143) is unique in that it has the shortest length possible in the Euclidean sense 
(Stewart, 1973).

We prove this important result by manipulating the equation that defines the 
minimum value of the sum of error squares produced in the method of least squares. 
We note that both matrix products VVH and UUH equal identity matrices. Hence, we 
may start with Eq. (9.49), combine it with Eq. (9.48), and then write

  emin = dHd - dHAwn  

  = dH
 1d - Awn 2  (9.144)

  = dHUUH
 1d - AVVHwn 2  

  = dHU1UHd - UHAVVHwn 2. 

FigurE 9.9 Locus of Eq. (9.140) 
for real data with W = 2 and  
s1 7 s2.
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Let

  VHwn = b  (9.145)

  = cb1

b2
d  

and

  UHd = c  (9.146)

  = c c1

c2
d , 

where b1 and c1 are W-by-1 vectors and b2 and c2 are two other vectors. Thus, substituting 
Eqs. (9.103), (9.145), and (9.146) into Eq. (9.144), we get

  emin = dHUa c c1

c2
d - c 𝚺 0

0 0
d cb1

b2
d b  

  = dHU c c1 - 𝚺b1

c2
d .  (9.147)

For emin to be minimum, we require that

 c1 = 𝚺b1 (9.148)

or, equivalently,

 b1 = 𝚺-1c1. (9.149)

We observe that emin is independent of b2; hence, the value of b2 is arbitrary. However, 
if we let b2 = 0, we get the special result

  wn = Vb  

  = V c 𝚺-1c1

0
d . (9.150)

We may also express wn  in the equivalent form

  wn = V c 𝚺-1 0
0 0

d  c c1

c2
d  

  = V c 𝚺-1 0
0 0

dUHd  

  = A+d.  

The last line is identical to Eq. (9.143), where the pseudoinverse A+ is defined by  
Eq. (9.132). In effect, we have shown that this value of wn  does indeed solve the linear 
least-squares problem.

M09_HAYK4083_05_SE_C09.indd   438 21/06/13   8:45 AM



Section 9.14 Minimum-Norm Solution to the Linear Least-Squares Problem   439

Moreover, the vector wn  so defined is unique, in that it has the minimum Euclidean 
norm possible. In particular, since VVH = I, we find from Eq. (9.150) that the squared 
Euclidean norm of wn  equals

 7wn 7 2 = 7 𝚺-1c1 7 2. 
Consider now another possible solution to the linear least-squares problem—one 

that is defined by modifying Eq. (9.150) to write

 w′ = V c 𝚺-1c1

b2
d ,    b2  0. 

The squared Euclidean norm of w′ equals

 7w′ 7 2 = 7 𝚺-1c1 7 2 + 7b2 7 2. 
We see, therefore, that for any b2  0,

 7wn 7 6 7w′ 7 . (9.151)

In sum, for an FIR filter, the tap-weight vector wn  defined by Eq. (9.143) is a unique 
solution to the linear least-squares problem, even when null(A)  ∅. The vector wn  is 
unique in the sense that it is the only tap-weight vector that simultaneously satisfies two 
requirements: (1) It produces the minimum sum of error squares, and (2) it has the small-
est Euclidean norm possible. We may therefore make the following statement:

The special value of the tap-weight vector wn  defined in Eq. (9.143) is called the 
minimum-norm solution.

another formulation of the Minimum-norm Solution

We may develop an expanded formulation of the minimum-norm solution, depending on 
whether we are dealing with the overdetermined or underdetermined case. Accordingly, 
let us consider these two cases in turn.

Case 1: Overdetermined. For this case, the number of equations K is greater than 
the number of unknown parameters M. To proceed, then, we substitute Eq. (9.132) into 
Eq. (9.143); incorporate the partitioned forms of the unitary matrices V and U, respec-
tively, given in Eqs. (9.106) and (9.114); and then use Eq. (9.112) for U1. We may thus write

  wn = 1V1𝚺-121AV1𝚺-12H
 d 

  = V1𝚺-1𝚺-1VH
1 AHd  (9.152)

  = V1𝚺-2VH
1 AHd.  

Hence, using the definition [see Eq. (9.107)]

 V1 = 3v1, v2, c, vW4 
in Eq. (9.152), we get the following expanded formulation for wn  for the overdeter-
mined case:

 wn = a
W

i = 1

1vH
i AHd2
s2

i
 vi. (9.153)
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Case 2: Underdetermined. For this second case, the number of equations K is 
smaller than the number of unknowns M. Whereas the estimate wn  for the overdeter-
mined case is defined in terms of the vi in Eq. (9.153), in the underdetermined case it is 
defined in terms of the ui. To this end, we look to Eq. (9.135) and the follow-up expres-
sion U1𝚺 - 2U1

H as the equal to the inverse matrix 1AAH2-1 for guidance. Specifically, 
using this background knowledge, we may redefine Eq. (9.143) as the expression for 
the estimate

 wn = AHU1𝚺-2UH
1 d. (9.154)

Substituting the definition [see Eq. (9.118)]

 U1 = 3u1, u2, c, uW4 
into Eq. (9.154), we get the following expanded formulation for wn  for the underdeter-
mined case:

 wn = a
W

i = 1

1uH
i d2
s2

i
 AHui. (9.155)

Plainly, this formulation is different from that of Eq. (9.153) for the overdetermined case.
The important point to note here is that the expanded solutions of wn  given in  

Eqs. (9.153) and (9.155) for the overdetermined and underdetermined systems, respec-
tively, are both contained in the compact formula of Eq. (9.143). Indeed, from a numerical 
computation point of view, the use of Eq. (9.143) is the preferred method for computing 
the least-squares estimate wn , be it for the overdetermined or underdetermined case. 

9.15  norMaLizeD LMS aLgorithM vieWeD aS the MiniMuM-norM SoLution  
to an unDerDeterMineD LeaSt-SquareS eStiMation probLeM

In Chapter 7, we derived the normalized least-mean-square (LMS) algorithm as the 
solution to a constrained minimization problem. In this section, we revisit this algorithm 
in light of the theory developed on SVD. In particular, we show that the normalized 
LMS algorithm is indeed the minimum-norm solution to an underdetermined linear 
least-squares problem involving a single error equation with M unknowns, where M is 
the dimension of the tap-weight vector in the algorithm.

To be specific, consider the a posteriori error (see Section 5.2 on the LMS algorithm) 

 r1n2 = d1n2 - wn H
 1n + 12u1n2, (9.156)

where d(n) is a desired response and u(n) is a tap-input vector, both measured at time 
n. The requirement is to find the tap-weight vector wn 1n + 12, measured at time n + 1, 
such that the change in the tap-weight vector given by

 dwn 1n + 12 = wn 1n + 12 - wn 1n2 (9.157)

is minimized, subject to the constraint

 r1n2 = 0. (9.158)

Using Eq. (9.157) in Eq. (9.156), we may reformulate the a posteriori error as

 r1n2 = d1n2 - wn H
 1n2u1n2 - dwn H

 1n + 12u1n2. (9.159)
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We now recognize the customary definition of the estimation error, namely,

 e1n2 = d1n2 - wn H
 1n2u1n2. (9.160)

Hence, we may simplify Eq. (9.159) to

 r1n2 = e1n2 - dwn H
 1n + 12u1n2. (9.161)

Taking the complex conjugation of both sides of Eq. (9.161), we note that the constraint 
of Eq. (9.158) is equivalent to setting

 uH
 1n2dwn 1n + 12 = e*1n2. (9.162)

Accordingly, we may restate our constrained minimization problem as follows:

Find the minimum-norm solution for the change dwn 1n + 12 in the tap-weight 
estimate at time n + 1 that satisfies the constraint

 uH
 1n2dwn 1n + 12 = e*1n2. 

This problem is an underdetermined linear least-squares estimation problem. To 
solve it, we may use SVD, as described in Eq. (9.155). To help us in the application of this 
method, we employ Eq. (9.162) to make the identifications listed in Table 9.1 between 
the normalized LMS algorithm and linear least-squares estimation. In particular, we 
note that the normalized LMS algorithm has only one nonzero singular value equal to 
the norm of the tap-input vector u(n); that is, the rank W = 1. The corresponding left-
singular vector is therefore simply equal to unity. Hence, with the aid of the table, the 
application of Eq. (9.155) yields

 dwn 1n + 12 =
1

7u1n2 7 2 u1n2e*1n2. (9.163)

This is precisely the result that we derived previously in Eq. (7.8) of Chapter 7. 
We may next follow a reasoning similar to that described in deriving Eq. (7.8) and 

redefine the change dwn 1n + 12 by introducing a scaling factor m∼, as shown by

 dwn 1n + 12 =
m∼

7u1n2 7 2 u1n2e*1n2. 

TABLE 9.1 Summary of Correspondences Between Linear Least-Squares Estimation  
and Normalized LMS Algorithm

 
Linear least-squares  

estimation (underdetermined)
Normalized  

LMS algorithm

Data matrix A uH(n)
Desired data vector d e*(n)
Parameter vector wn dwn 1n + 12
Rank W 1
Singular value si, i = 1, c, W 7u1n2 7
Left singular vector ui, i = 1, c, W 1

M09_HAYK4083_05_SE_C09.indd   441 21/06/13   8:45 AM



442   Chapter 9  Method of Least Squares

Equivalently, we may write

 wn 1n + 12 = wn 1n2 +
m∼

7u1n2 7 2 u1n2e*1n2. (9.164)

By so doing, we are able to exercise control over the change in the tap-weight vector 
from one adaptation cycle to the next without changing the direction of the vector. 
Equation (9.164) is the tap-weight vector update for the normalized LMS algorithm, as 
presented in Eq. (7.10).

The important point to note from the discussion presented in this section is that 
the SVD provides an insightful link between the underdetermined form of linear least-
squares estimation and LMS theory. In particular, we have shown that the weight update 
in the normalized LMS algorithm may indeed be viewed as the minimum-norm solution 
to an underdetermined form of the linear least-squares problem. The problem involves 
a single error equation with a number of unknowns equal to the dimension of the tap-
weight vector in the algorithm.

9.16 SuMMary anD DiSCuSSion

In this chapter, we presented a detailed discussion of the method of least squares for 
solving the linear adaptive filtering problem through the use of a batch (block) process-
ing approach. Among the distinguishing features of this approach are the following:

	 •	 It is a model-dependent procedure that operates on the input data on a block-by-
block basis; the model on which the approach is based is a multiple linear regres-
sion model.

	 •	 It yields a solution for the tap-weight vector of an FIR filter that is the best linear 
unbiased estimate (BLUE), assuming that the measurement error process in the 
multiple linear regression model is white with zero mean.

The method of least squares is well suited for solving spectrum estimation/beam-
forming problems, such as those based on autoregressive (AR) and minimum-variance 
distortionless response (MVDR) models. For the efficient computation of the least-
squares solution, the recommended procedure is to use singular value decomposition 
(SVD) that operates on the input data directly. The SVD is defined by the following 
parameters:

	 •	 A set of left singular vectors that form a unitary matrix.
	 •	 A set of right singular vectors that form another unitary matrix.
	 •	 A corresponding set of nonzero singular values.

The important advantage of using the SVD to solve a linear least-squares problem is that 
the solution, defined in terms of the pseudoinverse of the input data matrix, is numeri-
cally stable. We may therefore make the following statement:

An algorithm is said to be numerically stable, or robust, if it does not introduce 
any more sensitivity to perturbation than that which is inherently present in the 
problem being studied.
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Another useful application of the SVD is in rank determination. The column rank 
of a matrix is defined by the number of linearly independent columns of the matrix. 
Specifically, we say that an M-by-K matrix, with M Ú K, has full column rank if and 
only if it has K independent columns. In theory, the issue of full rank determination is a 
yes–no type of proposition, in the sense that either the matrix in question has full rank 
or it does not. In practice, however, the fuzzy nature of a data matrix and the use of 
inexact (finite-precision) arithmetic complicate the rank determination problem. The 
SVD provides a practical method for determining the rank of a matrix, given fuzzy data 
and round-off errors due to finite-precision computations.

We may conclude the chapter as follows:

The method of least squares via the SVD provides an insightful mathematical link 
to the normalized LMS algorithm, in that that filter is the minimum-norm solution 
to an underdetermined least-squares estimation problem.

probLeMS

 1. Consider a linear array consisting of M uniformly spaced sensors. The output of sensor k 
observed at time i is denoted by u(k, i), where k = 1, 2, c, M and i = 1, 2, c, n. In effect, the 
observations u(1, i), u(2, i), c, u(M, i) define “snapshot” i. Let A denote the n-by-M data 
matrix whose Hermitian transpose is defined by

 AH = D u11, 12 u11, 22 g u11, n2
u12, 12 u12, 22 g u12, n2

f f f f
u1M, 12 u1M, 22 g u1M, n2

T , 

  where the number of columns equals the number of snapshots and the number of rows equals 
the number of sensors in the array. Demonstrate the following interpretations:

 (a) The M-by-M matrix AHA is the spatial correlation matrix with temporal averaging. This 
form of averaging assumes that the environment is temporally stationary.

 (b) The n-by-n matrix AAH is the temporal correlation matrix with spatial averaging. This 
form of averaging assumes that the environment is spatially stationary.

 2. Estimate the desired data vector and the error vector for a linear least-squares filter with two 
taps (i.e., M = 2) and a real-valued input time series consisting of four samples (i.e., N = 4). 
The input data matrix A and the desired data vector d have the following values:

A =£
1
2

-1

3
1
2
§   d = £

2
1

1>34
§

 3. Problem 2 employed a 3-by-2 input data matrix and a 3-by-1 desired data vector to illustrate 
the corollary to the principle of orthogonality. Use the data given in that example to calculate 
the two tap weights of the linear least-squares filter.

 4. In the autocorrelation method of linear prediction, we choose the tap-weight vector of a 
finite-duration impulse response (FIR) predictor to minimize the error energy

 ef = a
∞

n = 1
∙ f1n2 ∙2, 
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  where f(n) is the prediction error. Show that the transfer function H(z) of the (forward) 
prediction-error filter is minimum phase, in that its roots must lie strictly inside the unit circle 
in the z-plane.

[Hints: (1)  Express the transfer function H(z) of order M (say) as the product of a simple 
zero factor (1 - zi z

-1) and a function H¿(z). Then minimize the prediction-error 
energy with respect to the magnitude of zero zi.

  (2) Use the Cauchy–Schwartz inequality

 Re c a
∞

n = 1
ejug1n - 12g*1n2 d … c a

∞

n = 1
∙ g1n2 ∙2 d

1 >  2

c a
∞

n = 1
∙ ejug1n - 12 ∙2 d

1 >  2

,

  which holds if and only if g(n) = ejug(n - 1) for n = 1, 2, c, ∞ .]

 5. Figure P9.1 shows a forward prediction-error filter with an FIR structure, with the tap 
inputs u(i - 1), u(i - 2),  . . . , u(i - M) used to make a linear prediction of u(i), denoted 
by un1i2. The problem is to find the tap-weight vector wn  that minimizes the sum of forward 
prediction-error squares

ef = a
N

i = M + 1
∙ fM 1i2 ∙2,

  where fM(i) is the forward prediction error. Find the following parameters:
 (a) The M-by-M correlation matrix of the tap inputs of the predictor.
 (b) The M-by-1 cross-correlation vector between the tap inputs of the predictor and the 

desired response u(i).
 (c) The minimum value of ef.

FigurE P9.1 

 6. Figure P9.2 shows a backward prediction-error filter with an FIR structure, with the tap 
inputs u(i - M + 1), c, u(i - 1), u (i) used to make a linear prediction of the input u(i - M), 
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denoted by un1i - M2. The problem is to find the tap-weight vector wn  that minimizes the 
sum of backward prediction-error squares

eb = a
N

i = M + 1
∙ bM1i2 ∙2,

  where bM(i) is the backward prediction error. Find the following parameters:
 (a) The M-by-M correlation matrix of the tap inputs.
 (b) The M-by-1 correlation vector between the tap inputs and the desired response u(i - M).
 (c) The minimum value of eb.

FigurE P9.2 

 7. Demonstrate how the autocorrelation method is the only one that yields a Toeplitz correlation 
matrix for the input data.

 8. A simplified form of regularization applied to the MVDR beamformer is to modify the for-
mula of Eq. (9.92) for computation of the M-by-M time-average correlation matrix ≥ into

𝚽 = a
K

n = 1
u1n2uH

 1n2 + dI,

where I is the M-by-M identity matrix and d is the regularization parameter. For obvious 
reasons, this form of regularization is referred to as diagonal loading.

   Show that an MVDR beamformer regularized in this manner is derived by minimizing 
the cost function

ereg = a
K

n = 1
∙ wHu1n2 ∙2 + l(wHs1u) - 12 + d 7w 7 2

with respect to the weight vector w. Following the notation described in Section 9.10, s(u) is 
the beam-steering vector, l is the Lagrange multiplier, and d is the regularization parameter.
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 9. Consider an autoregressive spectrum estimation procedure that relies on the combined use 
of forward and backward linear prediction (FBLP). Figures P9.1 and P9.2 show the operation 
of FIR filters as forward and backward prediction-error filters, respectively. The cost function 
to be minimized is defined by

e = a
N

i = M + 1
1 ∙ fM 1i2 ∙2 + ∙ bM 1i2 ∙22,

  where fM(i) and bM(i) are the forward and backward prediction errors, respectively.
 (a) Derive the formula for the tap-weight vector wn  that minimizes the cost function e.
 (b) Determine the minimum value of the cost function, denoted by emin.
 (c) Define the (M + 1)-by-1 tap-weight vector of the prediction-error filter

an = c 1
-wn

d .

  Suppose we write

𝚽an = cemin

0
d ,

  where 0 is the null vector. Determine the augmented correlation matrix 𝚽, and show that 𝚽 
is Hermitian persymmetric; that is, show that

f1k, t2 = f*1t, k2,  0 … 1t, k2 … M

  and

f1M - k, M - t2 = f* 1t, k2,  0 … 1t, k2 … M.

 10. Consider the generic signal-to-interference-ratio maximization problem6

max
w

 awHssHw
wHRw

b ,

subject to the auxiliary linear constraints

CH
N - 1w = fN - 1,

6The constrained signal-to-interference maximization problem described in Problem 10 goes back to 
an early paper by Frost (1972). Abramovich (2000) studies the probability distributions for the “loss” fac-
tor produced by using a maximum-likelihood estimate of the correlation matrix R generated by K training 
samples of the input vector u(n), namely,

Rn =
1
K a

K

n = 1
u1n2uH1n2,

or by using the diagonally “loaded” estimate

Rn L = Rn + dI,

where I is the identity matrix and d is the loading factor (regularization parameter). The statistical analysis presented 
by Abramovich is of particular interest to the performance analysis of linearly constrained sample matrix inver-
sion algorithms used in airborne and over-the-horizon radar applications with a limited size of training samples.
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where w is an M-by-1 weight vector of an adaptive beamformer, s is an M-by-1 complex-valued 
beam-steering vector, R is the M-by-M unknown correlation matrix of the interference, CN - 1 
is the M-by-(N - 1) matrix of linear constraints, and fN - 1 is the (N - 1)-by-1 constraint vector.

 (a) Show that the solution to this constrained optimization problem is given by

wo = R-1C1CHR-1C2-1
 f,

where C is the M-by-N matrix obtained by augmenting the matrix CN - 1 with the steering 
vector s and the vector f is formed by augmenting the vector fN - 1 with the fixed value f0 
of the gain (radiation pattern) in the direction of the steering vector s; that is,

wHs = f0.

 (b) Find the maximum signal-to-interference ratio that results from the use of the optimum 
solution defined in part (a).

 (c) What is the optimum weight vector when the auxiliary linear constraints are zero? What 
is the corresponding value of the maximum signal-to-interference ratio?

 (d) Describe a procedure for estimating the unknown correlation matrix R.

 11. Calculate the singular values and singular vectors of 

A = c 2 - 1
0.5 1

d

  by Eigen decomposition of the matrix product ATA

 12. What are the important advantages of using singular-value decomposition?

 13. Show that when the measurement error process eo(i) is a zero-mean Gaussian white-noise 
process, the least-squares estimate wn  is a minimum-variance unbiased estimate.

 14. In this problem, using the idea of singular-value decomposition, we explore the derivation of 
the weight update for the normalized LMS algorithm described in Eq. (7.12). The problem 
may be viewed as an extension of the discussion presented in Section 9.15. Find the minimum-
norm solution for the coefficient vector

c1n + 12 = c dwn 1n + 12
0

d

  that satisfies the equation

xH
 1n2c1n + 12 = e*1n2,

  where

x1n2 = cu1n22d
d .

  Hence, show that

wn 1n + 12 = wn 1n2 +
m∼

d + 7u1n2 7 2 u1n2e*1n2,

  where d 7 0, and m∼ is the step-size parameter.

 15. Give the solution of the Wiener-Hopf equations in matrix form.

M09_HAYK4083_05_SE_C09.indd   447 21/06/13   8:45 AM



M09_HAYK4083_05_SE_C09.indd   448 21/06/13   8:45 AM



449

C h a p t e r  1 0

the recursive Least-Squares 
(rLS) algorithm

In this chapter, we extend the use of the method of least squares to develop a recursive 
algorithm for the design of adaptive finite-duration impulse response (FIR) filters such 
that, given the least-squares estimate of the tap-weight vector of the filter at adaptation 
cycle n - 1, we may compute the updated estimate of the vector at adaptation cycle n 
upon the arrival of new data. We refer to the resulting algorithm as the recursive least-
squares (RLS) algorithm.

We begin the development of the RLS algorithm by reviewing some basic relations 
that pertain to the method of least squares. Then, by exploiting a relation in matrix alge-
bra known as the matrix inversion lemma, we develop the RLS algorithm. An important 
feature of this algorithm is that its rate of convergence is typically an order of magnitude 
faster than that of the simple LMS algorithm, due to the fact that the RLS algorithm 
whitens the input data by using the inverse correlation matrix of the data, assumed to 
be of zero mean. This improvement in performance, however, is achieved at the expense 
of an increase in computational complexity of the RLS algorithm.

10.1 Some preLiminarieS

In recursive implementations of the method of least squares, we start the computation 
with prescribed initial conditions and use the information contained in new data samples 
to update the old estimates. We therefore find that the length of observable data is vari-
able. Accordingly, we express the cost function to be minimized as e1n2, where n is the 
variable length of the observable data. Also, it is customary to introduce a weighting 
factor into the definition of e1n2. We thus write

 e1n2 = a
n

i = 1
 b1n, i2 ∙ e1i2 ∙2, (10.1)

where e(i) is the difference between the desired response d(i) and the output y(i) pro-
duced by an FIR filter whose tap inputs (at time i) equal u(i), u(i - 1), . . . , u(i - M + 1), 
as in Fig. 10.1. That is,

 
e1i2 = d1i2 - y1i2
  = d1i2 - wH1n2u1i2,

 (10.2)
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where u(i) is the tap-input vector at time i, defined by

 u1i2 = 3u1i2, u1i - 12, . . . , u1i - M + 124T, (10.3)

and w(n) is the tap-weight vector at time n, defined by

 w1n2 = 3w01n2, w11n2, . . . , wM - 11n24T. (10.4)

The superscript T denotes transposition, and the superscript H denotes Hermitian 
 transposition (i.e., the operation of transposition combined with complex conjugation). 
Note that the tap weights of the FIR filter remain fixed during the observation interval 
1 … i … n for which the cost function e1n2 is defined.

The weighting factor b(n, i) in Eq. (10.1) has the property that

 0 6 b1n, i2 … 1,   i = 1, 2, . . . , n. (10.5)

The use of the weighting factor b(n, i), in general, is intended to ensure that data in the 
distant past are “forgotten” in order to afford the possibility of following the statistical 
variations of the observable data. A special form of weighting that is commonly used is 
the exponential weighting factor, or forgetting factor, defined by

 b1n, i2 = ln - i,   i = 1, 2, . . . , n, (10.6)

where l is a positive constant close to, but less than, unity. When l = 1, we have the 
ordinary method of least squares. The inverse of 1 - l is, roughly speaking, a mea-
sure of the memory of the algorithm. The special case l = 1 corresponds to infinite 
memory.

regularization

Least-square estimation, like the method of least squares, is an ill-posed inverse 
problem, in that we are given input data consisting of a tap-input vector u(n) and 
the corresponding desired response d(n) for varying n, and the requirement is to 

FiguRe 10.1 FIR filter with time-varying tap weights.

M10_HAYK4083_05_SE_C10.indd   450 21/06/13   8:46 AM



Section 10.1 Some Preliminaries   451

estimate the unknown parameter vector of a multiple linear regression model that 
relates d(n) to u(n).

The ill-posed nature of least-squares estimation is due to the following reasons:

	 •	 There is insufficient information in the input data to reconstruct the input-output 
mapping uniquely.

	 •	 The unavoidable presence of noise or imprecision in the input data adds uncer-
tainty to the reconstructed input-output mapping.

To make the estimation problem “well posed,” some form of prior information about 
the input-output mapping is needed. This, in turn, means that formulation of the cost 
function must be expanded to take the prior information into account.

To satisfy that objective, we expand the cost function to be minimized as the sum 
of two components:

 ℰ1n2 = a
n

i = 1
ln - i ∙ e1i2 ∙2 +  dln 7w1n2 7 2. (10.7)

Here, we assume the use of prewindowing, which means that the input signal is win-
dowed before application of the FIR filter. The two components of the cost function 
are as follows:

 1. The sum of weighted error squares,

a
n

i = 1
ln - i ∙e1i2∙2 = a

n

i = 1
ln - i ∙d1i2 - wH1n2u1i2∙2,

  which is data dependent. This component measures the exponentially weighted 
error between the desired response d(i) and the actual response of the filter, y(i), 
which is related to the tap-input vector u(i) by the formula

y1i2 = wH1n2u1i2.

 2. The regularizing term,

dln 7w1n2 7 2 = dlnwH1n2w1n2,

  where d is a positive real number called the regularization parameter. Except for 
the factor dln, the regularizing term depends solely on the tap-weight vector w(n). 
The regularizing term is included in the cost function to stabilize the solution to 
the recursive least-squares problem by smoothing the solution.

In a strict sense, the term dln 7w1n2 7 2 is a “rough” form of regularization, for two 
reasons. First, the exponential weighting factor l lies in the interval 0 6 l … 1; hence, for l 
less than unity, ln tends to zero for large n, which means that the beneficial effect of add-
ing dln 7wn 1n2 7 2 to the cost function is forgotten with time. Second, and more important, 
the regularizing term should be of the form d 7DF1wn 2 7 2, where F1wn 2 is the input-output 
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map realized by the RLS algorithm and D is the differential operator.1 Nevertheless, the 
regularizing term in Eq. (10.7) is commonly used in formulating the RLS algorithm.

reformulation of the normal equations

Expanding Eq. (10.7) and collecting terms, we find that the effect of including the regu-
larizing term dln 7w1n2 7 2 in the cost function ℰ1n2 is equivalent to a reformulation of the 
M-by-M time-average correlation matrix of the tap-input vector u(i):

 𝚽1n2 = a
n

i = 1
ln - iu1i2uH1i2 + dlnI. (10.8)

In this equation, I is the M-by-M identity matrix. Note that the addition of the regu-
larizing term also has the effect of making the correlation matrix Φ1n2 nonsingular at 
all stages of the computation, starting from n = 0. A correlation matrix modified as in 
Eq. (10.8) is said to be diagonally loaded.

The M-by-1 time-average cross-correlation vector z(n) between the tap inputs of 
the FIR filter and the desired response is unaffected by the use of regularization, as is 
shown by the formula

 z1n2 = a
n

i = 1
ln - iu1i2d*1i2, (10.9)

where, again, the use of prewindowing is assumed and the asterisk denotes complex 
conjugation.

According to the method of least squares discussed in Chapter 9, the optimum 
value of the M-by-1 tap-weight vector wn 1n2, for which the cost function e1n2 of 
Eq. (10.7) attains its minimum value, is defined by the normal equations. For the recur-
sive least-squares problem, the normal equations are written in matrix form as

 𝚽1n2wn 1n2 = z1n2, (10.10)

where 𝚽(n) and z(n) are now defined by Eqs. (10.8) and (10.9), respectively.

recursive Computations of 𝚽(n) and z(n)

Isolating the term corresponding to i = n from the rest of the summation on the right-
hand side of Eq. (10.8), we may write

 𝚽1n2 = l c a
n - 1

i = 1
ln - 1 - iu1i2uH1i2 + dln - 1I d + u1n2uH1n2. (10.11)

1Regularization theory is credited to Tikhonov (1963). For a detailed discussion of the topic, see 
Tikhonov and Arsenin (1977), Kirsch (1996), and Haykin (2009).

The analytic approach used to handle the proper regularizing term d 7DF1wn 2 7 2 builds on the idea of a 
function space, which refers to a normed space of functions. In such a space of many (strictly speaking, infi-
nitely many) dimensions, a continuous function is represented by a “vector.” By using this geometric image, 
an insightful link is established between linear differential operators and matrices (Lanczos, 1964). Thus, the 
symbol 7 # 7  denotes a norm imposed on the function space to which DF1wn 2 belongs.
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By definition, the expression inside the brackets on the right-hand side of Eq. (10.11) 
equals the correlation matrix 𝚽(n - 1). Hence, we have the following recursion for 
updating the value of the correlation matrix of the tap inputs:

 𝚽1n2 = l𝚽1n - 12 + u1n2uH1n2. (10.12)

Here, 𝚽(n - 1) is the “old” value of the correlation matrix, and the matrix product 
u(n)uH(n) plays the role of a “correction” term in the updating operation. Note that the 
recursion of Eq. (10.12) holds, irrespective of the initializing condition.

Similarly, we may use Eq. (10.9) to derive the following recursion for updating the 
cross-correlation vector between the tap inputs and the desired response:

 z1n2 = lz1n - 12 + u1n2d*1n2. (10.13)

To compute the least-square estimate wn 1n2 for the tap-weight vector in accordance 
with Eq. (10.8), we have to determine the inverse of the correlation matrix 𝚽(n). In prac-
tice, however, we usually try to avoid performing such an operation, as it can be quite 
time consuming, particularly if the number of tap weights, M, is high. Also, we would 
like to be able to compute the least-squares estimate wn 1n2 for the tap-weight vector 
recursively for n = 1, 2, . . . , ∞. We can realize both of these objectives by using a basic 
result in matrix algebra known as the matrix inversion lemma, which we discuss next.

10.2 the matrix inverSion Lemma

Let A and B be two positive-definite M-by-M matrices related by

 A = B-1 + CD- 1CH, (10.14)

where D is a positive-definite N-by-M matrix and C is an M-by-N matrix. According to 
the matrix inversion lemma, we may express the inverse of the matrix A as

 A-1 = B - BC1D + CHBC2-1CHB. (10.15)

The proof of this lemma is established by multiplying Eq. (10.14) by Eq. (10.15) and 
recognizing that the product of a square matrix and its inverse is equal to the identity 
matrix. (See Problem 2.) The matrix inversion lemma states that if we are given a matrix 
A, as defined in Eq. (10.14), we can determine its inverse A-1 by using the relation 
expressed in Eq. (10.15). In effect, the lemma is described by that pair of equations. 
The matrix inversion lemma is also referred to in the literature as Woodbury’s identity.2

In the next section, we show how the matrix inversion lemma can be applied to 
obtain a recursive equation for computing the least-squares solution wn 1n2 for the tap-
weight vector.

2The exact origin of the matrix inversion lemma is not known. Householder (1964) attributes it to 
Woodbury (1950). At any rate, the lemma was first applied in the filtering literature by Kailath, who used a form 
of it to prove the equivalence of the Wiener filter and the maximum-likelihood procedure for estimating the 
output of a random, linear, time-invariant channel that is corrupted by additive white Gaussian noise (Kailath, 
1960). Early use of the matrix inversion lemma was also made by Ho (1963). Another interesting application of 
the matrix inversion lemma was made by Brooks and Reed, who used it to prove the equivalence of the Wiener 
filter, the maximum signal-to-noise ratio filter, and the likelihood ratio processor for detecting a signal amidst 
additive white Gaussian noise (Brooks & Reed, 1972). (See Problem 18 of Chapter 2.)
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10.3 the exponentiaLLy Weighted rLS aLgorithm

With the correlation matrix 𝚽(n) assumed to be nonsingular and therefore invertible, 
we may apply the matrix inversion lemma to the recursive equation (10.12). We first 
make the following identifications:

 A = 𝚽1n2;

 B-1 = l𝚽1n - 12;

 C = u1n2;

 D = 1.

Then, substituting these definitions into the matrix inversion lemma, we obtain the fol-
lowing recursive equation for the inverse of the correlation matrix:

 𝚽-11n2 = l-1𝚽-11n - 12 -
l-2𝚽-11n - 12u1n2uH1n2𝚽-11n - 12

1 + l-1uH1n2𝚽-11n - 12u1n2 . (10.16)

For convenience of computation, let

 P1n2 = 𝚽-11n2 (10.17)

and

 k1n2 =
l-1P1n - 12u1n2

1 + l-1uHP1n - 12u1n2. (10.18)

Using these definitions, we may rewrite Eq. (10.16) as

 P1n2 = l- 1P1n - 12 - l- 1k1n2uH1n2P1n - 12. (10.19)

The M-by-M matrix P(n) is referred to as the inverse correlation matrix.3 The M-by-1 
vector k(n) is referred to as the gain vector, for reasons that will become apparent later 
in the section. Equation (10.19) is the Riccati equation for the RLS algorithm.

By rearranging Eq. (10.18), we obtain

 
k1n2 = l-1P1n - 12u1n2 - l-1k1n2uH1n2P1n - 12u1n2
  = [l-1P1n - 12 - l-1k1n2uH1n2P1n - 12]u1n2.

 (10.20)

We see from Eq. (10.19) that the expression inside the brackets on the right-hand side 
of the last line of Eq. (10.20) equals P(n). Hence, we may simplify Eq. (10.20) to

 k1n2 = P1n2u1n2. (10.21)

This result, together with P(n) = 𝚽-1(n), may be used as the definition of the gain vector:

 k1n2 = 𝚽 - 11n2u1n2. (10.22)

3The matrix P(n) may also be viewed as the covariance matrix of the RLS estimate wn 1n2, nor-
malized with respect to the noise variance s2 in the multiple linear regression model of Fig. 9.1. This 
interpretation of P(n) follows from Property 2 of linear least-squares estimates described in Section 9.8 
of Chapter 9.
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In other words, the gain vector k(n) is defined as the tap-input vector u(n), transformed 
by the inverse of the correlation matrix 𝚽(n).

time Update for the tap-Weight vector

Next, we wish to develop a recursive equation for updating the least-squares estimate 
wn 1n2 of the tap-weight vector. To do this, we use Eqs. (10.8), (10.13), and (10.17) to 
express the least-squares estimate of the tap-weight vector at adaptation cycle n as

  wn 1n2 = 𝚽-11n2z1n2  

  = P1n2z1n2  (10.23)

  = lP1n2z1n - 12 + P1n2u1n2d*1n2. 

Substituting Eq. (10.19) for P(n) in the first term only on the right-hand side of 
Eq. (10.23), we get

  wn 1n2 = P1n - 12z1n - 12 - k1n2uH1n2P1n - 12z1n - 12  

 + P1n2u1n2d*1n2 

  = 𝚽-11n - 12z1n - 12 - k1n2uH1n2𝚽-11n - 12z1n - 12 (10.24)

 + P1n2u1n2d*1n2 

 = wn 1n - 12 - k1n2uH1n2wn 1n - 12 + P1n2u1n2d*1n2. 

Finally, using the fact that P(n)u(n) equals the gain vector k(n), as in Eq. (10.21), we get 
the desired recursive equation for updating the tap-weight vector:

 
wn 1n2 = wn 1n - 12 + k1n2[d*1n2 - uH1n2wn 1n - 12]
  = wn 1n - 12 + k1n2j*1n2.

 (10.25)

Here,

 
j1n2 = d1n2 - uT1n2wn *1n - 12
  = d1n2 - wn H1n - 12u1n2  (10.26)

is the a priori estimation error. The inner product wn H1n - 12u1n2 represents an estimate 
of the desired response d(n), based on the old least-squares estimate of the tap-weight 
vector that was made at time n - 1.

Equation (10.25) for the adjustment of the tap-weight vector and Eq. (10.26) 
for the a priori estimation error suggest the block-diagram representation depicted in 
Fig. 10.2(a) for the recursive least-squares (RLS) algorithm.

The a priori estimation error j(n) is, in general, different from the a posteriori 
estimation error

 e1n2 = d1n2 - wn H1n2u1n2, (10.27)

the computation of which involves the current least-squares estimate of the tap-weight 
vector available at time n. Indeed, we may view j(n) as a “tentative” value of e(n) 
before updating the tap-weight vector. Note, however, that in the least-squares optimi-
zation that led to the recursive algorithm of Eq. (10.25), we actually minimized the cost 
 function ℰ1n2 based on e(n) and not j(n). Note also that the error signal e(n) in the RLS 
algorithm is defined differently from that in the LMS algorithm.
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Signal-Flow graph

Figure 10.2(b) depicts a signal-flow graph representation of the RLS algorithm. Specifically, 
Eq. (10.26), representing the filtering process, and Eq. (10.25), representing the adap-
tation process, are both accounted for in the figure. However, the figure is incomplete 
because computation of the gain vector, k(n), is not represented in the figure. Examining 
Eq. (10.21), we readily see that this computation follows a square law. In other words, the 
complete signal-flow graph representation of the RLS algorithm is computationally more 
demanding than the signal-flow graph representative of the LMS algorithm in Fig. 6.1.

Summary of the rLS algorithm

Table 10.1 provides a summary of the RLS algorithm, making use of Eqs. (10.18), (10.26), 
(10.25), and (10.19), in that order.

Examining Eq. (10.18), we see that the product term l-1P1n - 12u1n2 is common 
to the numerator and denominator. Computation of the gain vector k1n2 may therefore 
be simplified in two stages. First, the vector P1n2 is introduced to denote the common 
term, l-1P1n - 12u1n2. Second, the scaled vector P1n2>11 + uH1n2P1n22 is used to 
compute k1n2.

FiguRe 10.2 Representations of the RLS algorithm: (a) block diagram; (b) signal-flow graph.
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This two-stage computation of k(n) is preferred over the direct computation of k(n) 
using Eq. (10.18) from a finite-precision arithmetic point of view. (A more detailed 
discussion of this issue is deferred to Chapter 13.)

To initialize the RLS algorithm, we need to specify two quantities:

 1. The initial weight vector wn 102. The customary practice is to set wn 102 = 0.
 2. The initial correlation matrix 𝚽(0). Setting n = 0 in Eq. (10.8), we find that, with 

the use of prewindowing, we obtain

𝚽102 = dI,

where d is the regularization parameter. The parameter d should be assigned a 
small value for high signal-to-noise ratio (SNR) and a large value for low SNR, 
which may be justified on regularization grounds.

Further justification for the choice of d as described here is presented in the next section.

10.4 SeLeCtion oF the regULarization parameter

In a detailed study reported in Moustakides (1997), the convergence behavior of the 
RLS algorithm was evaluated for a stationary environment, with particular reference 
to two variable parameters:

	 •	 The signal-to-noise ratio (SNR) of the tap-input data, which is determined by the 
prevalent operating conditions.

	 •	 The regularization parameter d, which is under the designer’s control.

TAbLe 10.1 Summary of the RLS Algorithm

Initialize the algorithm by setting

wn 102 = 0,

P(0)  = d-1I,

and

d = e small positive constant for high SNR
large positive constant for low SNR

 .

For each instant of time, n = 1, 2, c, compute

 k1n2 =
l-1P1n - 12u1n2

1 + l-1uHP1n - 12u1n2
 j1n2 = d1n2 - wn H1n - 12u1n2,

 wn 1n2 = wn 1n - 12 + k1n2j*1n2,

and

 P1n2 = l-1P1n - 12 - l-1k1n2uH1n2P1n - 12.
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To set the stage for a summary of the findings presented in Moustakides’ work, let F(x) 
denote a matrix function of x, and let f(x) denote a nonnegative scalar function of x, 
where the variable x assumes values in some set 𝒜x. We may then introduce the follow-
ing definition:

 F1x2 = 𝚹1f2, (10.28)

where there exist constants c1 and c2 that are independent of the variable x, such that

 c1f 1x2 … 7F1x2 7 … c2 f 1x2   for all  x ∈ 𝒜x, (10.29)

and where ||F(x)|| is the matrix norm of F(x), which is itself defined by

 7F1x2 7 = 1tr3FH1x2F1x2421>2. (10.30)

In Eq. (10.28), 𝚹1f2 is some function of f(x). The significance of the definition introduced 
in this equation will become apparent presently.

As pointed out in Section 10.3, initialization of the RLS algorithm includes setting 
the initial value of the time-average correlation matrix

𝚽102 = dI.

The dependence of the regularization parameter d on SNR is given detailed meaning 
in Moustakides (1997). In particular, 𝚽(0) is reformulated as

 𝚽102 = maR0, (10.31)

where

 m = 1 - l (10.32)

and R0 is a deterministic positive-definite matrix defined by

 R0 = s2
uI, (10.33)

in which s2
u is the variance of a data sample u(n). Thus, according to Eqs. (10.31) and 

(10.33), the regularization parameter d is defined by

 d = s2
um

a. (10.34)

[In Chapter 13, it is shown that the factor 1 - l in the RLS algorithm plays a role similar 
to the step-size parameter m in the LMS algorithm—hence the notation introduced in 
Eq. (10.32).]

The parameter a provides the mathematical basis for distinguishing the initial 
value of the correlation matrix 𝚽(n) as small, medium, or large. In particular, for situ-
ations in which

 m ∈ 30, m04 with m0 V 1 (10.35)

we may distinguish three scenarios in light of the definition introduced in Eq. (10.31):

 1. a 7 0, which corresponds to a small initial value 𝚽(0).
 2. 0 7 a Ú -1, which corresponds to a medium initial value 𝚽(0).
 3. -1 Ú a, which corresponds to a large initial value 𝚽(0).
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With these definitions and the three distinct initial conditions at hand, we may 
now summarize the findings reported in Moustakides (1997) on the selection of the 
regularization parameter d in initializing the RLS algorithm for situations that are gov-
erned by Eq. (10.35):

 1. High SNR
  When the noise level in the tap inputs is low (i.e., the input SNR is high, on the 

order of 30 dB or more), the RLS algorithm exhibits an exceptionally fast rate of 
convergence, provided that the correlation matrix is initialized with a small enough 
norm. Typically, this requirement is satisfied by setting a = 1. As a is reduced toward 
zero [i.e., the matrix norm of 𝚽(0) is increased], the convergence behavior of the 
RLS algorithm deteriorates.

 2. Medium SNR
  In a medium SNR environment (i.e., the input SNR is on the order of 10 dB), the 

rate of convergence of the RLS algorithm is worse than the optimal rate for the 
high-SNR case, but the convergence behavior of the RLS algorithm is essentially 
insensitive to variations in the matrix norm of 𝚽(0) for -1 … a 6 0.

 3. Low SNR
  Finally, when the noise level in the tap inputs is high (i.e., the input SNR is on the 

order of -10 dB or less), it is preferable to initialize the RLS algorithm with a cor-
relation matrix 𝚽(0) with a large matrix norm (i.e., a … -1), since this condition 
may yield the best overall performance.

These remarks hold for a stationary environment or a slowly time-varying one. 
If, however, there is an abrupt change in the state of the environment and the change 
takes place when the RLS algorithm has reached a steady state, then the filter interprets 
the abrupt change as renewed initialization with a “large” initial 𝚽(0) wherein n = 0 
corresponds to the instant at which the environment switched to a new state. In such a 
situation, the recommended practice is to stop the operation of the RLS algorithm and 
restart anew by initializing it with a small 𝚽(0).

10.5 Update reCUrSion For the SUm oF Weighted error SqUareS

The minimum value of the sum of weighted error squares, emin1n2, results when the 
tap-weight vector is set equal to the least-squares estimate wn 1n2. To compute emin1n2, 
we may then use the relation [see first line of Eq. (9.40)]

 emin1n2 = ed1n2 - zH1n2wn 1n2, (10.36)

where ed 1n2 is defined (using the notation of this chapter) by

 
ed1n2 = a

n

i = 1
ln - i ∙ d1i2 ∙2

   = led1n - 12 + ∙ d1n2 ∙2.
 (10.37)
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Therefore, substituting Eqs. (10.13), (10.25), and (10.37) into Eq. (10.36), we get

  emin1n2 = l3ed1n - 12 - zH1n - 12wn 1n - 124 
  + d1n23d*1n2 - uH1n2wn 1n - 124  (10.38)

  -  zH1n2k1n2j*1n2,  

where, in the last term, we have restored z(n) to its original form. By definition, the 
expression inside the first set of brackets on the right-hand side of Eq. (10.38) equals 
emin1n - 12. Also, by definition, the expression inside the second set of brackets equals 
the complex conjugate of the a priori estimation error j(n). For the last term, we use 
the definition of the gain vector k(n) to express the inner product

  zH1n2k1n2 = zH1n2𝚽-11n2u1n2  

  = 3𝚽-11n2z1n24Hu1n2 

  = wn H1n2u1n2,  

where (in the second line) we have used the Hermitian property of the correlation 
matrix 𝚽(n) and (in the third line) we have used the fact that 𝚽-1(n)z(n) equals the 
least-squares estimate wn 1n2. Accordingly, we may simplify Eq. (10.38) to

  e min1n2 = lemin1n - 12 + d1n2j*1n2 - wn H1n2u1n2j*1n2 

  = le min1n - 12 + j*1n23d1n2 - wn H1n2u1n24  (10.39)

  = lemin1n - 12 + j*1n2e1n2,  

where e(n) is the a posteriori estimation error. Equation (10.39) is the recursion for 
updating the sum of weighted error squares. We thus see that the product of the complex 
conjugate of j(n) and e(n) represents the correction term in this update. Note that the 
product is real valued, which implies that we always have

 j1n2e*1n2 = j*1n2e1n2. (10.40)

Conversion Factor

The formula of Eq. (10.39) involves two different estimation errors: the a priori estima-
tion error j(n) and the a posteriori estimation error e(n), which are naturally related. To 
establish the relationship between these two estimation errors, we start with the defining 
equation (10.27) and substitute the update equation (10.25), obtaining

  e1n2 = d1n2 - 3wn 1n - 12 + k1n2j*1n24Hu1n2  

  = d1n2 - wn H1n - 12u1n2 - kH1n2u1n2j1n2 (10.41)

  = 11 - kH1n2u1n22j1n2,  

where, in the last line, we have made use of the definition given in Eq. (10.26). The ratio 
of the a posteriori estimation e(n) to the a priori estimation j(n) is called the conversion 
factor, denoted by g(n). We may thus write

  g1n2 =
e1n2
j1n2  (10.42)

  = 1 - kH1n2u1n2, 
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the value of which is uniquely determined by the gain vector k(n) and the tap-input 
vector u(n).

10.6 exampLe: SingLe-Weight adaptive noiSe CanCeLLer

Consider the single-weight, dual-input adaptive noise canceller depicted in Fig. 10.3. The 
two inputs are represented by a primary signal d(n), which consists of an information- 
bearing signal component and an additive interference, and a reference signal u(n), 
which is correlated with the interference and has no detectable contribution to the 
information-bearing signal. The requirement is to exploit the properties of the refer-
ence signal in relation to the primary signal to suppress the interference at the output of  
the adaptive noise canceller.

Application of the RLS algorithm of Table 10.1 yields the following set of equa-
tions for this canceller (after rearranging terms):

  k1n2 = c 1
lsn 2

u1n - 12 + ∙ u1n2 ∙2 du1n2; (10.43)

  j1n2 = d1n2 - wn *1n - 12u1n2;  (10.44)

  wn 1n2 = wn 1n - 12 + k1n2j*1n2;  (10.45)

  sn 2
u1n2 = lsn 2

u1n - 12 + ∙ u1n2 ∙2.  (10.46)

In the last equation, sn 2
u1n2, an estimate of the variance of the zero-mean reference signal 

u(n), is the inverse of P(n), the scalar version of the matrix P(n) in the RLS algorithm; 
that is,

 sn 2
u1n2 = P-11n2. (10.47)

It is informative to compare the algorithm described in Eqs. (10.43) through (10.46) 
with its counterpart obtained using the normalized LMS algorithm; the version of the 
normalized LMS algorithm of particular interest in the context of our present situation is

FiguRe 10.3 Single-weight adaptive noise canceller.
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that given in Eq. (7.12). The major difference between these two algorithms is that 
the constant d in the normalized LMS algorithm is replaced by the time-varying term 
lsn 2

u1n - 12 in the denominator of the gain factor k(n) that controls the correction 
applied to the tap weight in Eq. (10.45).

10.7 StatiStiCaL Learning theory

In this section, we discuss the convergence behavior of the RLS algorithm in a station-
ary environment, assuming that the exponential weighting factor l is unity. (The case 
of l less than unity is considered in Chapter 13.) To pave the way for the discussion, we 
make three assumptions, all of which are reasonable in their own ways.

 Assumption 1 The desired response d(n) and the tap-input vector u(n) are related 
by the multiple linear regression model

 d1n2 = wH
o u1n2 + eo1n2, (10.48)

where wo is the regression parameter vector and eo(n) is the measurement noise. The 
noise eo(n) is white with zero mean and variance s2

o, which makes it independent 
of the regressor u(n).

The relationship expressed in Eq. (10.48) is depicted in Fig. 10.4, which is a repro-
duction of Fig. 9.1, used in the study of the method of least squares in Chapter 9.

Assumption 2 The input signal vector u(n) is drawn from a stochastic process, 
which is ergodic in the autocorrelation function.

The implication of Assumption 2 is that we may substitute time averages for 
ensemble averages, as discussed in Chapter 1. In particular, we may express the ensemble- 
average correlation matrix of the input vector u(n) as

 R ≈
1
n

 𝚽1n2 for n 7 M, (10.49)

where 𝚽(n) is the time-average correlation matrix of u(n) and the requirement n 7 M 
ensures that the input signal spreads across all the taps of the FIR filter. The approxima-
tion of Eq. (10.49) improves with an increasing number of adaptation cycles, n.

Assumption 3 Fluctuations in the weight-error vector E(n) are slow compared with 
those of the input signal vector u(n).

The justification for Assumption 3 is to recognize that the weight-error vector  
E(n) is the accumulation of a series of changes extending over n adaptation cycles of the 
RLS algorithm. This property is shown by

  E1n2 = wo - wn 1n2  

  = E102 - a
n

i = 1
k1i2 j*1i2, 

(10.50)
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which follows from Eq. (10.25). (See Problem 6.) Although both k(i) and j(i) depend on 
u(i), the summation in Eq. (10.50) has a “smoothing” effect on E(n). In effect, the RLS 
algorithm acts as a time-varying low-pass filter.

No further assumptions on the statistical characterization of u(n) and d(n) are 
made in what follows.

Convergence in the mean

Solving the normal equations (10.10) for wn 1n2, we may write

 wn 1n2 = 𝚽-11n2z1n2, n 7 M, (10.51)

where, for l = 1,

 𝚽1n2 = a
n

i = 1
u1i2uH1i2 + 𝚽102 (10.52)

and

 z1n2 = a
n

i = 1
u1i2d*1i2. (10.53)

FiguRe 10.4 Multiple linear regression model.
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Subsituting Eq. (10.48) into Eq. (10.53) and then using Eq. (10.52), we get

  z1n2 = a
n

i = 1
u1i2 uH1i2wo + a

n

i = 1
u1i2e*o1i2  

  = 𝚽1n2wo - 𝚽102wo + a
n

i = 1
u1i2e*o1i2, 

(10.54)

where, in the last line, we have made use of Eq. (10.8) with l = 1. This, in turn, means 
that we may rewrite Eq. (10.51) as

  wn 1n2 = 𝚽-11n2𝚽1n2wo - 𝚽-11n2𝚽102wo + 𝚽-11n2a
n

i = 1
u1i2e*o1i2 

  = wo - 𝚽-11n2𝚽102wo + 𝚽-11n2a
n

i = 1
u1i2e*o1i2.   

(10.55)

Taking the expectation of both sides of Eq. (10.55) and invoking Assumptions 1 and 2, 
we may write

  𝔼3wn 1n24 ≈ wo -
1
n

 R-1𝚽102wo  

  = wo -
d

n
 R-1wo  

  = wo -
d

n
 p, n 7 M, (10.56)

where p is the ensemble-average cross-correlation vector between the desired response 
d(n) and input vector u(n). Equation (10.56) states that the RLS algorithm is conver-
gent in the mean value. For finite n greater than the filter length M, the estimate wn 1n2 
is biased, due to the initialization of the algorithm by setting 𝚽(0) = dI, but the bias 
decreases to zero as n approaches infinity.

Convergence in the mean Square

The weight-error correlation matrix is defined by

  K1n2 = 𝔼3E1n2EH1n24  

  = 𝔼31wo - wn 1n221wo - wn 1n22H4. (10.57)

Substituting Eq. (10.55) into Eq. (10.57) and ignoring the effects of initialization, which 
is justified for n 7 M, we get

 K1n2 = 𝔼 c 𝚽-11n2a
n

i = 1
 a

n

j = 1
u1i2uH1j2𝚽-11n2e*o1i2eo1j2 d . 

Under Assumption 1, the input vector u(n), and therefore 𝚽-1(n), is independent of 
the measurement noise eo(n). Accordingly, we may express K(n) as the product of two 
expectations:

 K1n2 = 𝔼 c 𝚽-11n2a
n

i = 1
 a

n

j = 1
u1i2 uH1j2𝚽-11n2 d𝔼3e*o1i2eo1j24. 
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Since, under Assumption 1, the measurement noise eo(n) is white, we have

 𝔼3e*o1i2eo1j24 = es
2
o for i = j

0 otherwise
, (10.58)

where s2
o is the variance of eo(n). Hence, the expression for the weight-error correlation 

matrix reduces to

  K1n2 = s2
o𝔼 c 𝚽-11n2a

n

i = 1
u1i2uH1i2𝚽-11n2 d  

  = s2
o𝔼3𝚽-11n2𝚽1n2𝚽-11n24  

  = s2
o𝔼3𝚽-11n24.  

Finally, invoking Assumption 2, embodied in Eq. (10.49), we may write4

 K1n2 =
1
n

 s2
oR-1,  n 7 M. (10.59)

The mean-square deviation is defined by

  d1n2 = 𝔼3EH1n2E1n24 
  = tr3K1n24,  

(10.60)

where tr[ · ] denotes the trace operator. In light of Eq. (10.59), the mean-square devia-
tion of the RLS algorithm is

  d1n2 =
1
n
s2

o tr 3R-14  

  =
1
n

 s2
oa

M

i = 1
 
1
li

,  n 7 M, (10.61)

where the li are the eigenvalues of the ensemble-average correlation matrix R.
On the basis of Eq. (10.61), we may now make the following two important obser-

vations for n 7 M:

 1. The mean-square deviation d1n2 is magnified by the inverse of the smallest eigen-
value lmin. Hence, to a first order of approximation, the sensitivity of the RLS 
algorithm to eigenvalue spread is determined initially in proportion to the inverse 

4The relation

𝔼3𝚽-11n24 =
1
n

 R-1 for n 7 M 

is also justified in Appendix H on complex Wishart distributions. The correlation matrix 𝚽-1(n) is described 
by a complex Wishart distribution under the following conditions:

 • The input vectors u(1), u(2), . . . , u(n) are independent and identically distributed (i.i.d.).

 • The input vectors u(1), u(2), . . . , u(n) are drawn from a stochastic process with a multivariate Gaussian 
distribution of zero mean and an ensemble-average correlation matrix R.

These two assumptions hold in an array-processing system that operates in a Gaussian environment.

M10_HAYK4083_05_SE_C10.indd   465 21/06/13   8:46 AM



466   Chapter 10  The Recursive Least-Squares (RLS) Algorithm

of the smallest eigenvalue. Therefore, ill-conditioned least-squares problems may 
lead to poor convergence properties.

 2. The mean-square deviation d1n2 decays almost linearly with the number of adap-
tation cycles, n. Hence, the estimate wn 1n2 produced by the RLS algorithm con-
verges in the norm (i.e., mean square) to the parameter vector wo of the multiple 
linear regression model almost linearly with time.

Learning Curve

In the RLS algorithm, there are two types of error: the a priori estimation error j(n) 
and the a posteriori estimation error e(n). Given the initial conditions of Section 10.3, 
we find that the mean-square values of these two errors vary differently with time 
n. At time n = 1, the mean-square value of j(n) becomes large—equal to the mean-
square value of the desired response d(n)—and then decays with increasing n. The 
mean-square value of e(n), on the other hand, becomes small at n = 1 and then rises 
with increasing n, until a point is reached for large n for which e(n) is equal to j(n). 
Accordingly, the choice of j(n) as the error of interest yields a learning curve for the 
RLS algorithm that has the same general shape as that for the LMS algorithm. By 
choosing j(n), we thus can make a direct graphical comparison between the learn-
ing curves of the RLS and LMS algorithms. We therefore base a computation of the 
ensemble-average learning curve of the RLS algorithm on the a priori estimation 
error j(n), as follows:

 J′1n2 = 𝔼3 ∙ j1n2 ∙24. (10.62)

The prime in the symbol J′(n) is intended to distinguish the mean-square value of j(n) 
from that of e(n).

Eliminating the desired response d(n) between Eqs. (10.26) and (10.48), we may 
express the a priori estimation error

  j1n2 = eo1n2 + 3wo - wn 1n - 124H
 u1n2 

  = eo1n2 + EH1n - 12u1n2,  
(10.63)

where the second term involving E(n - 1) is an undisturbed estimation error. Substituting 
Eq. (10.63) into Eq. (10.62) and then expanding terms, we get

  J′1n2 = 𝔼3 ∙ eo1n2 ∙24 + 𝔼3uH1n2E1n - 12EH1n - 12u1n24  

  + 𝔼3EH1n - 12u1n2e*o1n24 + 𝔼3eo1n2uH1n2E1n - 124. (10.64)

Examining the four expectation terms in Eq. (10.64), we may now make four observations:

 1. The expectation of |eo(n)|2 is s2
o, by virtue of Eq. (10.58).

 2. The second expectation is expressed as

  𝔼3uH1n2E1n - 12EH1n - 12u1n24 = 𝔼3tr 5uH1n2E1n - 12EH1n - 12u1n264 
  = 𝔼3tr5u1n2uH1n2E1n - 12EH1n - 1264  

  = tr5𝔼3u1n2uH1n2E1n - 12EH1n - 1246. 
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Under Assumption 3, the outer product E(n - 1)EH(n - 1) of the weight-error vector 
at time step n fluctuates at a slower rate than the outer product u(n)uH(n). Applying 
Kushner’s direct-averaging method, discussed in Chapter 6, we may write

 𝔼3uH1n2E1n - 12EH1n - 12u1n24 ≈ tr5𝔼3u1n2uH1n24𝔼3E1n - 12EH1n - 1246 

  = tr 3RK1n - 124.  
(10.65)

Substituting Eq. (10.59) into Eq. (10.65) yields

  𝔼3uH1n2E1n - 12EH1n - 12u1n24 ≈
1
n

 s2
otr3RR-14  

  =
1
n

 s2
otr3I4  (10.66)

  =
M
n

 s2
o, n 7 M, 

where M is the filter length.
 3. The third expectation is zero, for two reasons. First, viewing time step n as the 

present, we see that the weight-error vector E(n - 1) depends on past values of 
the input vector u(n) and measurement noise eo(n). [This statement follows from  
Eq. (10.50).] Second, under Assumption 1, u(n) and eo(n) are statistically indepen-
dent, and eo(n) has zero mean. Hence, we may write

  𝔼3EH1n - 12u1n2e*o1n24 = 𝔼3EH1n - 12u1n24 𝔼3e*o1n24 
  = 0.  (10.67)

 4. Finally, the fourth expectation has the same mathematical form as the third expectation, 
except for a trivial complex conjugation. Hence, the fourth expectation is also zero.

Using these results in Eq. (10.64), we obtain the following result:

 J′1n2 ≈ s2
o +

M
n

 s2
o,  n 7 M. (10.68)

Convergence analysis of the RLS algorithm in this section assumes that the 
exponential weighting factor l equals unity (i.e., the algorithm operates with infinite 
memory). As mentioned at the beginning of the section, the case of l lying in the range  
0 6 l 6 1 is deferred to Chapter 13.

10.8 eFFiCienCy

Now that we know how to formulate the learning curve of the RLS algorithm so as to 
be on a similar mathematical framework as the LMS algorithm, we are in the position 
to investigate its statistical efficiency.

To proceed, consider the much simplified Eq. (10.68), on the basis of which we 
may identify three distinctive properties of the RLS algorithm, operating in a stationary 
environment:

Property 1 As the number of adaptation cycles, n, approaches infinity, the mean-
square error, J′(n), approaches the optimal solution defined by the variance of the 
measurement error, eo(n), namely, s2

o1n2.
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468   Chapter 10  The Recursive Least-Squares (RLS) Algorithm

To justify this property, consider the ideal condition under which the adjustable 
FIR filter used in the RLS algorithm has exactly the same length as the multiple linear 
regression model in Fig. 9.1. We may then invoke the critically matched case described 
in Section 2.6 of Chapter 2, wherein the minimum mean-square error of the Wiener fil-
ter has the irreducible value s2

o. Under this ideal condition, we thus have the following 
corollary to Property 1:

Corollary As the number of adaptation cycles, n, approaches infinity, the RLS 
algorithm approaches the Wiener solution, in which case the misadjustment is zero.

Property 2 The ensemble-average learning curve of the RLS algorithm converges 
toward the final (i.e., Wiener) solution in about 2M adaptation cycles, where M is 
the length of the FIR filter built into the RLS algorithm.

This property is justified on account of Monte Carlo simulations. Consequently, we may 
go on to say that the rate of convergence of the RLS algorithm is typically more than an order 
of magnitude faster than that of the LMS algorithm for the same stationary environment.

Property 3 Convergence analysis of the RLS algorithm in the mean-square sense 
is essentially independent of the eigenvalues of the correlation matrix R of the input 
vector u(n).

This property follows from Eq. (10.68). Accordingly, comparing Eq. (10.68) with 
the corresponding formula of Eq. (6.98) for the LMS algorithm, we may say:

The RLS algorithm is less sensitive to the eigenvalue spread of the correlation 
matrix R than the LMS algorithm.

We may also make the following final statement:

In general, the RLS algorithm is more statistically efficient than the LMS algo-
rithm when both algorithms operate in the same stationary environment.

This statement is intuitively satisfying for the following reason: In statistical terms, 
the RLS algorithm is a second-order estimator, whereas the LMS algorithm is a first-
order estimator. 

In the next chapter on robustness, we will present a comparative evaluation of the 
LMS and RLS algorithms not only in terms of efficiency but also robustness, when they 
both operate in the same stationary environment.

10.9 CompUter experiment on adaptive eqUaLization

For this computer experiment, we use the RLS algorithm, with the exponential weighting 
factor l = 1, for the adaptive equalization of a linear dispersive communication channel. The 
LMS version of this study was presented in Section 6.8. The block diagram of the system 
used in the study is depicted in Fig. 10.5. Two independent random- number generators are 
used—one, denoted by xn, for probing the channel and the other, denoted by v(n), for simu-
lating the effect of additive white noise at the receiver input. The sequence xn is a Bernoulli 
sequence with xn = ;1; the random variable xn has zero mean and unit variance. The second 
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Section 10.9 Computer experiment on Adaptive equalization   469

sequence v(n) has zero mean, and its variance s2
v is determined by the desired signal-to-noise 

ratio. The equalizer has 11 taps. The impulse response of the channel is defined by

 
hn = c 1

2
 c 1 + cos a2p

W
1n - 22b d , n = 1, 2, 3

0  otherwise
 , (10.69)

where W controls the amount of amplitude distortion and, therefore, the eigenvalue 
spread produced by the channel. The channel input xn, after a delay of seven samples, 
provides the desired response for the equalizer. (See Section 6.8 for details.)

The experiment is in two parts: In part 1 the signal-to-noise ratio (SNR) is high, 
and in part 2, it is low. In both parts of the experiment, the regularization parameter  
d = 0.004. (The procedure described in Section 10.4 for selecting d for varying SNR does 
not apply here because of the choice l = 1.)

1. Signal-to-Noise Ratio = 30 dB. The results of the experiment for a fixed 
 signal-to-noise ratio of 30 dB (equivalently, a variance s2

v = 0.001) and varying W or 
eigenvalue spread x(R) were presented in Chapter 8. (See Fig. 8.9.) The four parts of 
that figure correspond to the parameter W = 2.9, 3.1, 3.3, and 3.5, or equivalently, x(R) =  
6.078, 11.124, 21.713, and 46.822, respectively. (See Table 6.2 for details.) Each part of the 
figure includes learning curves for the LMS, DCT-LMS, and RLS algorithms. The set of 
results pertaining to the RLS algorithm for the four different values of eigenvalue spread 
x(R) is reproduced in Fig. 10.6. For comparison, the corresponding set of results for the 
LMS algorithm (with step-size parameter m = 0.075) is shown in Fig. 6.21. On the basis  
of the results presented in these two figures, we may make the following observations: 

	 •	 Convergence of the RLS algorithm is attained in about 20 adaptation cycles, 
approximately twice the number of taps in the FIR equalizer.

	 •	 The rate of convergence of the RLS algorithm is relatively insensitive to variations in 
the eigenvalue spread x(R), compared with the convergence of the LMS algorithm.

FiguRe 10.5 Block diagram of adaptive equalizer for computer experiment.
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470   Chapter 10  The Recursive Least-Squares (RLS) Algorithm

	 •	 The RLS algorithm converges much faster than the LMS algorithm; compare the 
results shown in Fig. 10.6 with those of the LMS algorithm plotted in Fig. 6.21.

	 •	 The steady-state value of the ensemble-average squared error produced by the 
RLS algorithm is much smaller than that of the LMS algorithm, confirming 
what we said earlier: The RLS algorithm produces zero misadjustment, at least 
in theory.

The results presented in Fig. 10.6 compared with those in Fig. 6.21 clearly show the 
much faster rate of convergence of the RLS over the LMS algorithm; for that rate to be 
realized, however, the signal-to-noise ratio has to be high. This advantage is lost when 
the signal-to-noise ratio is not high, as demonstrated next.

2. Signal-to-Noise Ratio = 10 dB. Figure 10.7 shows the learning curves for  
the RLS algorithm and the LMS algorithm (with the step-size parameter m = 0.075) 
for W = 3.1 and a signal-to-noise ratio of 10 dB. Insofar as the rate of convergence is 
concerned, we now see that the RLS and LMS algorithms perform in roughly the same 
manner, both requiring about 40 adaptation cycles to converge; however, neither algo-
rithm supplies a good solution to the channel equalization problem.

FiguRe 10.6 Learning curves for the RLS algorithm with four different eigenvalue spreads,  
d = 0.004, and l = 1.0.
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10.10 SUmmary and diSCUSSion

In this chapter, we derived the recursive least-squares (RLS) algorithm as a natural 
extension of the method of least squares. The derivation was based on a lemma in matrix 
algebra known as the matrix inversion lemma.

The fundamental difference between the RLS algorithm and the LMS algorithm 
may be summarized as follows: The step-size parameter m in the LMS algorithm is 
replaced by 𝚽-1(n)—that is, the inverse of the correlation matrix of the input vector 
u(n), which has the effect of whitening the tap inputs. This modification has a profound 
impact on the statistical efficiency, exemplified by convergence behavior, of the RLS 
algorithm for a stationary environment, which can be as follows:

 1. The rate of convergence of the RLS algorithm is typically more than an order of 
magnitude faster than that of the LMS algorithm.

 2. The rate of convergence of the RLS algorithm is essentially invariant to the eigen-
value spread (i.e., condition number) of the ensemble-average correlation matrix 
R of the input vector u(n).

FiguRe 10.7 Learning curves for the RLS and LMS algorithms for W = 3.1 [i.e., eigenvalue spread 
x(R) = 11.124] and SNR = 10 dB. RLS: d = 0.004 and l = 1.0. LMS: Step-size parameter m = 0.075.
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472   Chapter 10  The Recursive Least-Squares (RLS) Algorithm

 3. The excess mean-square error J=ex1n2 of the RLS algorithm converges to zero as 
the number of adaptation cycles, n, approaches infinity.

The operation of the RLS algorithm summarized herein applies to a stationary envi-
ronment with the exponential weighting factor l = 1. For the case of l Z 1, Properties  
1 and 2 still hold, but the excess mean-square error J=ex1n2 is no longer zero. In any event, 
computation of the mean-square error J′(n), produced by the RLS algorithm, is based 
on the a priori estimation error j(n).

With the material on the statistical efficiency of the RLS algorithm covered in this 
chapter and the corresponding material on the LMS algorithm covered in Chapter 6, the 
stage is set for the next chapter to make a detailed comparative evaluation between these 
two algorithms, operating in the same stationary environment. Therein, we will focus atten-
tion not only on statistical efficiency but also on robustness of the two basic linear adaptive 
filtering algorithms. These two properties will feature in the comparative study because of 
their practical importance. Naturally, computation complexity will also feature in the study.

probLemS

 1. To permit a recursive implementation of the method of least squares, the window or weighting 
function b(n, i) must have a suitable structure. Assume that

 b1n, i2 = l1i2b1n, i - 12,  i = 1, c, n, 

  where b(n, n) = 1. Show that

 b1n, i2 = q
n

k = i+ 1
l-11k2. 

  What is the form of l(k) for which b(n, i) = ln - i is obtained?

 2. Derive the Riccati equation for the RLS algorithm.

 3. Derive the inverse correlation matrix using the exponentially weighted RLS algorithm for a 
correlation matrix Φ(n) =  u(n)uH(n) + dI where u(n) is a tap-input vector and d is a small 
positive constant.

 4. What is the major difference between the LMS and RLS algorithms?

 5. Show how the validity of the matrix inversion lemma can be applied to obtain a recursive 
equation for computing the least-squares solution wn 1n2 for the tap weight vector.

 6. How do we solve a constrained minimization problem for the optimum values of the filter 
coefficients in the MVDR spectrum estimation method?

 7. The RLS algorithm differs from the LMS algorithm in a fundamental respect: The step-size 
parameter m in the LMS algorithm is replaced by the inverse correlation matrix 𝚽-1(n).

 (a) Show that this replacement has a self-orthogonalizing effect in the RLS algorithm, which 
is expressed by

 𝔼3E1n24 ≈ a1 -
1
n
b𝔼3E1n - 124 for large n, 

   where
 E1n2 = wo - wn 1n2. 

  For this derivation you may invoke Assumptions 1 and 2 of Section 10.7.
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 (b) In light of the result derived in part (a), distinguish between the RLS algorithm and the 
self-orthogonalizing adaptive filter discussed in Section 8.4.

 8. In this problem, we use the complex Wishart distribution of Appendix H to study the conver-
gence behavior of the RLS algorithm applied to an array signal processor that satisfies the 
following assumptions:

 i. The observables u1, u2, . . . , uN at the outputs of the N sensors constituting the array are 
i.i.d.

 ii. The observables are drawn from a stochastic process with multivariate Gaussian distribu-
tion of zero mean and ensemble-average correlation matrix R.

 (a) Apply the complex Wishart distribution to obtain the expectation

 𝔼3𝚽-11n24 =
1
n

 R-1. 

 (b) Using the result of part (a), derive the corresponding expression for the mean-square 
deviation for the RLS algorithm operating in the environment described in the afore-
mentioned two assumptions.

Computer experiments

 9. Problem 17 of Chapter 6 addresses the application of the LMS algorithm to the design of a 
linear predictor operating on an autoregressive process of order two. Using the RLS algo-
rithm, repeat parts (b) through (e) of the computer experiment described therein.

 10. Explain the close relationship of the LMS algorithm to stochastic approximation when there 
is a decrease in the value of the step-size parameter m with an increasing number of adapta-
tion cycles.

 11. Problem 20 of Chapter 6 addresses the application of the LMS algorithm to the study of an 
MVDR beamformer. Using the RLS algorithm, repeat the computer experiment described 
therein.
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C h a p t e r  1 1

robustness

At this particular juncture in the book, it is highly instructive that we pause and look 
back on the major issues covered thus far. They are summarized here as follows:

	 •	 Adoption of the method of stochastic gradient descent for the least-mean-square 
(LMS) algorithm and the method of least squares for the recursive least-squares 
(RLS) algorithm.

	 •	 Computational complexity: linear law for the LMS algorithm, and square law for 
the RLS algorithm.

	 •	 Statistical efficiency measured with respect to the Wiener solution in a stationary 
environment: slow rate of convergence for the LMS algorithm and much faster 
rate of convergence for the RLS algorithm.

Now, then, recalling the factors itemized in the Background and Preview chapter, a fac-
tor yet to be discussed in depth is robustness. It is this very topic that will occupy much of 
our attention in this chapter. Specifically, the properties of statistical efficiency, computa-
tional complexity, and robustness, in the final analysis, provide the frame of reference for 
making a decision in favor of the LMS or RLS algorithm for an application of interest.

11.1 robustness, adaptation, and disturbanCes

With robustness as the topic of interest in this chapter, it is appropriate that we repro-
duce the statement on robustness made in the Background and Preview chapter:

For an adaptive filter to be robust, small disturbances (i.e., disturbances with small 
energy) can only result in small estimation errors. The disturbances may arise from 
a variety of sources: internal or external to the filter.

The key words to be noted in this statement are: robust, adaptive, and disturbances.
From a practical perspective, the environmental presence of disturbances is 

unavoidable. To expand on what is being said here: If stochasticity of the environment 
is confined to Gaussianity, whiteness, or such other statistical characterizations, then 
adaptive filtering would be relegated to merely a problem in statistical parameter esti-
mation, which is clearly not the goal of adaptive filtering in the first place. To be more 
specific, for adaptive filtering algorithms to occupy a distinctive place of their own in 
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the literature across the board, they would have to be capable of dealing with noisy data 
of unknown statistics. In other words, we may state (Hassibi, 2003):

The process of adaptive filtering is much more related to robustness with respect 
to statistical variations than it is to optimality with respect to a prespecified sta-
tistical model.

In general, this statement says that we may have to opt for suboptimality in order to be 
assured of robustness in the face of disturbances. Given this practical reality, it is unfor-
tunate that in the adaptive filtering literature, not enough attention has been given to 
robustness.

11.2  robustness: preliminary Considerations rooted 
in H∞ optimization

To set the stage for what H∞ optimization stands for, it is enriching that we refer back to 
the first derivation of the LMS algorithm that was carried out in a “heuristic” manner in 
Section 5.2 of Chapter 5. Therein, for the cost function to be minimized with respect to 
the adjustable tap weights of the finite-duration impulse response (FIR) filter built into 
the algorithm, we used the squared modulus of the instantaneous estimation errors. In so 
doing, any connection between the LMS algorithm and the Wiener filter was completely 
severed. This prompts us to raise the following question:

If the LMS algorithm is not optimum in the mean-square-error sense as in the case 
of Wiener filtering, what then is the actual criterion on the basis of which the LMS 
algorithm is optimized?

It turns out that the answer to this fundamental question lies in H∞ optimization.1

1H∞ optimization was first introduced in control theory to design “robust controllers.” As mentioned pre-
viously in the section on historical notes in the Background and Preview chapter, the pioneering journal papers 
on H∞ optimization are pioneered by Zames (1981), Zames and Francis (1983), and Francis and Zames (1984).

For linear time invariant (LTI) systems, it can be readily shown that the maximum energy gain is the 
maximum of the squared modulus of the LTI’s transfer function over all frequencies, which, in turn, is the H∞ 
norm. The original papers of Zames and Francis dealt with LTI systems, so they naturally used the H∞ norm. 
Consequently, the H∞ norm for robustness stuck, despite the fact that researchers have moved beyond LTI 
systems. In this modern setting, there is no transfer function, and the H∞ norm for robustness does not apply 
in mathematical terms.

Today, therefore, when we speak of the H∞ norm, what we actually mean is the h2-induced norm. The 
reason for saying so is that, by definition, H∞ stands for the maximum of the ratio of two h2 norms, each of 
which represents energy. To be more precise, H∞ is a member of the mathematical Hardy spaces, so named by 
Riesz (1923) to honor a paper written by Hardy (1915). Specifically:

	 •	 The H in H∞ stands for Hardy spaces.

	 •	 The superscript, ∞, stands for the fact that H∞ is the space of all analytic functions in complex variable 
theory that lie outside the unit circle with some finite magnitude on the unit circle (Duren, 2000).

For a tutorial exposition on H∞ optimization, see the paper by Kwakernaak (1993); for the first journal paper on 
robustress of the LMS algorithm, see Hassibi et al. (1996). For books on the subject, see Francis (1987), and Basar 
and Bernhard (1991).

Section 11.2 Robustness: Preliminary Considerations Rooted in H∞ Optimization   475
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476   Chapter 11  Robustness

uncertainties in adaptive Filtering

In Section 11.1, we emphasized that in seeking a robust solution to adaptive filtering, 
we have to pay particular attention to the unavoidable presence of environmental dis-
turbances. To this end, there are two issues to be considered:

 1. In focusing on a sample realization of an adaptive filtering algorithm, it is logical 
to ignore underlying statistical assumptions and, therefore, adopt a deterministic 
approach to the adaptive filtering problem under a worst-case scenario, so as to 
safeguard against unknown sources of disturbances.

 2. There is a need to examine the adaptive filtering problem itself as a possible source 
of disturbances.

To deal with the first issue, suppose that we have a set of training data  
{u(n), d(n)}, which may fit into a multiple linear regression model described by the 
 following equation2:

 d1n2 = wHu1n2 + v1n2, (11.1)

where u(n) is the regressor, d(n) is the desired response, w is a vector of unknown para-
meters to be estimated, the superscript H denotes Hermitian transposition (i.e., transpo-
sition combined with complex conjugation), and the additive term v(n) is an unknown 
disturbance that arises on account of the following sources:

	 •	 Measurement noise. The source of this noise is attributed to the use of imperfect 
sensors.

	 •	 Environmental modeling errors. For example, the true model of the training 
data, {u(n), d(n)}, may be actually characterized by an infinite-duration impulse 
response (IIR); to simplify matters, the tail end of the model’s impulse response is 
ignored, so as to accommodate the use of a finite-duration impulse response (FIR) 
model for mathematical simplicity.

	 •	 Other disturbances. These disturbances may originate from other unknown sources.

Turning to the second issue, let wn 1n2 denote a recursive estimate of the unknown 
parameter vector w in Eq. (11.1), which is being computed using an adaptive filtering 
algorithm of interest by processing the complete training data {u(i), d(i)} for all i … n.  
The recursive estimate, wn 1n2, is strictly causal, which means that updating the old esti-
mate wn 1n - 12 to wn 1n2 depends only on the current input u(n) at adaptation cycle n. 
In any event, the weight-error vector, denoted by w∼1n2, is defined by3

 w∼1n2 = w - wn 1n2. (11.2)

2Equation (11.1) is of the same mathematical form as that of Eq. (6.6) in Chapter 6, but with an 
important difference to be noted: No assumptions are made in Eq. (11.1) on statistical characterization of the 
additive term, v(n).

3The weight-error vector w∼1n2 should not be confused with the weight-error vector E(n) introduced in 
Chapter 6. In contrast to w∼1n2, the error E(n) is defined with respect to the Wiener solution, wo.

M11_HAYK4083_05_SE_C11.indd   476 21/06/13   8:47 AM



Typically, the chosen initial value, wn 102, used in the recursive estimation is different  
from w. Accordingly, we have another source of disturbance to account for, namely,

 w∼102 = w - wn 102. (11.3)

Hence, in evaluating the deterministic behavior of an adaptive filtering algorithm 
based on a recursive estimation strategy, the two disturbances to be accounted for are:

 1. The additive disturbance v(n) in the regression model of Eq. (11.1).
 2. The initial weight-error vector w∼102 in Eq. (11.3).

Formulation of the H∞-optimization problem

Let t denote a causal estimator that maps the above-mentioned disturbances on the 
input of a recursive estimation strategy to estimation errors at its output, as depicted in 
Fig. 11.1. Note that t is a function of the strategy used to compute the estimate wn 1n2 at 
adaptation cycle n. We may thus introduce the following definition:

The energy gain of a causal estimator is the ratio of estimation-error energy at the 
output of the estimator to total disturbance energy at its input.

Clearly, the notion of energy gain so defined is dependent on the disturbances that are 
unknown. To remove this dependence, we introduce the following definition:

The H∞ norm of the causal estimator t is the maximum energy gain computed 
over all possible disturbance sequences of fixed energy.

Henceforth, we use the symbol g2 to denote the maximum energy gain, where the super-
script 2 stands for the 2 in the h2-induced norm.

In solving the H∞-estimation problem, the objective may now be stated as follows:

Find the causal estimator that guarantees the smallest H∞ norm over all possible 
estimators.

The optimal g2 resulting from this finding is denoted by g2
opt, on the basis of which we 

may go one step further to make the following statement4:

For the causal estimator, depicted in Fig. 11.1, to be robust in the H∞ sense, it is 
necessary and sufficient for the condition

 g2
opt … 1 

to be satisfied for all possible uncertainties.

4The following comparison is noteworthy:

 • In statistical learning theory, the emphasis is on the expectation operator, where we treat an ensemble 
of independent realizations of an adaptive filtering algorithm.

 • In contrast, in robustness, the emphasis is on having to consider the effort of all conceivable distur-
bances that could affect a single realization of the algorithm.
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478   Chapter 11  Robustness

What if this condition is not satisfied? In such a situation, the causal estimator is 
said to be less robust than an estimator for which g2

opt 6 1. Another related point that 
should be carefully noted: If g2

opt happens to be greater than 1, it simply means that there 
exist some, but not all, disturbances that are amplified by the estimator.

11.3 robustness oF the lms algorithm

With the material covered in the preceding section, the stage is now set for us to show 
that the LMS algorithm is indeed robust in the H∞ sense, provided that the step-size 
parameter, m, used in the algorithm is small enough to satisfy a certain condition to be 
determined.5

The H∞ optimal estimator so found is of a minimax nature. More specifically, we 
may view the H∞ optimal estimation problem as a game-theoretic problem (Basar & 
Bernhard, 1991):

Nature, acting as the opponent, has access to the unknown disturbances, thereby 
maximizing the energy gain. On the other hand, the designer has the choice of 
finding a causal estimator (algorithm) that minimizes the energy gain.

Since no assumptions are made about the disturbances, an H∞ estimator has to account 
for all possible disturbances. Accordingly, such an estimator may be “overconservative”; 
that is, it is a “worst-case” estimator.

As a measurable error signal directly related to the weight-error vector w∼1n2, we 
introduce the undisturbed estimation error, or undisturbed error signal, defined as

  ju1n2 = 1w - wn 1n22H u1n2 

  = w∼H1n2u1n2.  
(11.4)

The term “undisturbed,” signified by subscript u, is used here to distinguish the estima-
tion error ju1n2 from the estimation error e(n) in Chapter 5. Specifically, ju1n2 compares 
the filter’s response wn H1n2u1n2 with the “undisturbed” response wHu1n2 of the multiple 

FiguRe 11.1 Formulation of the optimal 
H∞ estimation problem. The generic 
estimation error at the causal estimator’s 
output could be the weight-error vector, 
the uncorrupted output error, etc.

5The H∞ optimality of the LMS algorithm was first described in a conference paper by Hassibi et al. 
(1993), which was followed by a journal paper in 1996. In a related context, the interested reader may refer to 
Hassibi (2003) for a philosophical discussion of this same topic.

It should also be noted that H∞-optimal adaptive filtering algorithms are not unique. Specifically, H∞ 
optimality may be generalized, for example, to include the normalized LMS algorithm. (See Problem 7.)
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linear regression model, rather than the desired response d(n). Indeed, from the defin-
ing equations (5.7) and (11.4), we readily find that the two estimation errors ju1n2 and 
e(n) are related by

 ju1n2 = e1n2 - v1n2, (11.5)

where v(n) is the additive disturbance in the multiple linear regression model.

Cauchy–schwarz inequality for Computing the H∞ norm

To compute the H∞ norm for any estimator, we need to compute the worst-case energy 
gain from the disturbances to the undisturbed estimation error of Eq. (11.4). To attempt 
to bound this energy gain, we next propose to apply the Cauchy–Schwarz inequality 
to the inner product w∼H1n2u1n2. For a statement of this inequality, consider the inner 
product of two complex vectors a and b of compatible dimensions. The Cauchy–Schwarz 
inequality states that the absolute value of the inner product aHb has upper bound  
||a|| ||b||; that is,

 ∙ aHb ∙2 … 7a 7 2 7b 7 2. 
For the problem at hand, we have

 a = w∼1n2 

and

 b = u1n2. 

Hence, application of the Cauchy–Schwarz inequality to the problem at hand yields

 ∙ w∼H
 1n2u1n2 ∙2 … 7w∼1n2 7 2 7u1n2 7 2 

or, equivalently, from the definition of Eq. (11.4),

 ∙ ju 1n2 ∙2 … 7w∼1n2 7 2 7u1n2 7 2. (11.6)

Suppose next we choose a positive real number m that satisfies the condition

 0 6 m 6
1

7u1n2 7 2. 

Clearly, if this condition holds, then we may recast the inequality of Eq. (11.6) as 
follows:

 ∙ ju 1n2 ∙2 … m-1 7w∼1n2 7 2. (11.7)

Furthermore, we can go one step further: Given that the inequality of Eq. (11.7) 
holds for an arbitrary estimate wn 1n2, it will still hold if the right-hand side of the inequal-
ity is increased by the squared amplitude of the disturbance ∙ n1n2 ∙2; that is,

 ∙ ju 1n2 ∙2 … m-1 7w∼1n2 7 2 + ∙ n1n2 ∙2, (11.8)

which brings the disturbance v(n) into the analysis.
Thus far in the discussion, we have not said how the estimate wn 1n2 is to be com-

puted. We now take care of this matter by using the LMS algorithm with the positive 
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real number m as its step-size parameter. The update formula for the estimate wn 1n2 is 
defined in Eq. (5.5). With the use of this formula, it is a straightforward matter to show 
that the inequality of Eq. (11.8) is tightened by adding the term m−1||w∼(n + 1)||2 to the 
left-hand side, provided that m is less than 1/||u(n)||2. (For a proof of this statement, see 
Problem 6.) Thus, the tightened inequality is

 m-1 7w∼1n + 12 7 2 + ∙ ju 1n2 ∙2 … m-1 7w∼1n2 7 2 + ∙ n1n2 ∙2, (11.9)

which now includes all the disturbances and parameters of interest.
As the adaptive filtering process progresses across time, the input vector u(n) 

naturally varies with discrete time n. Suppose that we run the LMS algorithm for N + 1 
adaptation cycles, starting from n = 0 with the initial condition wn 102, thereby generating 
the sequence of estimates 5wn 102, wn 112, c, wn 1N26 and the corresponding sequence 
of undisturbed estimation errors {ju(0), ju(1), c, ju(N)}. The members of both causal 
sequences satisfy the inequality of Eq. (11.9), provided that for any integer N the step-
size parameter m itself satisfies the condition

 0 6 m 6 min
1 … n … N

 
1

7u1n2 7 2. (11.10)

Equation (11.10) should be true for all n. However, since the denominator on 
the right-hand side of this equation is the norm of the regression (input) vector u(n), 
it follows that the step-size parameter, m, need not vanish.6 The left-hand side of the 
inequality is thereby justified.

robustness of the lms algorithm in the H∞ sense Confirmed

Provided, then, that the condition of Eq. (11.10) on the step-size parameter m holds, 
starting from the initial condition wn 102 and summing the two sides of the inequality in 
Eq. (11.9) over the interval 0 … n … N, we get (after cancelling common terms)

 m-1 7w∼1N2 7 2 + a
N

n = 0
∙ ju1n2 ∙2 … m-1 7w∼102 7 2 + a

N

n = 0
∙ n1n2 ∙2. 

Clearly, if this inequality holds, then we certainly have

 a
N

n = 0
∙ ju1n2 ∙2 … m-1 7w∼102 7 2 + a

N

n = 0
∙ n1n2 ∙2. (11.11)

6The decrease in the value of the step-size parameter m with an increasing number of adaptation 
cycles in accordance with Eq. (11.10) brings to mind the close relationship of the LMS algorithm to stochastic 
approximation (Robbins & Monro, 1951; Sakrison, 1966), which is defined by

wn 1n + 12 = wn 1n2 +
1
n u1n2e*1n2,

where 1/n plays the role of a time-dependent step-size parameter.
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Previously, we introduced g2 in Section 11.2 to denote the H∞ norm (i.e., maximum 
energy gain). Accordingly, using g2

LMS to denote the H∞ norm of the LMS algorithm with 
step-size parameter m, we may use Eq. (11.11) to formally write

 g2
LMS1m2 = sup

w, v∈h2
 

a
N

n = 0
∙ ju 1n2 ∙2

m-1 7w∼102 7 2 + a
N

n = 0
∙ n1n2 ∙2

, (11.12)

where h2 denotes the space of all square-summable causal sequences, and “sup” stands 
for supremum (i.e., the lowest upper bound). The denominator of Eq. (11.12) denotes 
the total disturbance energy, made up of two components: m−1||wn 102||2 is the disturbance 

energy due to the choice of initial condition wn 102, and a
N

n = 0
∙ n1n2 ∙2 is the energy of the 

disturbance v(n) in the multiple linear regression model. The numerator of Eq. (11.12) 
is the energy of the undisturbed estimation error ju(n) produced by the LMS algorithm 
at its output.

Equation (11.11) has an important practical interpretation:

Provided that the step-size parameter m of the LMS algorithm satisfies the condi-
tion of Eq. (11.11), then, no matter how different the initial weight vector wn 102 is 
from the unknown parameter vector w of the multiple linear regression model, 
and irrespective of the value of the additive disturbance v(n), the error energy 
produced at the output of the LMS algorithm will never exceed the sum of the two 
disturbance energies at the filter’s input, produced by the choice of initial condi-
tion wn 102 and the presence of input disturbance v(n).

This statement explains the reason for the robust behavior of the LMS algorithm as 
it endeavors to estimate the unknown parameter vector w in the face of unavoidable 
disturbances affecting the operation of the algorithm.

From Eqs. (11.11) and (11.12), we readily see that

 g2
LMS1m2 … 1  for 0 6 m … min

1 … n … N
 

1
7u1n2 7 2  and any integer N. (11.13)

We have thus shown that the maximum energy gain (i.e., H∞ norm) for the LMS 
algorithm is bounded by unity; in other words, the estimation error energy never exceeds 
the disturbance energy. The surprising fact that emerges from the discussion pre-
sented herein is that the maximum energy gain for the LMS algorithm is exactly unity. 
Moreover, it turns out that there exists no other algorithm that can achieve a maximum 
energy gain strictly less than unity. This implies that the LMS algorithm is H∞ optimal.

more on robustness of the lms algorithm

To demonstrate this remarkable property of the LMS algorithm, we shall now introduce 
a disturbance sequence such that the maximum energy gain can be made arbitrarily close 
to unity for any algorithm. To this end, envision a disturbance v(n) that satisfies the setting

 n1n2 = -ju 1n2   for all n. 
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At first sight, such a setting may appear unrealistic. However, it is indeed conceivable, 
as it lies within the unrestricted model of the disturbance v(n) described in Eq. (11.1). 
Under this special setting, we readily deduce from Eq. (11.5) that e(n) = 0 for all n.

Now it is not difficult to see that any algorithm that yields a bounded maxi-
mum energy gain will not change its estimate of the unknown weight vector w when 
 confronted with the error signal e(n) = 0. (Otherwise, we could get nonzero estimation 
errors when the disturbance energy is zero, thus leading to an infinite energy gain.)  
For example, this is certainly true of the LMS algorithm described by the update equa-
tion (5.5) in Chapter 5. We therefore conclude that for this particular disturbance, and 
for any algorithm that yields a finite maximum energy gain, we have

 wn 1n2 = wn 102   for all n. 

Since ju(n) = −v(n), the energy gain of Eq. (11.12) for this particular disturbance takes 
the following special form:

 g2
 1m2 =

a
N

n = 0
∙ ju 1n2∙2

m-1 7w∼102 7 2 + a
N

n = 0
∙ ju 1n2∙2

   for ju 1n2 = -n1n2. (11.14)

When

 lim
NS∞

 a
N

n = 0
7u1n2 7 2 6 ∞  (11.15)

(i.e., the input vectors u(n) are excitatory), it follows that, for any positive constant ¢, 
we can find a parameter vector w and an integer N such that

 a
N

n = 0
∙ ju 1n2∙2 = a

N

n = 0
∙ 1w - wn 1n22H

 u1n2∙2 Ú
1

∆m
 7w - wn 102 7 2 =

1
∆m

7w∼102 7 2. 

Using these choices in Eq. (11.14), cancelling common terms, and keeping in mind the 
bounds on g2 we may write 

 
1

1 + ∆
… g2 … 1. 

We can now see that for the particular disturbance, ju1n2 = -g21n2, the maximum energy 
gain of any algorithm can be made arbitrarily close to unity by allowing the constant 
¢ to approach zero. Since the “worst-case” disturbance for any algorithm must yield a 
maximum energy gain that is no smaller than this special value, we may say the following:

The maximum energy gain for any algorithm, which corresponds to the “worst-
case” disturbance, can never be less than unity.

However, Eq. (11.13) teaches us the following:

The maximum energy gain for the LMS algorithm does not exceed unity.
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Thus, the two statements (just made) imply that the LMS algorithm is indeed H∞ opti-
mal; that is, it minimizes the maximum energy gain, and that

 g2
opt = 1. 

summarizing remarks

The material just presented is important for the following reasons:

	 •	 Since the time that adaptive equalizers were first used for telephone channels, it 
was recognized that an adaptive equalizer based on the LMS algorithm was robust 
with respect to disturbances on a telephone channel.

	 •	 The preceding practical observation is confirmed theoretically by the fact that the 
LMS algorithm is in fact optimal in the H∞ sense.

Credit must therefore be given to the insightful vision of Widrow and Hoff in pioneer-
ing the LMS algorithm in 1960.

11.4 robustness oF the rls algorithm

Now that we have demonstrated the H∞ optimality of the LMS algorithm, our next task 
is twofold7:

 1. To work on robustness of the RLS algorithm.
 2. To compare robustness of the RLS algorithm to that of the LMS algorithm.

To this end, the model used for robustness of the RLS algorithm embodies the same 
pair of disturbances introduced in Section 11.3 for the LMS algorithm; that is, we have 
the additive disturbance, v(n), defined in Eq. (11.1), and the error, w∼(0), in the initial 
estimate of the unknown tap-weight vector w as defined in Eq. (11.2). However, with 
the RLS algorithm being different from the LMS algorithm, the undisturbed estimation 
error for the RLS algorithm is defined as follows:

 ju1n2 = 1w - wn 1n - 122Hu1n2, (11.16)

which differs from the case of LMS algorithms: wn 1n - 12 is used in place of wn 1n2 to 
be consistent with the RLS theory presented in Chapter 10. Correspondingly, ju(n) is 
related to v(n) as

 ju1n2 = j1n2 - n1n2, (11.17)

where j(n) is the a priori estimation error.
To study robustness of the RLS algorithm we need to compute bounds on the maxi-

mum energy gain from the input disturbances to the estimation errors. To obtain these 
bounds, we will build on the following lemma, the proof of which is presented as Problem 9.

7The treatment of H∞ theory applied to the RLS algorithm described herein follows Hassibi and 
Kailath (2001).
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Lemma. Consider the RLS algorithm whose weight vector is recursively updated 
in accordance with the equation

 wn 1n2 = wn 1n - 12 + k1n2j*1n2, 

where k1n2 = 𝚽-11n2u1n2 is the gain vector. Then, assuming that the time- average 
correlation matrix 𝚽(n) is invertible and the exponential weighting factor l is 
equal to unity, we may write

w∼H1n2𝚽1n2w∼1n2 +
∙ j1n2 ∙2

r1n2 = w∼H1n - 12𝚽1n - 12w∼1n - 12 + ∙ n1n2 ∙2, (11.18)

where, for l = 1, the denominator term r(n) in left-hand side of the equation is 
defined by

r1n2 = 1 + uH1n2𝚽-11n - 12u1n2.

This term is the reciprocal of the conversion factor g(n) defined in Eq. (10.42); 
note, however, the g(n) of Eq. (10.42) must not be confused with the H∞ norm 
introduced in this chapter.

upper bound on the H∞ norm of the rls algorithm

The rationale behind introducing the lemma of Eq. (11.18) is that it provides a basis for 
finding an upper bound in the H∞ norm of the RLS algorithm. Thus, summing the two 
sides of Eq. (11.18) for all values of n in the interval 1 … n … N, we get (after cancelling 
common terms)

 w∼H1N2𝚽1N2w∼1N2 + a
N

n = 1

∙ j1n2 ∙2

r1n2 = w∼H102𝚽102w∼102 + a
N

n = 1
∙ n1n2 ∙2. (11.19)

In the RLS algorithm, the correlation matrix 𝚽(n) is initialized with the value

 𝚽102 = dI, 

where d is the regularization parameter. (See Section 10.3.) Accordingly, we may rewrite 
Eq. (11.19) as

 w∼H1N2𝚽1N2w∼1N2 + a
N

n = 1

∙ j1n2 ∙2

r1n2 = d 7w∼102 7 2 + a
N

n = 1
∙ n1n2 ∙2. (11.20)

The right-hand side of Eq. (11.20) is precisely the disturbance error energy that we 
are seeking. The left-hand side, however, is not quite the estimation error energy. To 
isolate the estimation error energy, we need to apply a few tricks. First, note that if 
we define

 r = max
n  

r1n2, 

then we can rewrite Eq. (11.20) in the form of an inequality:

 w∼H1N2𝚽1N2w∼1N2 +
1
r a

N

n = 1
∙ j1n2 ∙2 … d 7w∼102 7 2 + a

N

n = 1
∙ n1n2 ∙2 (11.21)
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or, more simply,

 
1
r

 a
N

n = 1
∙ j1n2 ∙2 … d 7w∼102 7 2 + a

N

n = 1
∙ n1n2 ∙2. 

From Eq. (11.17), we have

 j1n2 = ju1n2 + n1n2. 

Hence, we may go one step further to write

 
1
r

 a
N

n = 1
∙ ju1n2 + n1n2 ∙2 … d 7w∼102 7 2 + a

N

n = 1
∙ n1n2 ∙2. (11.22)

To isolate the estimation error energy, we now note that, for any positive parameter  
a 7 0, we have the following inequality:

 ∙ a + b ∙2 Ú a1 -
1
a
b ∙ a ∙2 - 11 - a2 ∙ b ∙2, 

where a and b are an arbitrary pair of variables. Applying this inequality, with a = ju(n) 
and b = v(n), to Eq. (11.22), we obtain (after a rearrangement of terms)

 
1 -

1
a

r a
N

n = 1
∙ ju1n2 ∙2 … d 7w∼102 7 2 + a1 +

1 - a

r
b a

N

n = 1
∙ n1n2 ∙2, (11.23)

where the undisturbed estimation error energy term, aN
n = 1 ∙ ju1n2 ∙2, is now isolated. 

Dividing both sides of Eq. (11.23) by a1 -
1
a
b  >  r and assuming that a 7 1, we obtain,

 a
N

n = 1
∙ ju1n2 ∙2 …

rd

1 -
1
a

 7w∼102 7 2 +
a2 + a1r - 12

a - 1 a
N

n = 1
∙ n1n2∙2. 

To obtain the “tightest” possible bound on aN
n = 1 ∙ ju1n2 ∙2, we minimize over a 7 1 and 

the summation aN
n = 1 ∙ n1n2 ∙2 in the above inequality. In fact, it is not hard to show that

 min
a7 1

 aa
2 + 1r - 12a

a - 1
b = (1 + 2r)2 

and

 arg min
a7 1  

aa
2 + 1r - 12a

a - 1
b = 1 + 2r. 

Utilizing these results, we may now go on to write

 a
N

n = 1
∙ ju1n2∙2 …

rd

1 -
1

1 + 2r

7w∼102 7 2 + (1 + 2r)2a
N

n = 1
∙ n1n2∙2 
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  = 2r11 + 2r2d 7w∼102 7 2 + 11 + 2r22a
N

n = 1
∙ n1n2 ∙2 

  … 11 +  2r22 ad 7w∼102 7 2 +  a
N

n = 1
∙ n1n2 ∙2b .  

We have thus upper bounded the energy gain of the RLS algorithm as follows:

 
a
N

n = 1
∙ ju1n2 ∙2

d 7w∼102 7 2 + a
N

n = 1
∙ n1n2 ∙2

… 11 + 2r22. (11.24)

Since this inequality is true for all disturbances, we clearly have

 sup
w, v∈h2

§ a
N

n = 1
∙ ju1n2 ∙2

d 7w∼102 7 2 + a
N

n = 1
∙ n1n2 ∙2

¥ … 11 + 2r22, (11.25)

which is the desired upper bound on the maximum energy gain (or H∞ norm) of the 
RLS algorithm.

lower bound on the H∞ norm for the rls algorithm

The strategy we used to obtain a lower bound on the maximum energy gain of the LMS 
algorithm in Section 11.3 was to construct a suitable disturbance signal and to compute 
its energy gain; the rationale for doing this is that the energy gain for any disturbance 
signal serves as a lower bound on the maximum (or worst-case) energy gain. We shall 
adopt a similar strategy now for the RLS algorithm.

To this end, note that we can always choose the disturbance sequence v(n) to 
be such that the inequality in Eq. (11.21) is achieved: All we need to do is choose the 
v(n) in such a way that j(n) = ju(n) + v(n) is zero except for the time instant for which 
r = maxnr1n2 is achieved. Furthermore, we can always choose the unknown tap-weight 
vector w such that w∼1N2 = w - wn 1N2 = 0. Denoting this particular disturbance signal 
by 5wn , n1n26, we may then use Eq. (11.20) to write

 
1
r a

N

n = 1
∙ ju1n2 + n1n2 ∙2 = d 7 w≂102 7 2 + a

N

n = 1
∙ n1n2 ∙2, (11.26)

where the new initial condition w≂(0) corresponds to the choice w. We now proceed with 
a dual argument for a that gave us the upper bound of Eq. (11.25). Specifically, for all 
a 7 0, we have

 ∙ a + b ∙2 … a1 +
1
a
b ∙ a ∙2 + 11 + a2 ∙ b ∙2. 

Applying this inequality, with a = ju(n) and b = v(n), to Eq. (11.26), we obtain (after a 
rearrangement of terms)
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1 +

1
a

r a
N

n = 1
∙ ju1n2 ∙2 Ú d 7 w≂102 7 2 + a1 -

1 + a

r
b a

N

n = 1
∙ n1n2 ∙2. 

Dividing both sides of this inequality by a1 +
1
a
b >r, we obtain

 a
N

n = 1
∙ ju1n2 ∙2 Ú

rd

1 +
1
a

7 w≂102 7 +
-a2 + a1r - 12

a + 1 a
N

n = 1
∙ n1n2 ∙2. (11.27)

To obtain the “tightest” possible bound on aN
n = 1 ∙ ju1n2 ∙2, we maximize over a 7 0 and 

the summation aN
n = 1 ∙ n1n2 ∙2 on the right-hand side of Eq. (11.27). Here again, it is not 

hard to show that

 min
a7 0

 a -a2 + 1r - 12a
a + 1

b = 12r - 122 

and

 arg min
a 7 0

 a -a2 + 1r - 12a
a + 1

b = 2r - 1. 

Therefore, using this pair of results in Eq. (11.27) yields

  a
N

n = 1
∙ ju1n2 ∙2 Ú

rd

1 +
12r - 1

7 w≂102 7 2 + 12r - 122a
N

n = 1
∙ n1n2 ∙2  

  = 2r 12r - 12d 7 w≂102 7 2 + 12r - 122a
N

n = 1
∙ n1n2 ∙2 

  Ú 12r - 122 ad 7 w≂102 7 2 + a
N

n = 1
∙ n1n2 ∙2b .  

Accordingly, we may go on to write the following expression for the lower bound on the 
energy gain produced by the RLS algorithm:

  g2
RLS = sup

w, v∈h2
§ a

N

n = 1
∙ ju1n2 ∙2

d 7 w≂102 7 2 + a
N

n = 1
∙ v1n2 ∙2

¥ 

  Ú 12r - 122.  (11.28)

Combining lower and upper bounds

With the results of Eqs. (11.25) and (11.28) at hand, we may now combine this pair of 
equations in the manner shown here:

 12r - 122 … g2
RLS … 12r + 122. (11.29)
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The upper and lower bounds in the RLS algorithm shown in Eq. (11.29) appear to be 
relatively tight (especially when the term r is large) since they differ by 2 in that

 12r + 12 - 12r - 12 = 2. 

11.5  Comparative evaluations oF the lms and rls algorithms 
From the perspeCtive oF robustness

Now that we have completed the analysis of the LMS and RLS algorithms in terms of 
their respective H∞ norms (i.e., g2), we are now ready to make the following comparisons 
between them:

 1. Unlike the LMS algorithm, the maximum energy gain, g2
RLS in Eq. (11.28), can 

exceed unity, which means that the RLS algorithm can amplify disturbance signals. 
It follows therefore that, in general, the RLS algorithm is less robust to uncertain-
ties than the LMS algorithm.

 2. The maximum energy gain of the RLS algorithm is dependent on the input data 
because both the lower and upper bounds in Eq. (11.29) depend on the term

 r = max
n

31 + uH1n2𝚽-11n - 12u1n24, 
  which is data dependent. Accordingly, unlike the LMS algorithm, robustness of the 

RLS algorithm depends on the input data, which should not be surprising because 
the RLS algorithm is based on the method of least-squares that is model-dependent.

 3. Noting that

  r Ú r102  

  = 1 + d-1 7u102 7 2, 
  where d is the regularization parameter in the RLS algorithm, we may redefine 

the upper bound on the H∞ norm of the RLS algorithm in Eq. (11.29) by writing

 g2
RLS … a21 + d-1 7u102 7 2 + 1b

2

. (11.30)

  This upper bound clearly shows that the smaller we make the regularization para-
meter d, the less robust the RLS algorithm is. In a way, the observation just made, 
albeit in a different way, is reminiscent of the behavior of the LMS algorithm: The 
larger we make the step-size parameter m, the less robust the LMS algorithm is.

11.6 risk-sensitive optimality

One other noteworthy issue related to robustness that distinguishes the LMS algo-
rithm from its RLS counterpart is risk-sensitive optimality. To expand on this issue, 
consider the regression model of Eq. (11.1), reproduced here for convenience of 
presentation:

 d1n2 = wHu1n2 + v1n2, 
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where 5u1n2, d1n26N
n = 1 denotes the training data set, the unknown vector w parameterizes 

the multiple linear regression model, and v(n) is additive disturbance. Adopting a stochastic 
interpretation of the risk-sensitive optimality problem, assume that the sources of uncer-
tainties, represented by w and v(n) in the model, are Gaussian distributed. Specifically:

	 •	 w has zero mean and correlation matrix is mI, where m is an adjustable positive 
parameter and I is the identity matrix.

	 •	 v(n) has zero mean and unit variance; moreover, it is assumed to be independently 
and identically distributed (i.i.d.) Gaussian.

Furthermore, let y(n), denoting the output of the estimator of interest (i.e., linear adap-
tive filtering algorithm), be dependent on past values of the desired response, d(n), as 
shown by

y(1) = 0,
y(2) depends on d(1),
y(3) depends on d(1) and d(2),

and so on for n up to and equal to N, denoting the training data length. Then, under the sto-
chastic scenario just described, we may make the following two statements (Hassibi, 2003):

 1. The LMS algorithm recursively solves the risk-sensitive optimization problem

 min
5y1n26N

n = 1

 𝔼
5u1n2, d1n26N

n = 1

c exp aa
N

i = 1
1y1i2 - wHu1i222b d , (11.31)

  provided that the step-size parameter, m, satisfies the condition

 m …
1

7u1n2 7 2 for all n. 

 2. Moreover, provided that the input vector u(n) is excitatory, then there is no estima-
tor that renders the cost function defined by the expectation over the entire data 
set, namely,

 𝔼5d1n2, u1n26N
n = 1

c exp a 1
g2 a

N

i = 1
1y1i2 - wHu1i222b d , (11.32)

  to be finite for any g 6 1.

Correspondingly, under the same Gaussian assumptions imposed on the disturbances, 
the RLS algorithm minimizes the mean-square-error cost function:

 𝔼5u1i2, d1n26N
n = 1

c a
N

i = 1
1y1i2 - wHu1i222 d . (11.33)

Comparing the cost function of Eq. (11.32) for the LMS algorithm with that of 
Eq. (11.33) for the RLS algorithm, we readily see that because of the exponential func-
tion in Eq. (11.32), the LMS algorithm places a much larger penalty on large values of 
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the estimation error, given by the difference, d(n) − wHu(n). Stated in a comparative way, 
we may say that the LMS algorithm is more sensitive to large prediction errors than the 
RLS algorithm in the following sense:

Whereas the RLS algorithm is concerned with the frequent occurrence of estima-
tion errors that are of moderate values, the LMS algorithm is more concerned with 
the occasional occurrence of large estimation errors.

It is for this reason that the formula of Eq. (11.32), exemplified by the LMS algorithm, 
is referred to as a risk-sensitive criterion.8

11.7 trade-oFFs between robustness and eFFiCienCy

Having studied the comparative robustness of the LMS and RLS algorithms in this 
chapter, when the key issue of interest is robustness in the face of unknown distur-
bances, the LMS algorithm outperforms the RLS algorithm in general. But, then, there 
is another key practical issue, namely efficiency, which provides a statistical yardstick 
of its own for assessing the cost of finding an acceptable solution to an adaptive filter-
ing problem.

As a reminder, the idea of efficiency was discussed in Chapter 6 on the LMS algo-
rithm and Chapter 10 on the RLS algorithm. Therein, we established that the statistical 
efficiency of an adaptive filtering algorithm is measured in terms of the rate of conver-
gence, defined as the number of adaptation cycles needed for the algorithm to relax to 
a steady state on or close to the Wiener solution starting from some initial condition. 
Typically, relaxation (i.e., convergence) of the LMS algorithm is slower than that of the 
RLS algorithm by more than an order of magnitude. It follows therefore that this time 
around, when the issue of interest is performance, the RLS algorithm outperforms the 
LMS algorithm.

These two conflicting scenarios point to the lack of a “universal” best adaptive 
filtering algorithm for all conceivable problems that can arise in practice. In particular, 
the lack of universality may be viewed as a manifestation of the so-called no-free-lunch 
theorem for optimization, which may be succinctly stated as follows (see Wolpert and 
Macreedy, 1997):

An elevated performance of an algorithm over one class of problems is guaranteed 
to be offset over another class.

Accordingly, in the context of adaptive filtering algorithms, we have a fundamental 
trade-off between deterministic robustness in the face of uncertainties on the one hand 
and statistical efficiency on the other. Resolution of this trade-off can only be attained 
by considering the practical realities of the application of interest.

8In Whittle (1990), estimators that minimize the criterion of Eq. (11.32), parameterized by positive 
values of g, are said to constitute a family of risk-averse estimators.

In a historical context, it should also be noted that the idea of an exponential quadratic cost was first 
described in classic control theory by Jacobson (1973).
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lessons drawn from the no-Free-lunch theorem

Typically, but not always, robustness overrides efficiency in many applications of adap-
tive filtering. The intuitive rationale for saying so is that, from an engineering perspec-
tive, it would be preferable to employ an adaptive filtering algorithm that is robust and 
therefore capable of providing a relatively satisfactory performance when the algo-
rithm is expected to operate under unknown disturbances. Generally speaking, in a 
nonstationary environment expected to suffer from unknown disturbances, robustness 
is frequently traded off for performance by choosing the LMS algorithm over its RLS 
counterpart; this issue is discussed in more detail in Chapter 13.

Another issue that weighs on this choice, favoring LMS, is complexity. From the 
discussions presented in Chapters 6 and 10, recall that computational complexity of the 
LMS algorithm scales linearly with respect to the size of the FIR filter (i.e., the number 
of tap weights), whereas computational complexity of the RLS algorithm follows a square 
law. Here again, the simplicity of the LMS algorithm overrides the RLS algorithm.

It is for these two compelling reasons that the LMS algorithm and its variants are 
the most widely used adaptive filtering algorithms for signal processing and control 
applications (Widrow & Kamenetsky, 2003).

Having stressed popularity of the LMS algorithm, however, we should not over-
look applications of the RLS algorithm where the need for performance overrides 
robustness. For example, in wireless communications, where time is of the essence, the 
fast rate of convergence of the RLS algorithm makes it the method of choice over the 
relatively slow rate of convergence of the LMS algorithm for adaptive equalization.

This advantage of the RLS algorithm over the LMS algorithm is well illustrated 
in the typical example of Fig. 11.2 for a Digital Enhanced Cordless Telecommunications 
telephone (Fuhl, 1994). In this figure, we see that the RLS algorithm has converged after 
about 10 bits of data, whereas the LMS algorithm requires almost 300 bits of data to 
converge. The large “residual” error of the RLS algorithm in Figure 11.2, compared to 

FiguRe 11.2 Mean-square error (MSE) as a function of the number of adaptation cycles for a special 
kind of equalizer using feedback in decision making, hence the name “decision feedback equalizer”.  
LMS: m = 0.03; RLS: l = 0.99; d = 10−9. See also Molisch (2011). 
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the LMS algorithm, is attributed to environmental fluctuations that appear to affect the 
RLS algorithm more than the LMS algorithm. This observation confirms the inferior 
robust behavior of the RLS algorithm compared to the LMS algorithm. Notwithstanding 
this relative weakness of the RLS algorithm due to temporal variations of the wireless 
 channel, from a practical perspective we find that the fast rate of convergence of the RLS 
algorithm is deemed to be more important than the extremely small residual error rate 
of the LMS algorithm. In other words, in this wireless communication example, statistical 
efficiency of the RLS algorithm is favored over robustness of the LMS algorithm.

11.8 summary and disCussion

By introducing a detailed treatment of robustness of an adaptive filtering algorithm in 
this chapter, in effect, we have evened out the playing field as a counterpart to statisti-
cal efficiency considered in previous chapters. In this expanded field, we may therefore 
make two important remarks insofar as the LMS and RLS algorithms are concerned:

 1. First, the LMS algorithm is model-independent in statistical terms. Hence, with reli-
ance on the method of stochastic gradient descent for its derivation, it is destined 
to provide a suboptimal solution. By assigning a small enough value to its step-size 
parameter, m, its robustness in the H∞ sense is assured. But, the price paid for this 
practical benefit is a degraded statistical efficiency, which shows up in a relatively 
long rate of convergence.

 2. Second, the RLS algorithm is model-dependent in that its derivation is based on the 
method of least squares, which is pivoted on a multiple linear regression model for 
describing the desired response. Accordingly, the RLS algorithm is optimal insofar 
as statistical efficiency is concerned, which manifests itself in a rate of convergence 
that is faster than that of the LMS algorithm by more than an order of magnitude. 
However, the price paid for this desirable property is increased sensitivity to dis-
turbances, which results in a degraded robust behavior in general.

What we have just described here is merely another example of what the no-free-lunch 
thereom teaches us.

To conclude, we may say that in the final analysis, the decision in favor of the LMS 
or RLS algorithm for linear adaptive filtering hinges on the application of interest and 
the environment in which it needed to operate.

problems

Notes. In the next four problems, we revisit robustness of the LMS algorithm, with each problem 
casting a perspective of its own on robustness. The first three problems, viewed together, reinforce 
robustness of the LMS algorithm, albeit in a way different from that presented in Section 11.3. The 
fourth problem provides further insight on robustness of the LMS algorithm. To simplify matters, 
the training data are real valued.

 1. Consider the LMS algorithm, for which the update formula is given by

 wn 1n + 12 = wn 1n2 + mu1n2e1n2, 
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  where the error signal

 e1n2 = d1n2 - wn T1n2u1n2 

  and the desired response

 d1n2 = wTu1n2 + v1n2. 

  The superscript T denotes transposition. The w is an unknown weight vector, for which wn 1n2 
is the estimate computed by the algorithm at adaptation cycle n. The unknown w and v(n) 
are responsible for disturbances affecting the algorithm’s behavior.

   Define the weight-error vector

 w∼1n2 = w - wn 1n2. 

  Let the estimate of the desired response, d(n), be defined by

 dn1n2 = wn T1n2u1n2 

  and the step-size parameter, m, satisfy the condition

 m 6
1

7u1n2 7 2 for all n. 

  The requirement is to show that the following inequality

 
a
N

n = 1
j2

u1n2

m-1 7w∼102 7 2 + a
N

n = 0
v21n2

… 1 

  holds in accordance with the terminology introduced in Section 11.3.
 (a) Starting with the scaled expression, m- 12w∼1n2, show that

 m- 12w∼1n + 12 = m- 12w∼1n2 - m- 12u1n21d1n2 - wn T1n2u1n22. 

 (b) Correspondingly, show that

 v1n2 = d1n2 - wn T1n2u1n2 - w∼T1n2u1n2. 

 (c) Having evaluated both the squared Euclidean norm of the equation under part (a) and 
the squared magnitude of the equation under part (b), and, then, having subtracted the 
results so obtained, show that

m-1 7w∼1n + 12 7 2 - v21n2 = m-1 7w∼1n2 7 2 - 1w∼T1n2u1n222 - 11 -  m 7u1n2 7 221d1n2 - w∼T1n2u1n222.

 (d) Add up the equations under part (c) from adaptation cycle n = 0 to N to obtain the fol-
lowing equation after cancelling common terms:

m-1 7w∼1N2 7 2 - a
N

n = 0
v21n2 = m-1 7w∼102 7 2 - a

N

n - 0
1w∼T1n2u1n222 - a

N

n = 0
11 - m 7u1n2 7 221d1n2 - w∼T1n2u1n222.

 (e) Next, reformulate the equation under part (d) so as to take the form of the rational function

 

am-1 7w∼1N2 7 2 + a
N

n = 0
1w∼T1n2u1n222 + a

N

n - 0
11 - m 7u1n2 7 221d1n2 - w∼T1n2u1n222b

m-1 7w∼102 7 2 + a
N

n = 0
v21n2

= 1. 
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 (f) From the standpoint of robustness, the only term that matters in the numerator of the 
equation in part (e) is the second term. Explain why.

   With the answer to the question at hand and recognizing the condition imposed on 
the step-size parameter, m, proceed on to express the prescribed solution to the problem 
namely,

 
a
N

n = 0
j2

u1n2

m-1 7w∼102 7 2 + a
N

n = 0
v21n2

… 1. 

 2. In this second problem, we reverse direction. Specifically, the starting point is described by 
the inequality

 
a

i

n = 0
1dn1n2 - wTu1n222

m-1wTw + a
i- 1

n = 0
v21n2

… 1, 

  where, in the numerator, i denotes an arbitrary instant of time. The requirement is to show 
that for this inequality to hold, the step-size parameter, m, must satisfy the following condition:

 m …
1

uT1i2u1i2 for all i. 

 (a) Show that the above-mentioned inequality is equivalently expressed as follows:

 m-1wTw + a
i- 1

n = 0
1d1n2 - wTu1n222 - a

i

n = 0
1dn1n2 - wTu1n222 Ú 0 

  for all values of w.
 (b) The expression on the left-hand side of the inequality under (a) is an indefinite quadratic 

form. Why?
   For the quadratic form to be positive, it has to have a minimum over all w. To this 

end, differentiate the inequality twice to obtain the following result:

 m-1I - u1i2uT1i2 Ú 0, 

  where I is the identity matrix.
 (c) Recognizing that the outer product u(i)uT(i) is a matrix of rank one, hence, show that  

the step-size parameter, m, must satisfy the following condition:

 m …
1

uT1i2u1i2 for all i 

  to validate the inequality under part (b). With i being arbitrary, this is precisely the pre-
scribed condition for the problem.

 3. Reconfirm with reference to the robustness of the LMS algorithm that “the maximum energy 
gain for any algorithm, which corresponds to the ‘worst case’ disturbance, can never be less 
than unity.”

 4. To expand on the quadratic form in part (a) of Problem 2 being indefinite, differentiate this 
inequality once with respect to the unknown vector w to find the optimizing w, as shown by

 w = 3mI - u1i2uT1i24-1aa
i- 1

n = 0
e1n2u1n2 - dn1i2u1i2b , 
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  where e(n) is the error signal defined by

 e1n2 = d1n2 - dn1n2. 

 5. Explain in detail how the robustness of the RLS algorithm may be studied. Compute the 
bounds on the maximum energy gain from the input disturbances to the estimation errors.

 6. Derive the condition for the members of both causal sequences to satisfy the Cauchy–Schwarz 
Inequality for computing the H∞ Norm.

 7. In this problem, we study robustness of the normalized LMS algorithm. The procedure to be 
followed is similar to that described in Problem 1.

   Specifically, for real-valued data, the update formula for the normalized algorithm is 
given by

 wn 1n + 12 = wn 1n2 +
m∼u1n2
7u1n2 7 2e1n2, 

  where m∼ is a new step-size parameter.
 (a) Show that the condition for robustness of the normalized algorithm is described by the 

inequality:

 m∼ 6 1. 

 (b) As pointed out in Chapter 7, to guard against the potential possibility of the input vector 
u(n) assuming a value very close to zero, the update formula is modified as follows:

 wn 1n + 12 = wn 1n2 +
m∼u1n2

e + 7u1n2 7 2, 

  where e is a small positive constant. How is the condition on the step-size parameter, m∼, 
modified due to the inclusion of e?.

 8. Based on the results derived in this chapter on robustness of the LMS and normalized LMS 
algorithms, and the corresponding ones derived in Chapters 6 and 7 based on statistical learn-
ing theory, we may categorize the conditions imposed on their step-size parameter, as sum-
marized in Table P11.1.

 (a) Which particular set, those based on robustness or statistical learning theory, is more 
stringent from a practical standpoint?

 (b) Discuss practical implications of the answer in part (a).

TAbLe P11.1 

Robustness
Statistical learning 

theory

LMS algorithm
0 6 m 6

1
7u1n2 7 2 0 6 m 6

2
l max 

Normalized LMS algorithm 0 6 m 6 1 0 6 m 6 2
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C h a p t e r  1 2

Finite-precision effects

From a practical perspective, the study of adaptive filters would be incomplete without 
some discussion of the effects of quantization, or round-off, errors that arise when such 
filters are implemented digitally.

The theory of adaptive filtering developed in previous chapters assumes the use 
of an analog model (i.e., a model with infinite precision) for the samples of input data as 
well as for the internal algorithmic calculations. This assumption is made in order to take 
advantage of well-understood continuous mathematics. Adaptive filter theory, however, 
cannot be applied to the construction of an adaptive filter directly; rather, it provides 
an idealized mathematical framework for such a construction. In particular, in a digital 
implementation of an adaptive filtering algorithm as ordinarily employed in practice, 
the input data and internal calculations are all quantized to a finite precision that is 
determined by design and cost considerations. Consequently, the quantization process 
has the effect of causing the performance of a digital implementation of the algorithm 
to deviate from its theoretic continuous value. The nature of this deviation is influenced 
by a combination of factors:

	 •	 Design details of the adaptive filtering algorithm.
	 •	 Degree of ill conditioning (i.e., the eigenvalue spread) in the underlying correlation 

matrix that characterizes the input data.
	 •	 Form of the numerical computation (fixed point or floating point) employed.

It is important for us to understand the numerical properties of adaptive filter-
ing algorithms, as doing so would obviously help us in meeting design specifications. 
Moreover, the cost of a digital implementation of an algorithm is influenced by the 
number of bits (i.e., the precision) available for performing the numerical computations 
associated with the algorithm. Generally speaking, the cost of implementation increases 
with the number of bits employed; therefore, there is ample practical motivation for 
using the minimum number of bits possible.

We begin our study of the numerical properties of adaptive filtering algorithms by 
examining the sources of quantization error and the related issues of numerical stability 
and accuracy.
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12.1 Quantization errors

In the digital implementation of an adaptive filter, essentially two sources of quantiza-
tion error arise:

 1. Analog-to-digital conversion. Given that the input data are in analog form, we 
may use an analog-to-digital converter for their numerical representation. For our 
present discussion, we assume a quantization process with a uniform step size d 
and a set of quantizing levels positioned at 0, ;d ;2d, . . . . Figure 12.1 illustrates the 
input–output characteristic of a typical uniform quantizer. Consider a particular 
sample at the quantizer input, with an amplitude that lies in the range id - (d/2) 
to id + (d/2), where i is an integer (positive, negative, or zero) and id defines the 
quantizer output. Such a quantization process introduces a region of uncertainty 
of width d, centered on id. Let h denote the quantization error. Correspondingly, 
the quantizer input is id + h, where -d/2 … h … d/2. When the quantization is fine 
enough (say, the number of quantizing levels is 64 or more) and the signal spec-
trum is sufficiently rich, the distortion produced by the quantizing process may 
be modeled as an additive independent source of white noise with zero mean and 
variance determined by the quantizer step size d (Gray, 1990). It is customary to 

FigurE 12.1 Input–output characteristic of a uniform quantizer.
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assume that the quantization error h is uniformly distributed over the range from 
-d/2 to d/2. The variance of the quantization error is therefore given by

 s2 = L
d >  2

-d >  2

1
d

 h2dh

 =
d2

12
. 

(12.1)

  We assume that the quantizer input is properly scaled, so that it lies inside the 
interval (-1, +1]. With each quantizing level represented by B bits plus a sign, the 
quantizer step size is

 d = 2-B. (12.2)

  Substituting Eq. (12.2) into Eq. (12.1), we find that the quantization error resulting 
from the digital representation of input analog data has the variance

 s2 =
2-2B

12
. (12.3)

 2. Finite-wordlength arithmetic. In a digital machine, a finite wordlength is commonly 
used to store the result of internal arithmetic calculations. Assuming that no over-
flow takes place during the course of computation, additions do not introduce any 
error (if fixed-point arithmetic is used), whereas each multiplication introduces 
an error after the product is quantized. The statistical characterization of finite-
wordlength arithmetic errors may be quite different from that of analog-to-digital 
conversion errors. Finite-wordlength arithmetic errors may have a nonzero mean, 
which results from either rounding off or truncating the output of a multiplier so 
as to match the prescribed wordlength.

The presence of finite-wordlength arithmetic raises serious concern in the digital 
implementation of an adaptive filter, particularly when the tap weights (coefficients) 
of the filter are updated on a continuous basis. The digital version of the filter exhibits 
a specific response, or propagation, to such errors, causing its performance to deviate 
from the ideal (i.e., infinite-precision) form of the filter. Indeed, it is possible for the 
deviation to be of a catastrophic nature, in the sense that the errors resulting from the 
use of finite-precision arithmetic may accumulate without bound. If such a situation is 
allowed to persist, the filter is ultimately driven into an overflow condition, and the algo-
rithm is said to be numerically unstable. Clearly, for an adaptive filter to be of practical 
value, it has to be numerically stable. An adaptive filter is said to be numerically stable 
if the use of finite-precision arithmetic results in deviations from the infinite-precision 
form of the filter that are bounded. It is important to recognize that numerical stability 
is an inherent characteristic of an adaptive filter. In other words, if an adaptive filter is 
numerically unstable, then increasing the number of bits used in a digital implementa-
tion of the filter will not make that implementation stable.

Another issue that requires attention in the digital implementation of an adaptive 
filtering algorithm is numerical accuracy. Unlike numerical stability, however, numerical 
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accuracy of an adaptive filter is determined by the number of bits used to implement 
internal calculations of the filter. The larger the number of bits used, the smaller is the 
deviation from the ideal performance, and the more accurate is the digital implementa-
tion of the filter. In practical terms, it is meaningful to speak of the numerical accuracy 
of an adaptive filter only if the filter is numerically stable.

For the remainder of this chapter, we discuss the numerical properties of adap-
tive filtering algorithms and related issues. We begin with the least-mean-square (LMS) 
algorithm and then move on to recursive least-squares (RLS) algorithms.

12.2 Least-Mean-sQuare (LMs) aLgorithM

To simplify the discussion of finite-precision effects on the performance of the LMS 
algorithm,1 we will depart from the practice followed in previous chapters and assume 
that the input data, and therefore the filter coefficients, are all real valued. This assump-
tion, made merely for convenience of presentation, will in no way affect validity of the 
findings presented herein.

A block diagram of the finite-precision LMS algorithm is depicted in Fig. 12.2. 
Each of the blocks (operators) labeled Q represents a quantizer. Each Q introduces a 
quantization, or round-off, error of its own. We may describe the input–output relations 
of the quantizers operating in the figure as follows:

 1. For the input quantizer connected to u(n), we have

 uq1n2 = Q3u1n24 
  = u1n2 + Hu 1n2, (12.4)

  where Hu(n) is the input quantization error vector.
 2. For the quantizer connected to the desired response d(n), we have

 dq 1n2 = Q3d1n24 
 = d1n2 + hd1n2, (12.5)

  where hd(n) is the desired-response quantization error.
 3. For the quantized tap-weight vector wn q 1n2, we write

 wn q 1n2 = Q3wn 1n24 
 = wn 1n2 + ∆wn 1n2, (12.6)

1The first treatment of finite-precision effects in the LMS algorithm was presented by Gitlin et al. 
(1973). Subsequently, more detailed treatments of these effects were presented by Weiss and Mitra (1979), 
Caraiscos and Liu (1984), and Alexander (1987). The paper by Caraiscos and Liu considers steady-state 
conditions, whereas the paper by Alexander is broader in scope, in that it considers transient conditions. The 
problem of finite-precision effects in the LMS algorithm is also discussed in Cioffi (1987) and in Sherwood 
and Bershad (1987). Another problem encountered in the practical use of the LMS algorithm is parameter 
drift, which is discussed in detail in Sethares et al. (1986). The material presented in Section 12.2 is very much 
influenced by the contents of these papers. In our presentation, we assume the use of fixed-point arithmetic. 
Error analysis of the LMS algorithm for floating-point arithmetic is discussed in Caraiscos and Liu (1984).
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  where wn 1n2 is the tap-weight vector in the infinite-precision LMS algorithm and 
∆wn 1n2 is the tap-weight error vector resulting from quantization.

 4. For the quantizer connected to the output of the finite-duration impulse response 
(FIR) filter represented by the quantized tap-weight vector wn q 1n2, we write

 yq 1n2 = Q3uT
q  1n2wn q 1n24 

 = uT
q  1n2wn q 1n2 + hy  1n2, (12.7)

  where hy(n) is the filtered-output quantization error and the superscript T denotes 
transposition.

The finite-precision LMS algorithm is described by the pair of relations

 eq 1n2 = dq 1n2 - yq 1n2 (12.8)

and

 wn q 1n + 12 = wn q 1n2 + Q3meq 1n2uq 1n24, (12.9)

where yq(n) is as defined in Eq. (12.7). The quantizing operation indicated on the right-
hand side of Eq. (12.9) is not shown explicitly in Fig. 12.2; nevertheless, it is basic to 
the operation of the finite-precision LMS algorithm. The use of Eq. (12.9) has the fol-
lowing practical implication: The product meq(n)uq(n), representing a scaled version 
of the gradient vector estimate, is quantized before being added to the contents of the 
tap-weight accumulator. Because of hardware constraints, this form of digital implemen-
tation is preferred to the alternative method of operating the tap-weight accumulator 
in double-precision mode and then quantizing the tap weight to single precision at the 
accumulator output.

FigurE 12.2 Block diagram representation of the finite-precision form of the LMS 
algorithm.
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In a statistical analysis of the finite-precision LMS algorithm, it is customary to 
make the following assumptions:

 1. The input data are properly scaled so as to prevent overflow of the elements of 
the quantized tap-weight vector wn q 1n2 and the quantized output yq(n) during 
filtering.

 2. Each data sample is represented by BD bits plus a sign, and each tap weight is 
represented by BW bits plus a sign. Thus, the quantization error associated with a 
BD-plus-sign bit number (i.e., a sample datum) has the variance

 s2
D =

2-2BD

12
. (12.10)

  Similarly, the quantization error associated with a BW-plus-sign bit number (i.e., 
the tap weight) has the variance

 s2
W =

2-2BW

12
. (12.11)

 3. The elements of the input quantization error vector hu(n) and the desired-response 
quantization error hd(n) are white-noise sequences, independent of the signals and 
independent from each other. Moreover, they have zero mean and variance s2

D.
 4. The output quantization error hy(n) is a white-noise sequence, independent of the 

input signals and other quantization errors. It has a mean of zero and a variance 
equal to cs2

D, where c is a constant that depends on the way in which the inner 
product uT

q  1n2wn q 1n2 is computed. If the individual scalar products in uT
q  1n2wn q 1n2 

are all computed without quantization and then summed, and if the final result is 
quantized in BD bits plus a sign, then the constant c is unity, and the variance of 
hy(n) is s2

D, as defined in Eq. (12.10). If, in contrast, the individual scalar products 
in uT

 1n2wn q 1n2 are quantized and then summed, the constant c is M, and the vari-
ance of hy(n) is Ms2

D, where M is the number of taps in the FIR filter implementa-
tion of the LMS algorithm.

 5. The small step-size theory of Section 6.4, dealing with the infinite-precision LMS 
algorithm, is invoked.

total output Mean-square error

The filtered output yq(n) produced by the finite-precision LMS algorithm presents a 
quantized estimate of the desired response. The total output error is therefore equal to 
the difference d(n) - yq(n). Using Eq. (12.7), we may express this error as

  etotal 1n2 = d1n2 - yq 1n2  

  = d1n2 - uT
q  1n2wn q 1n2 - hy  1n2. (12.12)

Substituting Eqs. (12.4) and (12.6) into Eq. (12.12) and ignoring all quantization error 
terms higher than first order, we get

 etotal 1n) = 3d1n2 - uT
 1n2wn 1n24 - 3∆wn T

 1n2u1n2 + HT
u1n2wn 1n2 + hy  1n24. (12.13)
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The term inside the first set of square brackets on the right-hand side of Eq. (12.13) is 
the estimation error e(n) in the infinite-precision LMS algorithm. The term inside the 
second set of square brackets is entirely due to quantization errors in the finite-precision 
LMS algorithm. Because of Assumptions 3 and 4 (i.e., the quantization errors Hu and hy 
are independent of the input signals and of each other), the quantization error-related 
terms ∆wn T

 1n2u1n2 and hy(n) are uncorrelated with each other. Basically, for the same 
reason, the infinite-precision estimation error e(n) is uncorrelated with both HT

u  1n2wn 1n2 
and hy(n). By invoking the small step-size theory of Chapter 6, we may write

𝔼3e1n2∆wn T
 1n2u1n24 = 𝔼3∆wn T

 1n24𝔼3e1n2u1n24.
Moreover, by invoking this same theory, we may show that the expectation 𝔼3∆wn 1n2] 
is zero. (See Problem 2.) Hence, e(n) and ∆wn T

 1n2u1n2 are also uncorrelated. In 
other words, the infinite-precision estimation error e(n) is uncorrelated with all three 
 quantization-error-related terms—∆wn T

 1n2u1n2, HT
u  1n2wn 1n2, and hy(n)—in Eq. (12.13).

Using these observations and assuming that the step-size parameter m is small, 
Caraiscos and Liu (1984) showed that the total output mean-square error produced in 
the finite-precision algorithm has the steady-state composition

 𝔼[e2
total 1n2] = Jmin 11 + m2 + j11s2

w, m2 + j2 1s2
D2. (12.14)

The first term on the right-hand side of Eq. (12.14), Jmin11 + m2, is the mean-square 
error of the infinite-precision LMS algorithm. In particular, Jmin is the minimum 
mean-square error of the optimum Wiener filter, and m is the misadjustment of the 
infinite-precision LMS algorithm. The second term, j11s2

w, m2, arises because of the 
error ∆wn 1n2 in the quantized tap-weight vector wn q 1n2. This contribution to the total 
output mean-square error is inversely proportional to the step-size parameter m. The 
third term, j21s2

D2, arises because of two quantization errors: the error Hu(n) in the 
quantized input vector uq(n) and the error hy(n) in the quantized filter output yq(n). 
However, unlike j1 1s2

w, m2, this final contribution to the total output mean-square 
error is, to a first order of approximation, independent of the step-size parameter m.

From the infinite-precision statistical learning theory of the LMS algorithm pre-
sented in Chapter 6, we know that decreasing m reduces the misadjustment m and thus 
leads to an improved performance of the algorithm. In contrast, the inverse dependence 
of the contribution j1 1s2

w, m2 on m in Eq. (12.14) indicates that decreasing m has the 
effect of increasing the deviation from infinite-precision performance. In practice, there-
fore, the step-size parameter m may be decreased only to a level at which the degrading 
effects of quantization errors in the tap weights of the finite-precision LMS algorithm 
become significant.

Since the misadjustment m decreases with m and the contribution j11s2
w, m2 

increases with reduced m, we may (in theory) find an optimum value of m for which the 
total output mean-square error in Eq. (12.14) is minimized. However, it turns out that 
this minimization results in an optimum value mo for the step-size parameter m that is 
too small to be of practical value. In other words, such a mo does not permit the LMS 
algorithm to converge completely. Indeed, Eq. (12.14) for calculating the total output 
mean-square error is valid only for a m that is well in excess of mo. Such a choice of m is 
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504   Chapter 12  Finite-Precision Effects

necessary to prevent the occurrence of a phenomenon known as stalling, described later 
in the section.

Deviations During the Convergence period

Equation (12.14) describes the general structure of the total output mean-square error 
of the finite-precision LMS algorithm, assuming that the algorithm has reached a steady 
state. During the convergence period of the algorithm, however, the situation is more 
complicated.

A detailed treatment of the transient adaptation properties of the finite-precision 
LMS algorithm is presented in Alexander (1987). In particular, a general formula is 
derived for the tap-weight misadjustment, or perturbation, of the finite-precision LMS 
algorithm, which is then measured with respect to the tap-weight solution computed 
from the infinite-precision form of the algorithm. The tap-weight misadjustment is 
defined by

 w1n2 = 𝔼3∆wn T
 1n2∆wn 1n24, (12.15)

where the tap-weight error vector is itself defined by [see Eq. (12.6)]

 ∆wn 1n2 = wn q 1n2 - wn 1n2. (12.16)

The tap-weight vectors wn q 1n2 and wn 1n2 refer to the finite-precision and infinite-
precision forms of the LMS algorithm, respectively. To determine 𝒲1n2, the weight 
update equation (12.9) is written as

 wn q 1n + 12 = wn q 1n2 + meq 1n2uq 1n2 + Hw 1n2, (12.17)

where Hv(n) is the gradient quantization error vector, which results from quantizing the 
product meq(n)uq(n) that represents a scaled version of the gradient vector estimate. 
The individual elements of Hv(n) are assumed to be uncorrelated in time and with each 
other and also are assumed to have a common variance s2

w. For this assumption to be 
valid, the step-size parameter m must be large enough to prevent stalling from occurring. 
(Stalling is described later in the section.)

Applying an orthogonal transformation to wn q 1n2 in Eq. (12.17) in a manner simi-
lar to that described in Section 6.4, we may study the propagation characteristics of the 
tap-weight misadjustment w1n2 during adaptation and during the steady state. Using 
what amounts to such an approach, Alexander (1987) derived the following important 
theoretic results, supported by computer simulation:

 1. The tap weights in the LMS algorithm are the most sensitive of all parameters to 
quantization. For the case of uncorrelated input data, the variance s2

w [that enters 
the statistical characterization of the tap-weight update equation (12.17)] is pro-
portional to the reciprocal of the product r(0)m, where r(0) is the average input 
power and m is the step-size parameter. For the case of correlated input data, the 
variance s2

w is proportional to the reciprocal of mlmin, where lmin is the smallest 
eigenvalue of the correlation matrix R of the input data vector u(n).

 2. For uncorrelated input data, the adaptation time constants of the tap-weight 
 misadjustment w1n2 are heavily dependent on the step-size parameter m.
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 3. For correlated input data, the adaptation time constants of w1n2 are heavily 
dependent on the interaction between m and the minimum eigenvalue lmin.

From a design point of view, it is important to recognize that the step-size para-
meter m should not be chosen too small—in spite of the infinite-precision theory of the 
LMS algorithm, which advocates a small value for m. Moreover, the more ill conditioned 
the input process u(n), the more pronounced the finite-precision effects in a digital 
implementation of the LMS algorithm will be.

Leaky LMs algorithm

To further stabilize the digital implementation of the LMS algorithm, we may use a 
technique known as leakage.2 Basically, leakage prevents overflow in a limited-precision 
environment by providing a compromise between minimizing the mean-square error 
and containing the energy in the impulse response of the adaptive filter. However, over-
flow is prevented only at the twin expenses of an increase in hardware cost and a deg-
radation in performance, compared with the infinite-precision form of the traditional 
LMS algorithm.

In the leaky LMS algorithm, the cost function

 J1n2 = e2
 1n2 + a 7wn 1n2 7 2, (12.18)

where a is a positive control parameter that is minimized with respect to the tap-weight 
vector wn 1n2. The first term on the right-hand side of the equation is the squared esti-
mation error, and the second term is the energy in the tap-weight vector wn 1n2. The 
minimization described herein (for real data) yields the following time update for the 
tap-weight vector (see Problem 5, Chapter 5):

 wn 1n + 12 = 11 - ma2wn 1n2 + me1n2u1n2. (12.19)

Here, a is a constant that satisfies the condition

0 … a 6
1
m

.

Except for the leakage factor (1 - ma) associated with the first term on the right-hand 
side of Eq. (12.19), the algorithm is of the same mathematical form as the traditional 
LMS algorithm.

Note that inclusion of the leakage factor (1 - ma) in Eq. (12.19) has the equiva-
lent effect of adding a white-noise sequence of zero mean and variance a to the input 

2Leakage may be viewed as a technique for increasing the robustness of an algorithm (Ioannou & 
Kokotovic, 1983; Ioannou, 1990). For a historical account of the leakage technique in the context of adaptive 
filtering, see Cioffi (1987). For discussions of the leakage LMS algorithm, see Widrow and Stearns (1985) and 
Cioffi (1987).

Unfortunately, the leaky LMS algorithm suffers from a degradation of performance due to the addition 
of bias to the weight estimates. Nascimento and Sayed (1999) address the two issues of bias and weight drift 
by proposing a modification to the LMS algorithm called the circular-leaky LMS algorithm. This new adaptive 
filtering algorithm solves the weight-drift problem without introducing bias into the weight estimates, yet the 
computational complexity of the algorithm is essentially the same as that of the traditional LMS algorithm.
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process u(n). This suggests another method for stabilizing a digital implementa-
tion of the LMS algorithm: A relatively weak white-noise sequence (of variance a),  
known as dither, may be added to the input process u(n), and samples of the combi-
nation may then be used as tap inputs (Werner, 1983).

stalling

Stalling, also called lockup, is a phenomenon that is not evident from Eq. (12.14), but that 
may arise in a digital implementation of the LMS algorithm. Stalling occurs when the 
gradient estimate is not sufficiently noisy. To be specific, a digital implementation of the 
LMS algorithm stops adapting, or stalls, whenever the correction term meq(n)uq(n - i) 
for the ith tap weight in the update equation (12.9) is smaller than the least significant 
bit (LSB) of the tap weight; mathematically (Gitlin et al., 1973),

 ∙meq 1n02uq 1n0 - i2 ∙ … LSB, (12.20)

where n0 is the adaptation cycle at which the ith tap weight stops adapting. Suppose 
that the condition of Eq. (12.20) is first satisfied for the ith tap weight. Then, to a 
first order of approximation, we may replace uq (n0 - i) by its root-mean-square 
(rms) value, Arms. Accordingly, using this value in the equation, we get the following 
relation for the rms value of the quantized estimation error when adaptation in the 
digitally implemented LMS algorithm stops:

 ∙ eq 1n2 ∙ …
LSB
mArms

= eD 1m2. (12.21)

The quantity eD(m), defined on the right-hand side of Eq. (12.21), is called the digital 
residual error.

To prevent the algorithm from stalling due to digital effects, the digital residual 
error eD(m) must be made as small as possible. According to Eq. (12.21), this require-
ment may be satisfied in one of two ways:

 1. The LSB may be reduced by picking a sufficiently large number of bits for the 
digital representation of each tap weight.

 2. The step-size parameter m may be made as large as possible, while still guarantee-
ing that the algorithm converges.

Another method of preventing stalling is to insert dither at the input of the 
quantizer that feeds the tap-weight accumulator (Sherwood & Bershad, 1987). Dither, 
consisting of a random sequence, essentially “linearizes” the quantizer. In other words, 
the addition of dither guarantees that the quantizer input is noisy enough for the 
gradient quantization error vector H

w
 to be again modeled as white noise (i.e., the 

elements of H
w

 are uncorrelated in time and with each other, and they have a com-
mon variance s2

w). When dither is used in the manner described here, it is desirable to 
minimize its effect on the overall operation of the LMS algorithm. This is commonly 
achieved by shaping the power spectrum of the dither so that it is effectively rejected 
by the algorithm at its output.
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parameter Drift

In addition to the numerical problems associated with the LMS algorithm, one other 
rather subtle problem is encountered in practical applications of the algorithm: Certain 
classes of input excitation can lead to parameter drift; that is, parameter estimates or 
tap weights in the LMS algorithm attain arbitrarily large values despite bounded inputs, 
bounded disturbances, and bounded estimation errors (Sethares et al., 1986). Although 
such an unbounded behavior may be unexpected, it is possible for the parameter esti-
mates to drift to infinity while all the observable signals in the algorithm converge to 
zero. Parameter drift in the LMS algorithm may be viewed as a hidden form of instabil-
ity, since the tap weights represent “internal” variables of the algorithm. Parameter drift 
may result in new numerical problems, increased sensitivity to unmodeled disturbances, 
and degraded long-term performance.

In order to appreciate the subtleties of the parameter drift problem, we need to 
introduce some new concepts relating to the parameter space. We therefore digress 
briefly from the issue at hand to do so.

A sequence of information-bearing tap-input vectors u(n) for varying adapta-
tion cycle n may be used to partition the real M-dimensional parameter space ℝM into 
orthogonal subspaces, where M is the number of tap weights (i.e., the available number 
of degrees of freedom). The aim of this partitioning is to convert an adaptive filtering 
algorithm (e.g., the LMS algorithm) into simpler subsystems and thereby provide a 
closer linkage between the transient behavior of the parameter estimates and the filter 
excitations. The partitioning we have in mind is depicted in Fig. 12.3. In particular, we 
may identify the following subspaces of ℝM:

 1. The unexcited subspace. Let the M-by-1 vector z be any element of the parameter 
space ℝM that satisfies two conditions:

	 	 •	 The Euclidean norm of the vector z is unity; that is,

  7 z 7 = 1.

	 	 •	  The vector z is orthogonal to the tap-input vector u(n) for all but a finite number 
of adaptation cycles n; that is,

     zTu1n2 ≠ 0    only finitely often. (12.22)

FigurE 12.3 Decomposition of parameter space ℝM, based on excitation.
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  Let su denote the subspace of ℝM that is spanned by the set of all such vectors z. 
The subspace su is called the unexcited subspace, in the sense that it spans those 
directions in the parameter space ℝM that are excited only finitely often.

 2. The excited subspace. Let se denote the orthogonal complement of the unexcited 
subspace su. Clearly, se is also a subspace of the parameter space ℝM, containing those 
directions in the parameter space ℝM that are excited infinitely often. Thus, except for 
the null vector, every element z belonging to the subspace se satisfies the condition

     zTu1n2 ≠ 0    infinitely often. (12.23)

  The subspace se is called the excited subspace.
 The subspace se may itself be decomposed into three orthogonal subspaces 
of its own, depending on the effects of different types of excitation on the behavior 
of the adaptive filtering algorithm. The three subspaces of se may be identified as 
follows (Sethares et al., 1986):

 	 •	  The persistently excited subspace. Let z be any vector of unit norm that lies in 
the excited subspace se. For any positive integer m and any a 7 0, choose the 
vector z such that

   zTu1i2 7 a    for n … i … n + m and for all but a finite number of n.

 (12.24)

    Given the integer m and the constant a, let sp(m, a) be the subspace spanned 
by all such vectors z that satisfy Eq. (12.24). Then there exist a finite m0 and 
a positive a0 for which the subspace sp(m0, a0) is maximal. In other words,  
sp(m0, a0) contains sp(m, a) for all m 7 0 and for all a 7 0. The subspace  
sp K sp (m0, a0) is called the persistently excited subspace, and m0 is called the 
interval of excitation. For every direction z that lies in the persistently excited 
subspace sp, there is an excitation of level a0 at least once in all but a finite 
number of intervals of length m0. In the persistently excited subspace, we are 
therefore able to find a tap-input vector u(n) rich enough to excite all the 
internal modes that govern the transient behavior of the adaptive filtering 
algorithm being probed (Narendra & Annaswamy, 1989).

	 	 •	 The subspace of decreasing excitation. Consider a sequence u(i) for which

    aa
∞

i = 1
∙ u1i2 ∙pb

1 >  p

6 ∞.  (12.25)

   Such a sequence is said to be an element of the normed linear space 𝕃 

p for 1 6 p 6∞ .  
The norm of this new space is defined by

    7u 7 p = aa
∞

i = 1
∙ u1i2 ∙pb

1 >  p

. (12.26)

   Note that if the sequence u(i) is an element of 𝕃  

p for 1 6 p 6∞ , then

    lim
nS ∞

 u1n2 = 0. (12.27)

M12_HAYK4083_05_SE_C12.indd   508 21/06/13   8:48 AM
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  Let z be any unit-norm vector that lies in the excited subspace se such that, for 
1 6 p 6 ∞ , the sequence zTu(n) lies in the normed linear space 𝕃  

p. Let sd be the 
subspace that is spanned by all such vectors z. The subspace sd is called the sub-
space of decreasing excitation, in the sense that each direction of sd is decreasingly 
excited. For any vector z ≠ 0, the two conditions

  ∙ zTu1n2 ∙ = a 7 0    infinitely often

  and

   lim
nS∞

 zTu1n2 = 0

  cannot be satisfied simultaneously. In actuality, we find that the subspace of decreas-
ing excitation, sd, is orthogonal to the subspace of persistent excitation, sp.

	 •	 The otherwise excited subspace. Let sp h  sd denote the union of the persis-
tently excited subspace sp and the subspace of decreasing excitation, sd. Let so 
denote the orthogonal complement of sp h  sd that lies in the excited subspace 
se. The subspace so is called the otherwise excited subspace. Any vector that lies in 
the  subspace so is not unexciting, not persistently exciting, and not in the  normal 
linear space 𝕃  

p for any finite p. An example of such a signal is the sequence

   zTu1n2 =
1

ln 11 + n2,    n = 1, 2, . . . . (12.28)

Returning to our discussion of the parameter drift problem in the LMS  algorithm, 
we find that, for bounded excitations and bounded disturbances in the case of unex-
cited and persistently exciting subspaces, the parameter estimates resulting from the 
application of the LMS algorithm are indeed bounded. However, in the decreasing and 
otherwise excited subspaces, parameter drift may occur (Sethares et al., 1986). A com-
mon method of counteracting the parameter drift problem in the LMS algorithm is to 
introduce leakage into the tap-weight update equation of the algorithm. Indeed, that is 
another reason for using the leaky LMS algorithm that was described previously.

12.3 reCursive Least-sQuares (rLs) aLgorithM

The RLS algorithm offers an alternative to the LMS algorithm as a tool for the 
 solution of linear adaptive filtering problems. From the discussion presented in 
Chapter 10, we know that the RLS algorithm is characterized by a fast rate of con-
vergence that is relatively insensitive to eigenvalue spread of the underlying correla-
tion matrix of the input data and by a negligible misadjustment (zero for a stationary 
environment without disturbances). Moreover, although the algorithm is computa-
tionally demanding (in the sense that its computational complexity is on the order of 
M2, where M is the dimension of the tap-weight vector), its mathematical formulation, 
and therefore its implementation, is relatively simple. However, there is a numeri-
cal instability problem to be considered when the RLS algorithm is implemented in 
finite-precision arithmetic.
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Basically, the numerical instability, or explosive divergence, of the RLS algorithm is 
of a nature similar to that experienced in Kalman filtering, of which the RLS algorithm 
is a special case; Kalman filtering is studied in Chapter 14. Indeed, the problem may be 
traced to the fact that the time-updated matrix P(n) in the Riccati equation is computed 
as the difference between two nonnegative definite matrices, as indicated in Eq. (10.19). 
Accordingly, the algorithm diverges explosively when the matrix P(n) loses the prop-
erty of positive definiteness or Hermitian symmetry. This is precisely what happens in 
the usual formulation of the RLS algorithm described in Table 10.1 (Verhaegen, 1989).

How, then, can the RLS algorithm be formulated so that the Hermitian symmetry 
of the matrix P(n) is preserved despite the presence of numerical errors? For obvious 
practical reasons, it would also be satisfying if the solution to this fundamental problem 
could be attained in a computationally efficient manner. With these issues in mind, we 
present in Table 12.1 a particular version of the RLS algorithm from Yang (1994) that 
describes a computationally efficient procedure3 for preserving the Hermitian symmetry 
of P(n) by design. (When reading Table 12.1 and the rest of this chapter, the asterisk 
denotes complex conjugation, and the superscript H denotes Hermitian transposition 
[i.e., transposition combined with complex conjugation].) Computational efficiency of 
this algorithm is improved because the algorithm simply computes the upper or lower 
triangular part of the matrix P(n), as signified by the operator Tri { }, and then fills in the 
rest of the matrix to preserve Hermitian symmetry. Moreover, division by l is replaced 
by multiplication with the precomputed value of l-1.

error-propagation Model

We now turn our attention to the error-propagation model.4 According to the algorithm 
of Table 12.1, the recursions involved in the computation of the inverse correlation 
matrix P(n) proceed as follows:

 P1n2 = P1n - 12u1n2; (12.29)

 r1n2 =
1

l + uH
 1n2P1n2; (12.30)

 k1n2 = r1n2P1n2; (12.31)

 P1n2 = Tri5l-13P1n - 12 - k1n2PH
 1n246. (12.32)

3Verhaegen (1989) describes another symmetry-preserving version of the RLS algorithm. Verhaegen’s 
version is less efficient than Yang’s version in computational terms; however, both versions exhibit the same 
numerical behavior.

4The error-propagation model of RLS algorithms considered in this chapter examines the “linearized” 
round-off propagation mechanism and focuses on the property of exponential stability. In reality, however, 
round-off error propagation in an RLS algorithm is a nonlinear mechanism. Accordingly, the implication of 
using the linearized approach is local exponential stability of the RLS algorithm, with the result that there is 
no indication as to how small the accumulated error should be so that the ignored influence of the nonlinear 
(second-order) terms in Eqs. (12.35) and (12.37) does not destroy the stability of the filter. This nonlinear issue, 
which is of both theoretical and practical importance, is studied in Liavas and Regalia (1999). In their paper, 
bounds are derived on the word-length requirements to ensure bounded-error accumulation and consistency 
in a finite-precision implementation of the traditional RLS algorithm. The bounds are expressed in terms of 
the exponential weighting factor and input signal conditioning.
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In Eq. (12.32), l is the exponential weighting factor. Now, consider the propagation of a 
single quantization error at adaptation cycle n - 1 to subsequent recursions, under the 
assumption that no other quantization errors are made. In particular, let

 Pq1n - 12 = P1n - 12 + Hp 1n - 12, (12.33)

where the error matrix Hp(n - 1) arises from the quantization of P(n - 1). The corre-
sponding quantized value of P(n) is

 Pq 1n2 = P1n2 + Hp 1n - 12u1n2. (12.34)

Let rq(n) denote the quantized value of r(n). Then, using the defining equation (12.30), 
followed by the application of Eq. (12.34), we may write

  rq 1n2 =
1

l + uH
 1n2Pq 1n2  

  =
1

l + uH
 1n2P1n2 + uH

 1n2Hp 1n - 12u1n2  

  =
1

l + uH
 1n2P1n2   a1 +

uH
 1n2Hp 1n - 12u1n2
l + uH

 1n2P1n2 b
-1

 (12.35)

  =
1

l + uH
 1n2P1n2 -

uH
 1n2Hp 1n - 12u1n2

(l + uH
 1n2P1n2)2 + O1H2

p2 

  = r1n2 -
uH

 1n2Hp 1n - 12u1n2
1l + uH

 1n2P1n222 + O1H2
p2,  

where O1H2
p2 denotes the order of magnitude, 7Hp 7 2.

TAbLE 12.1  Summary of a Computationally Efficient Symmetry-Preserving Version of  
the RLS Algorithm

Initialize the algorithm by setting

P102 = d-1I,  d =  small regularization parameter

wn 102 = 0

For each adaptation cycle, n = 1, 2, c, compute

P1n2 = P1n - 12u1n2
r1n2 =

1

l + uH
 1n2P1n2

k1n2 = r1n2P1n2
j1n2 = d1n2 - wn H

 1n - 12u1n2
wn 1n2 = wn 1n - 12 + k1n2j*1n2
P1n2 = Tri5l-13P1n - 12 - k1n2PH

 1n246
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In an ideal situation, the infinite-precision scalar quantity r(n) is nonnegative, tak-
ing on values between zero and 1/l. On the other hand, if uH(n)P(n) is small compared 
with l, and if l itself is small enough compared with unity, then, according to Eq. (12.35), 
in a finite-precision environment it is possible for the quantity rq(n) to take on a nega-
tive value larger in magnitude than 1/l. When this happens, the RLS algorithm exhibits 
explosive divergence (Bottomley & Alexander, 1989).5

The quantized value of the gain vector k(n) is written as

kq 1n2 = rq1n2Pq 1n2
 = k1n2 + Hk 1n2, (12.36)

where

 Hk 1n2 = r1n21I - k1n2uH
 1n22Hp 1n - 12u1n2 + O1H2

p2 (12.37)

is the gain vector quantization error. Finally, using Eq. (12.32), we find that the quantiza-
tion error incurred in computing the updated inverse-correlation matrix P(n) is

 Hp 1n2 = l-1
 1I - k1n2uH

 1n22Hp 1n - 121I - k1n2uH
 1n22H, (12.38)

where the term O1H2
p2 has been ignored.

On the basis of Eq. (12.38), it would be tempting to conclude that HH
p  1n2 = Hp 1n2, 

and therefore that the RLS algorithm of Table 12.1 is Hermitian-symmetry preserving, if 
we can assume that the condition HH

p  1n - 12 = Hp 1n - 12 holds at the previous adap-
tation cycle. We are justified in making this assertion by virtue of the fact there is no 
blowup in this formulation of the RLS algorithm, as is demonstrated in what follows. (It 
is also assumed that there is no stalling.)

Equation (12.38) defines the error propagation mechanism for the RLS algorithm 
summarized in Table 12.1 on the basis of a single quantization error in P(n - 1). The 
matrix I - k(n)uH(n) in Eq. (12.38) plays a crucial role in the way in which the single 
quantization error Hp(n - 1) propagates through the algorithm. Using the original defini-
tion given in Eq. (10.22) for the gain vector, namely,

 k1n2 = 𝚽-1
 1n2u1n2, (12.39)

we may write

 I - k1n2uH
 1n2 = I - 𝚽-1

 1n2u1n2uH
 1n2. (12.40)

Next, from Eq. (10.12), we have

 𝚽1n2 = l𝚽1n - 12 + u1n2uH
 1n2. (12.41)

Multiplying both sides of Eq. (12.41) by the inverse matrix 𝚽-11n2 and rearranging 
terms, we get

 I - 𝚽-1
 1n2u1n2uH

 1n2 = l𝚽-1
 1n2𝚽1n - 12. (12.42)

5According to Bottomley and Alexander (1989), evolution of the quantized term rq(n) provides a 
good indication of explosive divergence because this term grows large and then suddenly becomes negative.
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Comparing Eqs. (12.40) and (12.42), we readily see that

 I - k1n2uH
 1n2 = l𝚽-1

 1n2𝚽1n - 12. (12.43)

Suppose now we consider the effect of the quantization error Hp(n0) induced at 
adaptation cycle n0 … n. Then, when the RLS algorithm of Table 12.1 is used and the 
matrix P(n) remains Hermitian, according to the error-propagation model of Eq. (12.38), 
it follows that the effect of the quantization error hp(n0) becomes modified at adaptation 
cycle n, yielding

 Hp 1n2 = l-1n - n02W1n, n02Hp 1n02WH
 1n, n02,   n Ú n0, (12.44)

where

 W1n, n02 = (I - k1n2uH
 1n22g 1I - k1n0 + 1)uH

 1n0 + 122 (12.45)

is a transition matrix. The repeated use of Eq. (12.43) in Eq. (12.45) leads us to express the 
transition matrix in the equivalent form

 W1n, n02 = ln - n0𝚽-1
 1n2𝚽1n02. (12.46)

The correlation matrix is defined by [ignoring the regularization term in Eq. (10.8)]

 𝚽1n2 = a
n

i = 1
ln - iu1i2uH

 1i2. (12.47)

On the basis of this definition, the tap-input vector u(n) is said to be uniformly persis-
tently exciting for sufficiently large n if there exist a, b, and N such that 0 6 a 6 b 6 ∞  
and the following condition is satisfied (Ljung & Ljung, 1985):

 aI … 𝚽1n2 … bI     for all n Ú N. (12.48)

The notation used in Eq. (12.48) is shorthand for saying that the matrix 𝚽(n) is positive 
definite. The condition for persistent excitation guarantees not only the positive defi-
niteness of 𝚽(n) but also that its matrix norm is uniformly bounded for n Ú N; that is,

 7 𝚽-1
 1n2 7 …

1
a
  for n 7 N. (12.49)

Returning to the transition matrix W(n, n0) of Eq. (12.46) and invoking the mutual 
consistency6 property of a matrix norm, we may write

 7W1n, n02 7 … ln - n0 7 𝚽-1
 1n2 7 # 7 𝚽1n02 7 . (12.50)

Next, invoking Eq. (12.49), we may rewrite Eq. (12.50) as

 7W1n, n02 7 …
ln - n0

a
 7 𝚽1n02 7 . (12.51)

6Consider two matrices A and B of compatible dimensions. The mutual consistency property states that
7AB 7 … 7A 7 # 7B 7 .

(See Property 7 of Section E.2 in Appendix E.)
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Finally, we may use the error-propagation equation (12.44) to express the 
Euclidean norm of Hp(n) as

7Hp 1n2 7 … l-1n - n02 7W1n, n02 7 # 7Hp 1n - 12 7 # 7WH
 1n, n02 7 ,

which, in light of Eq. (12.51), may be rewritten as

 7Hp 1n2 7 … ln - n0M,    n Ú n0, (12.52)

where

 M =
1
a2 7 𝚽1n02 7 2 7Hp 1n - 12 7  (12.53)

is a positive number. Equation (12.53) states that the RLS algorithm of Table 12.1 is 
exponentially stable in the sense that a single quantization error Hp(n0) occurring in the 
inverse correlation matrix P(n0) at adaptation cycle n0 decays exponentially, provided 
that l 6 1 (i.e., provided that the algorithm has finite memory).7 In other words, the 
propagation of a single error through this formulation of the traditional RLS algorithm 
with finite memory is contractive. Computer simulations validating this result are pre-
sented in Verhaegen (1989).

Note, however, that the single-error propagation for the case of growing memory 
(i.e., l = 1) is not contractive. The reason is that when l = 1, neither W(n, n0) … I nor  
||W(n, n0)|| … 1 holds, even if the input vector u(n) is persistently exciting. Consequently, 
the accumulation of numerical errors may cause the algorithm to be divergent (Yang, 
1994). In an independent study, Slock and Kailath (1991) also pointed out that the 
error-propagation mechanism in the RLS algorithm with l = 1 is unstable and of a 
random-walk type. Moreover, there is experimental evidence for this numerical diver-
gence, which is reported in Ardalan and Alexander (1987).

stalling

As with the LMS algorithm, a second form of divergence, referred to as stalling, occurs 
when the tap weights in the RLS algorithm stop adapting. In particular, stalling occurs 
when the quantized elements of the matrix P(n) become very small, such that mul-
tiplication by P(n) is equivalent to multiplication by a zero matrix (Bottomley & 
Alexander, 1989). Clearly, stalling may arise no matter how the RLS algorithm is 
implemented.

7The first rigorous proof that single-error propagation in the RLS algorithm is exponentially stable 
for l 6 1 was presented in Ljung and Ljung (1985). This was followed by a more detailed investigation by 
Verhaegen (1989). Reconfirmation that the error-propagation mechanism in the RLS algorithm is exponen-
tially stable was subsequently presented in Slock and Kailath (1991) and Yang (1994).
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Stalling is directly linked to the exponential weighting factor l and the variance 
s2

u of the input data u(n). Assuming that l is close to unity, we find, from the definition 
of the correlation matrix 𝚽(n), that the expectation of 𝚽(n) is given by

 𝔼3𝚽1n24 ≈
R

1 - l
   for large n. (12.54)

[The justification for this approximate relation is deferred to Chapter 13; see Eq. (13.49).] 
For l close to unity,

 𝔼[P1n2] = 𝔼3𝚽-1
 1n24 ≈ 1𝔼3𝚽1n242-1. (12.55)

Hence, using Eq. (12.54) in Eq. (12.55), we get

 𝔼3P1n24 ≈ 11 - l2R-1     for large n, (12.56)

where R-1 is the inverse of matrix R. Assuming that the tap-input vector u(n) is drawn 
from a wide-sense stationary process with zero mean, we may write

 R =
1
s2

u
 R, (12.57)

where R is a normalized correlation matrix with diagonal elements equal to unity and 
off-diagonal elements less than or equal to unity and s2

u is the variance of an input data 
sample u(n). We may therefore rewrite Eq. (12.56) as

 𝔼3P1n24 ≈ a1 - l

s2
u

bR-1  for large n. (12.58)

Equation (12.58) reveals that the RLS algorithm may stall if the exponential weighting 
factor l is close to unity or if the input data variance s2

u is large. Accordingly, we may 
prevent stalling of the RLS algorithm by using a sufficiently large number of accumu-
lator bits in the computation of the inverse correlation matrix P(n), thereby adding 
complexity to the practical implementation of the algorithm.

12.4 suMMary anD DisCussion

In this chapter, we discussed the numerical stability of the LMS and RLS algorithms.
The LMS algorithm is numerically robust. When the algorithm is operating in 

a limited-precision environment, the point to note is that the step-size parameter m 
may be decreased only to a level at which the degrading effects of round-off errors in 
the tap weights of the finite-precision LMS algorithm become significant. Moreover, 
a  finite-precision implementation of the algorithm may be improved by incorporating 
leakage into it.

The RLS algorithm, on the other hand, is prone to numerical instability, or explo-
sive divergence, which may be traced to the manner in which its correlation matrix 
P(n) is time-updated in Eq. (10.19). This equation involves calculating the difference 
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between two nonnegative definite matrices, with the result that P(n) may no longer 
be nonnegative definite, hence the occurrence of numerical instability. This deficiency 
may be ameliorated by exploiting the use of square-root filtering at the expense of 
increased computational complexity. (The topic of square-root filtering is discussed in 
Chapter 14 on Kalman filtering, of which the RLS algorithm is a special case.)

To summarize, when we are confronted with a requirement for the use of finite-
precision arithmetic in linear adaptive filtering, the LMS algorithm generally is the 
preferred choice over the RLS algorithm for two reasons:

 1. The LMS algorithm is model-independent, a characterstic inherited from the use 
of stochastic gradient method.

 2. The LMS algorithm has simplified computational complexity.

probLeMs

 1. Illustrate the assumptions in a statistical analysis of the finite-precision LMS algorithm.
 2. Show that the total output mean-square error produced in the finite-precision algorithm has 

a steady-state composition.
 3. How can a leaky LMS algorithm be prevented from stalling due to digital effects?
 4. The error-propagation model of RLS algorithms considered in this chapter examines the 

“linearized” round-off propagation mechanism and focuses on the property of exponential 
stability. In reality, however, round-off error propagation in an RLS algorithm is a nonlinear 
mechanism. Explain.

 5. (a)  Justify the small step-size theory of Section 6.4, dealing with the infinite-precision LMS 
algorithm.

  (b) How can stalling be prevented in the RLS algorithm?
 6. Suggest an appropriate method for stabilizing a digital implementation of the LMS algorithm 

whose leakage factor (1 − ma) in Eq. (12.19) has the equivalent effect of adding a white-noise 
sequence of zero mean and variance a to the input process u(n).

 7. Derive the formula to prevent the RLS algorithm from stalling due to digital effects by mak-
ing the digital residual error eD(m) as small as possible.
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C h a p t e r  1 3

adaptation in Nonstationary 
environments

In much of the material on linear adaptive filtering covered in previous chapters, we 
focused attention on the least-mean-square (LMS) and recursive least-square (RLS) 
algorithms. Specifically, we considered the average behavior of these two algorithms, 
operating in a stationary environment. In such an environment, the error-performance 
surface is fixed, and the essential requirement is to process the training data in a step-by-
step fashion, seeking the minimum point of the surface and thereby assuring optimum 
or near-optimum performance. With the Wiener filter as the frame of reference, that 
minimum point is defined by the Wiener solution.

Unfortunately, many of the environments encountered in practice are nonstation-
ary, for which the Wiener solution takes on a time-varying form. In such a real-world 
application, an adaptive filtering algorithm has an added task to perform:

Track the continually time-varying position of the minimum point on the error-
performance surface.

In other words, the algorithm is now required to continually track statistical variations 
of the environment, under the proviso that these variations are “slow enough” for algo-
rithmic tracking to be practically feasible.

Tracking is a steady-state phenomenon, to be contrasted with convergence, which 
is a transient phenomenon. It follows that, for an adaptive filter to exercise its tracking 
capability, it must first pass from the transient mode to the steady-state mode of opera-
tion, and there must be provision for continuous adjustment of the free parameters of 
the filter. Moreover, we may state that, in general, the rate of convergence and the track-
ing capability are two different properties of the algorithm. In particular, an adaptive 
filtering algorithm with good convergence properties does not necessarily possess a fast 
tracking capability, and vice versa.

13.1 Causes aNd CoNsequeNCes of NoNstatioNarity

Nonstationarity of the environment, in which an adaptive filtering algorithm operates, 
is attributed to one of two causes:

 1. The source supplying the desired response for the algorithm is not only noisy but also 
time varying. For example, this kind of situation arises in a system-identification 
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problem, where, as mentioned, the system under study is not only noisy but also 
time varying. In this situation, the correlation matrix of the tap inputs of the adap-
tive filtering algorithm remains fixed (as in a stationary input), whereas the cross-
correlation vector between the tap inputs and the desired response assumes a 
time-varying form.

 2. The stochastic source of tap inputs applied to the algorithm is nonstationary. The 
second situation arises, for example, when the adaptive filtering algorithm is used 
to equalize a time-varying channel. This time, both the correlation matrix of the 
tap inputs and their cross-correlation vector with the desired response assume 
time-varying forms.

The tracking details of a time-varying system are therefore not only dependent on the 
type of adaptive filtering algorithm employed in the study but also problem specific.

To study adaptation in a nonstationary environment with emphasis on tracking, 
we may identify two fundamental issues:

   Issue 1: How do we choose between the LMS and RLS algorithms as the basis for 
tracking?

   Issue 2: How do we automatically tune the adaptation parameter of the tracking 
algorithm to realize the best possible performance?

Issue 1 is covered in the first part of the chapter, consisting of Sections 13.2 to 13.7, and 
Issue 2 is addressed in the second part of the chapter, consisting of Sections 13.8 to 13.11.

13.2 the system ideNtifiCatioN problem

To study the tracking of an unknown time-varying system with system identification as 
the problem of interest, we will focus on a popular time-varying model for a nonstation-
ary environment. The model is governed by two basic processes.

 1. First-order Markov process. The unknown dynamic equations of the environment 
are modeled by a finite-duration impulse response (FIR) filter whose tap-weight 
vector wo(n) (i.e., impulse response) undergoes a first-order Markov process, writ-
ten in vector form as

   wo1n + 12 = awo1n2 + V1n2, (13.1)

  where a is a fixed parameter of the model and V(n) is the process noise vector, 
assumed to be of zero mean and correlation matrix Rv. In physical terms, the tap-
weight vector wo(n) may be viewed as originating from the process noise V1n2,  
whose individual elements are applied to a bank of one-pole low-pass filters. Each 
such filter has a transfer function equal to 1/(1 - az-1), where z-1 is the unit-
delay operator. It is assumed that the value of parameter a is very close to unity. 
The significance of this assumption is that the bandwidth of the low-pass filters 
is very much smaller than the incoming data rate. Equivalently, we may say that 
many adaptation cycles of the Markov model are required to produce a significant 
change in the tap-weight vector wo(n).
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 2. Multiple regression. The observable feature of the environment—the desired 
response, denoted by d(n)—is governed by the multiple linear regression model

   d1n2 = wH
o  1n2u1n2 + n1n2, (13.2)

  where n1n2 is the measurement noise, assumed to be white with zero mean and 
variance s2

n, and the superscript H denotes Hermitian transposition (i.e., transposi-
tion combined with complex conjugation). Thus, even though both the input vector 
u(n) and the noise n1n2 are stationary, the model output d(n) is a nonstationary 
random process by virtue of the fact that wo(n) varies with time. Herein lies the 
challenge posed to the adaptive filter.

Figure 13.1, depicting Eqs. (13.1) and (13.2), is referred to as the unknown dynamic model.
Henceforth in this chapter, we consider system identification as the adaptive filter-

ing task of interest. Specifically, given the observable d(n) as the desired response for an 
input vector u(n), the requirement is to design an adaptive filter that tracks statistical 
variations in the Markov model’s impulse response vector wo(n). This system identifica-
tion problem is depicted in Fig. 13.2. The error signal involved in the adaptive process 
is defined by

  e1n2 = d1n2 - y1n2  

  = wH
o  1n2u1n2 +  n1n2 -  wn H

 1n2u1n2, (13.3)

where wn 1n2 is the tap-weight vector of the adaptive filter, which is assumed to have 
both an FIR structure and the same number of taps, M, as the unknown dynamic model 
represented by wo(n). The tap-weight vector wo(n) represents the “target” to be tracked 
by the filter. Whenever wn 1n2 equals wo(n), the minimum mean-square error produced 
by the adaptive filter equals the irreducible error variance s2

n.
According to Fig. 13.2, the desired response d(n) applied to the adaptive filter is 

the observable of the environment. Since the environment is time varying, the desired 
response is correspondingly nonstationary. Hence, with the correlation matrix of the tap 

FIgurE 13.1 Linear dynamic model of a nonstationary environment.
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inputs having the fixed value Ru, we find that the adaptive filter has a quadratic bowl-
shaped error-performance surface whose position in weight space is in a permanent state 
of motion, hence the requirement to track the motion.

assumptions

Typically, the time variations of the process noise vector V1n2 in the unknown dynamic 
model of Fig. 13.1 are slow (i.e., bounded), which makes it possible for the adaptive FIR 
filter using the LMS algorithm or RLS algorithm to track the statistical variations in the 
dynamic behavior of the unknown environment.

To proceed with a tracking analysis of the LMS and RLS algorithms applied to 
the system identification problem of Fig. 13.2, the following conditions are assumed 
throughout the chapter:

 1. The process noise V1n2 is white with zero mean and correlation matrix Rv(n).
 2. The measurement noise n1n2 is white with zero mean and variance s2

n.
 3. The process noise V1n2 and measurement noise n1n2 are independent of each 

other.
 4. The measurement matrix, denoted by uH

 1n2, is independent of both the measure-
ment noise n1n2 and the process noise V1n2.

FIgurE 13.2 System identification using an adaptive filter; both wo  1n2 and wn 1n2 are 
assumed to be of length M.
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13.3 degree of NoNstatioNarity

In order to provide a clear definition of the rather ambiguous concepts of “slow” and 
“fast” statistical variations of the model, we may introduce the notion of the degree of non-
stationarity (Macchi, 1995). In the context of the unknown dynamic model described in  
Fig. 13.1, the degree of nonstationarity, denoted by a, is formally defined as the square 
root of the ratio of two quantities: the expectation of the squared magnitude of the inner 
product of the process noise V1n2 and the vector u(n), and the average power of the 
measurement noise n1n2. That is,

 a = a𝔼3 ∙VH
 1n2u1n2 ∙24

𝔼3 ∙ n1n2 ∙24 b
1> 2

. (13.4)

The degree of nonstationarity is therefore a characteristic of Fig. 13.1 acting alone and 
has nothing to do with the adaptive filter.

The numerator in Eq. (13.4) may be rewritten as follows in light of the assumption 
that V1n2 is essentially independent of u(n):

  𝔼3 ∙VH
 1n2u1n2∙24 = 𝔼3VH

 1n2u1n2uH
 1n2V1n24  

  = tr 5𝔼3VH
 1n2u1n2uH

 1n2V1n246  

  = 𝔼 5tr 3VH
 1n2u1n2uH

 1n2V1n246  

  = 𝔼5tr [V1n2VH
 1n2u1n2uH

 1n246  (13.5)

  = tr 5𝔼3V1n2VH
 1n2u1n2uH

 1n246  

  = tr 5𝔼3V1n2VH
 1n2]𝔼3u1n2uH

 1n246 

  = tr 3RvRu4.  

Here, tr [ # ] denotes the trace of the matrix enclosed inside the square brackets, Ru is 
the correlation matrix of the vector u(n), and Rv is the correlation matrix of the pro-
cess noise vector V1n2. The denominator in Eq. (13.4) is simply the variance s2

n of the 
zero-mean measurement noise n1n2. Accordingly, we may reformulate the degree of 
nonstationary for the Markov model of Fig. 13.1 simply as

 a =
1
sn

 1tr 3RuRv421 >  2 =
1
sn

 1tr 3RvRu421 >  2. (13.6)

The degree of nonstationarity, a, bears a useful relation to the misadjustment m 
of the adaptive filter. To bring out this relation, we first note that the minimum mean-
square error Jmin the adaptive filter in Fig. 13.2 can even attain is equal to the variance 
s2
n of the measurement noise n1n2. Next, we note that the best that the adaptive filter 

can ever do in tracking the time-varying system of Fig. 13.1 is to produce a weight-error 
vector E1n2 that is equal to the process noise vector V1n2. Then, setting the correlation 
matrix of E1n2 equal to the correlation matrix of V1n2, and recalling the definition of 
misadjustment as the ratio of the excess mean-square error to the minimum mean-
square error Jmin = s2

n, we may use Eq. (6.100) to write
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 m =
Jex 1∞2

Jmin
Ú

tr3RuRv4
s2
n

= a2. (13.7)

In other words, the square root of the misadjustment m places an upper bound on the 
degree of nonstationarity, hence the importance of a.

We shall have more to say on misadjustment as a measure of tracking assess-
ment in the next section. For now, we may use Eq. (13.7) to make two noteworthy 
remarks:

 1. For slow statistical variations of the environment, a is small. This means that it 
should be possible to build an adaptive filter that can track the unknown dynamic 
model of Fig. 13.1.

 2. When the statistical variations of the environment are too fast, a may be greater 
than unity. In such a case, the misadjustment produced by the adaptive filter 
exceeds 100 percent, which means that there is no advantage to be gained in build-
ing an adaptive filter to solve the tracking problem: end of story.

13.4 Criteria for traCkiNg assessmeNt

With the state of the unknown dynamic model in Fig. 13.1 denoted by wo1n2, and with 
the tap-weight vector of the adaptive FIR filter in Fig. 13.2 denoted by wn 1n2, we formally 
define the weight-error vector as

 E1n2 = wo 1n2 -  wn 1n2. (13.8)

On the basis of E1n2, we may go on to define two figures of merit for assessing the track-
ing capability of the adaptive filter.

 1. Mean-Square Deviation

A commonly used figure of merit for tracking assessment is the mean-square deviation 
(MSD) between the actual weight vector wo(n) of the unknown dynamic model and the 
adjusted weight vector wn 1n2 of the adaptive filter, defined by

  d1n2 = 𝔼3 7wo 1n2 - wn 1n2 7 24 
  = 𝔼3 7E1n2 7 24,  

(13.9)

where the number of adaptation cycles, n, is assumed to be large enough for the adaptive 
filter’s transient mode of operation to have finished. Following steps similar to those 
presented in Eq. (13.5), we may reformulate Eq. (13.9) into the equivalent form

 d1n2 = tr3K1n24, (13.10)
where

  K1n2 = 𝔼3E1n2EH
 1n24 (13.11)

is the correlation matrix of the weight-error vector E1n2. Clearly, the mean-square devia-
tion d1n2 should be small for good tracking performance.
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The weight-error vector may be expressed as the sum of two components:

 E1n2 = E11n2 + E21n2, (13.12)

where

 E1 1n2 = 𝔼3wn 1n24 -  w1n2 (13.13)

is the weight vector noise, in which 𝔼3wn 1n24 is the ensemble-average value of the tap-
weight vector and

 E2 1n2 = wo 1n2 -  𝔼3wn 1n24 (13.14)

is the weight vector lag. Invoking the assumptions made in Section 13.2, we have

 𝔼3EH
 1  1n2E2 1n24 = 𝔼3EH

 2  1n2E1 1n24 = 0. (13.15)

Accordingly, we may express the mean-square deviation as

  d1n2 =  d1 1n2 +   d2 1n2. (13.16)

The first term in Eq. (13.16), d1 1n2, is called the estimation variance and is due to the 
weight vector noise E11n2; it is defined by

 d1 1n2 = 𝔼3 7E1 1n2 7 24. (13.17)

d1 1n2 is always present, even in the stationary case. The second term, d2 1n2, is called 
the lag variance and is due to the weight vector lag; it is defined by

 d2 1n2 = 𝔼3 7E2 1n2 7 24. (13.18)

The presence of d2 1n2 is testimony to the nonstationary nature of the environment. The 
decomposition of the mean-square deviation d1n2 into the estimation variance d1 1n2 
and the lag variance d2 1n2, as described in Eq. (13.16), is called the decoupling property 
(Macchi, 1986a, b).

 2. Misadjustment

Another commonly used figure of merit for assessing the tracking capability of an adap-
tive filter is the misadjustment, which is defined by

 m1n2 =
Jex 1n2
s2
n

, (13.19)

where Jex(n) is the excess (residual) mean-square error of the adaptive filter, measured 
with respect to the variance s2

n of the white noise component n1n2 at the output of 
the unknown dynamic model in Fig. 13.1. Here again, it is assumed that the number of 
adaptation cycles, n, is large enough for the transient period to have ended. We then find 
that, for good tracking performance, the misadjustment m1n2 should be small compared 
with unity; that is, Jex(n) is smaller than sn

2 for all n.
As with the mean-square deviation, the excess mean-square error Jex(n) may be 

expressed as the sum of two components, Jex 1(n) and Jex 2(n), by virtue of the assumptions 
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made in Section 13.2. The first component, Jex 1(n), due to the weight vector noise E1(n), 
is called the estimation noise. The second component, Jex 2(n), due to the weight vector 
lag E2(n), is called the lag noise. The presence of the term Jex 2(n) is attributed directly 
to the nonstationary nature of the environment. Correspondingly, we may express the 
misadjustment as

 m1n2 = m1 1n2 +  m2 1n2, (13.20)

where m1 1n2 = Jex 1 1n2 >  s2
n and m2 1n2 = Jex 2 1n2 >  s2

n. Here, the first term, m1 1n2, is 
called the noise misadjustment, and the second term, m2 1n2, is called the lag misad-
justment. Thus, the decoupling property is true for the misadjustment, too, in that the 
estimation noise and lag noise are decoupled in power.

In general, both figures of merit, d1n2 and m1n2, depend on the number of adap-
tation cycles, n. Moreover, they highlight different aspects of the tracking problem in a 
complementary way, as subsequent analysis will reveal.

13.5  traCkiNg performaNCe of the lms algorithm

To proceed with a study of the tracking problem, consider the system model of  
Fig. 13.2, in which the adaptive (FIR) filter is implemented using the LMS algorithm. 
According to this algorithm, the tap-weight vector of the adaptive filter is updated 
by the formula

 wn 1n +  12 = wn 1n2 +  mu1n2e*1n2, (13.21)

where m is the step-size parameter and the asterisk denotes complex conjugation. [See 
Eq. (5.6).] Substituting Eq. (13.3) for the error signal e(n) into Eq. (13.21), we may 
reformulate the LMS algorithm in the expanded form

 wn 1n + 12 = 3I - mu1n2uH
 1n24wn 1n2 + mu1n2uH

 1n2wo 1n2 + mu1n2n*1n2. (13.22)

Next, using Eq. (13.1) for describing the first-order Markov model, Eq. (13.8) for defin-
ing the weight-error vector, and Eq. (13.22) just derived for the LMS algorithm, we may 
describe the steady-state evolution of the LMS algorithm in terms of the weight-error 
vector as follows:

 E1n +  12 = wo 1n +  12 -  wn 1n +  12  (13.23)

 = 3I -  mu1n2uH
 1n24E1n2 -  11 -  a2wo 1n2 -  mu1n2n*1n2 +  V1n2,

where I is the identity matrix. The linear stochastic difference equation (13.23) provides 
a complete description of the LMS algorithm embedded in the system model of Fig. 
13.2. A general tracking theory of the model described in Eq. (13.23), however, is yet to 
be developed. With this goal in mind, the usual procedure is to assume that the model 
parameter, a, in Eq. (13.1) is close enough to one to ignore the term (1 - a) wo(n); in so 
doing, we have in fact developed a tracking theory for a random-walk model (Macchi, 
1995). Thus, setting a = 1, Eq. (13.23) simplfies to

 E1n +  12 = [I -  mu1n2uH1n2]E1n2 -  mu1n2n*1n2 +  V1n2. (13.24)
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Typically, the step-size parameter m is assigned a small value in order to realize 
good tracking performance. Under this condition, we may solve Eq. (13.24) for the 
weight-error vector E(n) by invoking the direct-averaging method (Kushner, 1984), which 
was discussed previously in Chapter 6. Specifically, we may state that, for small m, the 
solution E(n) to the linear stochastic difference equation (13.24) is “close” to the solu-
tion of another linear stochastic difference equation that is obtained by replacing the 
system matrix [I − mu(n)uH(n)] with its ensemble average (I − mRu), where Ru is the 
correlation matrix of the input vector u(n). We may thus write the new stochastic dif-
ference equation as

 E0 1n +  12 = 1I -  mRu2E0 1n2 -  mu1n2n*1n2 +  V1n2, (13.25)

where E0(n) is the small-step-size approximation to the weight-error vector E(n).
Now we apply the unitary similarity transformation to the correlation matrix Ru, 

given by
 QHRuQ = 𝚲u, (13.26)

where 𝚲u = 5lu, k6M
k = 1 is a diagonal matrix consisting of the eigenvalues of the corre-

lation matrix and Q is a unitary matrix whose columns constitute an orthogonal set of 
eigenvectors associated with those eigenvalues.

Then, following a procedure similar to that described in Section 6.4 on statisti-
cal learning theory of the LMS algorithm, we may transform the stochastic difference 
equation (13.25) into a system of approximately decoupled difference equations, viz.,

 vk 1n + 12 = 11 - mlu,k2vk 1n2 + fk1n2,  k = 1, 2, c, M, (13.27)

where the natural mode vk(n) is the kth component of the transformed vector

 N1n2 = QHE01n2 (13.28)

and fk(n) is a stochastic force with zero mean, defined by

 fk 1n2 = -mqH
k u1n2n*1n2 + qH

k V1n2, (13.29)

where qk is the eigenvector associated with the eigenvalue lu, k. Recognizing that the 
components, u(n) and V(n), are statistically independent, we may project them sepa-
rately on the eigenvector qk and thereby express the variance of fk(n) as

 s2
fk

≈ m2s2
nlu,k + lv,k,   k = 1, 2, c, M. (13.30)

where lv, k is the eigenvalue of the process noise, Vn, projected onto qk.
The system of natural modes described in Eq. (13.27) provides the mathematical 

framework for assessing the tracking performance of the LMS algorithm applied to the 
system identification problem of Fig. 13.2.1

1As remarked previously, tracking behavior of the LMS algorithm assumes that convergence of the 
algorithm has been completed. Under this condition, we see the following difference:

	 •	 In Section 6.4, the steady state of the algorithm involves eigenvalues of the correlation matrix Ru, 
pertaining to the input vector.

 •	 For the system-identification problem considered herein, steady state of the algorithm also involves 
eigenvalues of the correlation matrix Rv, pertaining to the process noise vector.

This difference will become apparent in the next subsection.
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mean-square deviation

According to Eq. (6.92), the mean-square deviation of the LMS algorithm, under the 
assumption of a small step size, is defined by

  d1n2 ≈ 𝔼3 7E0 1n2 7 24  

  = a
M

k = 1
𝔼3 ∙ vk 1n2∙24, (13.31)

which, after a large number of adaptation cycles, n, takes the value

 d1n2 ≈
m

2
 Ms2

n +  
1

2m
 a

M

k = 1

lv, k

lu, k
. (13.32)

[The derivation of Eq. (13.32) is presented as Problem 5.] Equivalently, we may express 
the mean-square deviation as

 d1n2 ≈
m

2
 Ms2

n +  
1

2m
 tr 3R-1

u Rv4  for n large, (13.33)

where tr[ # ] denotes the trace operator.
The first term in Eq. (13.33), mMs2

n  >  2, is the estimation variance due to the mea-
surement noise n(n); this term varies linearly with the step-size parameter m. The second 
term, tr 3R-1

u Rv4  >  2m, is the lag variance due to the process noise vector V(n); this term 
varies inversely with the step-size parameter m, thereby permitting a faster tracking speed.

Let mopt denote the optimum value of the step-size parameter for which the mean-
square deviation attains its minimum value dmin. This optimum condition is realized 
when the estimation variance and lag variance contribute equally to the mean-square 
deviation. From Eq. (13.33), we readily find that

 mopt ≈
1

sn2M
 1tr 3R-1

u Rv421 >  2 (13.34)

and

 dmin ≈ sn2M1tr 3R-1
u Rv421 >  2. (13.35)

misadjustment of the lms algorithm

To evaluate the misadjustment of the LMS algorithm for the system identification sce-
nario described in Fig. 13.2, we use Eq. (6.91) to write

 m ≈
1
s2
n

 a
M

k = 1
l 

u, k𝔼3 ∙ vk1n2 ∙24, (13.36)

which, after a large number of adaptation cycles, yields the approximate result,

 m ≈
m

2 a
M

k = 1
lu, k +  

1
2ms2

n

 a
M

k = 1
lv, k. (13.37)
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[The derivation of Eq. (13.37) is presented as Problem 6.] Equivalently, we may express 
the misadjustment of the LMS algorithm as

 m ≈
m

2
 tr 3Ru4 +  

1
2ms2

n

 tr 3Rv4  for n large. (13.38)

The first term, mtr[Ru]/2, is the noise misadjustment caused by the measure-
ment noise n(n); this term is of the same form as in a stationary environment, which 
is not surprising. The second term, tr 3RV4  >  2ms2

n, is the lag misadjustment caused by 
the process noise vector V(n); this term is representative of nonstationarity in the 
environment.

The noise misadjustment varies linearly with the step-size parameter m, whereas the 
lag misadjustment varies inversely with m. The optimum value of the step-size parameter, 
mopt, for which the misadjustment attains its minimum value mmin, occurs when the esti-
mation noise and lag noise have equal power. We thus readily find from Eq. (13.38) that

 mopt ≈
1
sn

 a tr 3Rv4
tr 3Ru4 b

1 >  2

 (13.39)

and

 mmin ≈
1
sn

 atr 3Ru4tr 3Rv4b
1 >  2

. (13.40)

Equations (13.34) and (13.39) indicate that, in general, optimization of the two 
figures of merit, the mean-square deviation and the misadjustment, leads to different 
values for the optimum setting of the step-size parameter m. This should not be surpris-
ing since the two figures of merit emphasize different aspects of the tracking problem. 
Still, however the choice is made, it is presumed that the optimum m satisfies the condi-
tion for convergence of the LMS algorithm in the mean-square sense, which should be 
in accord with Section 6.4.

13.6 traCkiNg performaNCe of the rls algorithm

Consider next the RLS algorithm used to implement the adaptive filter in the system 
model of Fig. 13.2. From Eqs. (10.22) and (10.25) of Chapter 10, we recall that the cor-
responding update equation for the weight vector of the adaptive FIR filter may be 
written in the form

 wn 1n2 = wn 1n -  12 +  𝚽-1
 1n2u1n2j*1n2, (13.41)

where (ignoring the regularization term)

 𝚽1n2 = a
n

i = 1
ln - iu1i2uH

 1i2 (13.42)

is the correlation matrix of the input vector u(n) and

 j1n2 = d1n2 -  wn H
 1n -  12u1n2 (13.43)
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is the a priori estimation error. In Eq. (13.42), l is the exponential weighting factor that 
lies in the range 0 6 l … 1.

To accommodate the slight change in the notation for the weight vector in  
Eq. (13.41) compared to that in Eq. (13.21), we modify the first-order Markov model of 
Eq. (13.1) and the desired response d(n) of Eq. (13.2) as follows, respectively:

 wo 1n2 = awo 1n -  12 +  V1n2 (13.44)

and
 d1n2 = wH

o  1n -  12u1n2 +  n1n2. (13.45)

Accordingly, using Eqs. (13.41), (13.44), and (13.45), we may express the update equation 
for the weight-error vector in the RLS algorithm as shown by

  E1n2 = 3I - 𝚽 - 11n2u1n2uH1n24E1n - 12 - 𝚽 - 11n2u1n2n*1n2 

  - 11 - a2wo1n - 12 + V1n2,  (13.46)

where I is the identity matrix. The linear stochastic difference equation (13.46)  provides 
a complete description of the RLS algorithm embedded in the system model of  
Fig. 13.2, bearing in mind the aforementioned minor change in notation. As with the 
LMS algorithm, we assume that the model parameter a is close to one, so that we may 
ignore the term (1 - a)wo(n - 1). That is, the process equation is described essentially 
by a random-walk model, for which Eq. (13.46) reduces to

 E1n2 = 3I - 𝚽 - 11n2u1n2uH1n24E1n - 12 - 𝚽 - 11n2u1n2n*1n2 + V1n2. (13.47)

Before proceeding further, it is instructive to find an approximation for the inverse 
matrix 𝚽-1(n) that makes the tracking analysis of the RLS algorithm mathematically 
trackable in a meaningful manner. To do so, we first take the expectation of both sides 
of Eq. (13.42), obtaining

  𝔼3𝚽1n24 = a
n

i = 1
ln - i𝔼3u1i2uH

 1i24  

  = a
n

i = 1
ln - iRu   (13.48)

  = Ru 11 + l + l2 + g + ln - 12, 

where Ru is the ensemble-average correlation matrix of the input vector u(n). The series 
inside the parentheses on the right-hand side of Eq. (13.48) represents a geometric series 
with the following description: a first term equal to unity, geometric ratio equal to l, and 
length equal to n. We now assume that n is large enough for the convergence mode of 
the algorithm to be essentially over. Under this condition, we may treat the geometric 
series to be essentially of infinite length, and so use the formula for the sum of such a 
series to rewrite Eq. (13.48) in the compact form

 𝔼3𝚽1n24 =
Ru

1 -  l
   for n large. (13.49)
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Equation (13.49) defines the expectation (ensemble average) of 𝚽(n), on the basis of 
which we may express 𝚽(n) itself as follows (Eleftheriou & Falconer, 1986):

 𝚽1n2 =
Ru

1 - l
+ 𝚽∼1n2  for n large, (13.50)

where 𝚽∼1n2 is a Hermitian perturbation matrix whose individual entries are represented 
by zero-mean random variables that are statistically independent from the input vector 
u(n). Assuming a slow adaptive process (i.e., the exponential weighting factor l is close 
to unity), we may view the 𝚽(n) in Eq. (13.50) as a quasi-deterministic matrix, in the 
sense that for large n we have2

 𝔼3 7 𝚽∼1n2 7 24 V 𝔼3 7 𝚽1n2 7 24 
where ||·|| denotes matrix norm. Under this condition, we may go one step further by 
ignoring the perturbation matrix 𝚽∼1n2, and thereby approximate the correlation matrix 
𝚽(n) as

 𝚽1n2 ≈
Ru

1 -  l
   for n large. (13.51)

This approximation is crucial to the tracking analysis of the RLS algorithm presented 
herein. In a corresponding way to Eq. (13.51), we may express the inverse matrix 𝚽-1(n) as

 𝚽-1
 1n2 ≈ 11 - l2R-1

u   for n large, (13.52)

where R-1
u  is the inverse of the ensemble-average correlation matrix Ru.

Returning to Eq. (13.47) and using the approximation of Eq. (13.52) for 𝚽-1(n), 
we may now write

E1n2 ≈ 3I - 11 - l2R-1
u u1n2uH

 1n24E1n - 12
 - 11 - l2R-1

u u1n2n*1n2 + V1n2  for n large. 
(13.53)

Typically, the exponential weighting factor l is close to unity, so that 1 - l is small. Then, 
invoking the direct-averaging method of Section 6.4, we may state that E(n) is “close” to 
the solution of the new stochastic difference equation in E0(n):

 E0 1n2 ≈ lE0 1n -  12 -  11 -  l2R-1
u u1n2n*1n2 +  V1n2  for n large. (13.54)

Equation (13.54) for the RLS algorithm has a form that is dramatically different from 
that of Eq. (13.25) for the LMS algorithm, which, of course, is to be expected.

Evaluating the correlation matrix of E0(n) in Eq. (13.54) and invoking the assump-
tions of Section 13.2, we obtain

2A completely general proof that the correlation matrix 𝚽(n) is quasi-deterministic is yet to be pre-
sented in the literature. The issue was apparently first discussed in Eleftheriou and Falconer (1986), who used 
heuristic arguments. It was also discussed in Macchi and Bershad (1991), who presented a proof for the case 
of a nonstationary signal, namely, a noisy chirped sinusoid. This signal includes the commonly encountered 
example of a pure sinusoid in additive white Gaussian noise as a special case, which validates the proof for a 
stationary environment, too. However, a limitation of the proof presented by Macchi and Bershad is that it 
hinges on the unrealistic assumption that successive input vectors are statistically independent.
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 K0 1n2 ≈ l2K0 1n - 12 + 11 - l22
 s2

nR
-1
u + Rv  for n large. (13.55)

For a steady-state solution of the difference equation (13.55), for which n is large, 
we may legitimately set K0(n - 1) = K0(n). Under this condition, Eq. (13.55) sim-
plifies as

 11 -  l22K0 1n2 ≈ 11 -  l22
 s2

nR
-1
u  +  Rv  for n large. (13.56)

For l close to unity, we may use the approximation

  1 -  l2 = 11 -  l211 +  l2 

  ≈ 211 -  l2.  (13.57)

Accordingly, we may further simplify the correlation matrix for the RLS algorithm as

 K0 1n2 ≈
1 -  l

2
 s2

nR
-1
u  +  

1
211 -  l2  Rv  for n large. (13.58)

This is the equation for evaluating the tracking capability of the RLS algorithm for the 
system identification problem described in Fig. 13.2, subject to the condition that a is 
close to unity.

mean-square deviation of the rls algorithm

Applying the formula of Eq. (13.10) to Eq. (13.58), we readily find that the mean-square 
deviation of the RLS algorithm is defined by

 d 1n2 ≈
1 -  l

2
 s2

n tr 3R-1
u 4 +  

1
211 -  l2  tr 3Rv4  for n large. (13.59)

The first term, 11 -  l2s2
ntr3R-1

u 4  >  2, is the estimation variance due to the measure-
ment noise n(n). The second term, tr[Rv]/2(1 - l), is the lag variance due to the process 
noise vector V(n). These two contributions vary in proportion to 1 - l and (1 - l)-1, 
respectively. The optimum value of the forgetting factor, lopt, occurs when these two 
contributions are equal. Thus, from Eq. (13.59), we readily find that

 lopt ≈ 1 -  
1
sn

 a tr 3Rv4
tr 3R-1

u 4 b
1 >  2

. (13.60)

Correspondingly, the minimum mean-square deviation of the RLS algorithm is given by

 dmin ≈ sntr 13R-1
u 4tr 3Rv421 >  2. (13.61)

misadjustment of the rls algorithm

Multiplying both sides of Eq. (13.58) by the correlation matrix Ru, we get

 RuK0 1n2 ≈
1 -  l

2
 s2

nI +  
1

211 -  l2  RuRv  for n large. (13.62)
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The identity matrix I is of size M by M, where M is the number of taps in the adaptive 
FIR filter. Hence, taking the trace of the two sides of Eq. (13.62) yields

 tr 3RuK0 1n24 ≈
1 -  l

2
 s2

nM +  
1

211 -  l2  tr 3RuRv4  for n large. (13.63)

Finally, using Eq. (13.19), we readily find that the misadjustment of the RLS algorithm 
is given by

 m1n2 ≈
1 -  l

2
 M +  

1
2sn

211 -  l2  tr 3RuRv4  for n large. (13.64)

The first term on the right-hand side of Eq. (13.64) represents the noise misadjustment 
of the RLS algorithm due to the measurement noise n(n). This term varies linearly with 
1 - l; note also that it depends on the number of taps, M, in the adaptive FIR filter. 
The second term represents the lag misadjustment of the RLS algorithm due to the 
process noise vector V(n); this term varies inversely with 1 - l. The optimum value of 
the forgetting factor, lopt, occurs when these two contributions are equal. We thus find 
from Eq. (13.64) that

 lopt ≈ 1 -  
1
sn

 a 1
M

 tr 3RuRv4b
1 >  2

. (13.65)

Correspondingly, the minimum value of the misadjustment produced by the RLS algo-
rithm is given by

 mmin ≈
1
sn

 1M tr 3RuRv421 >  2. (13.66)

Here also, we find that the two criteria—minimum misadjustment and minimum mean-
square deviation—lead to different values for lopt. For these values to be meaningful, 
they are subject to the assumption that lopt is positive and just less than unity.

We now have all the tools we need to make a quantitative comparison between 
the LMS and RLS algorithms in the context of the system model depicted in Fig. 13.2.

13.7  ComparisoN of the traCkiNg performaNCe of lms  
aNd rls algorithms

Given the fact that the LMS and RLS algorithms are formulated in entirely different 
ways, it is only natural to find that they exhibit not only different convergence proper-
ties but also different tracking properties. The difference in their tracking behavior may 
be traced back to the stochastic difference equations (13.25) and (13.54). In the RLS 
algorithm, the input vector u(n) is premultiplied by the inverse matrix R-1, wherein lies 
the fundamental difference between it and the LMS algorithm. Moreover, comparing 
Eqs. (13.25) and (13.54), on which the tracking analysis presented in the previous two 
sections is based, we see that, in a loose sense, 1 - l in the RLS algorithm plays a role 
analogous to that of m in the LMS algorithm. In making this analogy, however, we should 
try to be more precise. In particular, the exponential weighting factor l is dimensionless, 
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whereas the step-size parameter m has the inverse dimension of power. To correct for 
this dimensional discrepancy, we do the following:

 • For the LMS algorithm, we define the normalized step-size parameter

 mnorm = ms2
u, (13.67)

where s2
u is the variance of the zero-mean tap input u(n).

 • For the RLS algorithm, we define the forgetting rate

 b = 1 -  l. (13.68)

Moving to the main issue of interest, we may use Eqs. (13.35) and (13.61), on the 
one hand, and Eqs. (13.40) and (13.66), on the other, to formulate a corresponding pair 
of ratios for comparing the “optimum” tracking performance of the LMS and RLS 
algorithms for the system identification problem at hand; one ratio is based on the 
mean-square deviation, and the other is based on the misadjustment, as the figure of 
merit. Specifically, we may write

 
dLMS

 min 

dRLS
min

≈ a M tr 3R-1
u Rv4

tr 3R-1
u 4 tr 3Rv4

b
1 >  2

 (13.69)

and

 
mLMS

 min 

mRLS
min

≈ a tr 3Ru4 tr 3Rv4
M tr 3RuRv4 b

1 >  2

, (13.70)

where Ru is the correlation matrix of the input vector u(n), Rv is the correlation matrix 
of the process noise vector V, and M is the number of taps in the adaptive FIR filter of 
Fig. 13.2. Clearly, whatever comparison we make between the LMS and RLS algorithms 
on the basis of Eqs. (13.69) and (13.70), the result depends on the environmental condi-
tions that are prevalent and, in particular, on how the correlation matrices Rv and Ru 
are defined. In what follows, we consider three different hypothetical examples.3

3Example 1 is discussed in Widrow and Walach (1984) and Eleftheriou and Falconer (1986); examples 
2 and 3 are discussed in Benveniste et al. (1987) and Slock and Kailath (1993), respectively.

eXample 1: Rv = s2
vI

Consider first the case of the process noise vector V(n) in the first-order Markov model of  
Eq. (13.1) originating from a white-noise source of zero mean and variance s2

v. We may express 
the correlation matrix of V(n) as

 Rv = s2
vI, (13.71)

where I is the M-by-M identity matrix. Then, using Eq. (13.71) in Eqs. (13.69) and (13.70), we get 
the respective results (after cancelling common terms)

 dLMS
min ≈ dRLS

min ,    Rv = s2
vI  (13.72)

and

 mLMS
min ≈ mRLS

min ,    Rv = s2
vI. (13.73)
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Accordingly, we may state that the LMS and RLS algorithms produce essentially the same 
minimum levels of misadjustment and mean-square deviation for the case of a process noise vec-
tor V(n) drawn from a white-noise source, irrespective of the statistics of the input vector.

eXample 2: Rv = c1Ru

Consider next the example when the correlation matrix Rv of the process noise vector V(n) in 
the first-order Markov model of Eq. (13.1) equals a constant c1 times the correlation matrix Ru 
of the input vector u(n). The scaling factor c1 is introduced here for two reasons:

 1. To account for the fact that the process noise vector V(n) and the input vector u(n) are 
ordinarily measured in different units.

 2. To ensure that the optimum m for the LMS algorithm in Eq. (13.34) or Eq. (13.39), and the 
optimum l for the RLS algorithm in Eq. (13.60) or Eq. (13.65), assume meaningful values.

Thus, putting Rv = c1Ru in Eqs. (13.69) and (13.70) and cancelling the scaling factor c1, we get 
the two comparative yardsticks listed under Rv = c1Ru in Table 13.1. Before commenting on 
these results, it is instructive to go on and consider the complementary example described next.

TAbLE 13.1 Comparative Yardsticks for LMS and RLS  
Algorithms for Examples 2 and 3

Rv = c1Ru Rv = c2R
-1
u  

dLMS
min

dRLS
 min 

 
M

1tr 3R-1
u 4 tr 3Ru421 >  2

 1M tr 3R-2
u 421 >  2

tr 3R-1
u 4  

mLMS
min

mRLS
 min 

 
tr 3Ru4

1M tr 3R2
u421 >  2

 1
M

 1tr 3Ru4 tr 3R-1
u 421 >  2 

eXample 3: Rv = c2R
- 1
u

In this final example, the correlation matrix Rv of the process noise vector V(n) is equal to a 
constant c2 times the inverse of the correlation matrix R of the input vector u(n). The scaling fac-
tor c2 is used here for exactly the same reasons given in Example 2. Thus, putting Rv = c2R

-1
u  in  

Eqs. (13.69) and (13.70) and again cancelling the scaling factor c2, we get the remaining two com-
parative yardsticks listed under Rv = c2R

-1
u  in Table 13.1.

remarks pertaining to examples 2 and 3

The 2-by-2 array of entries shown in the table exhibits a useful property, namely, that of reciprocal 
symmetry. The significance of this property may be substantiated in theoretical terms by recogniz-
ing that the pair of cross-diagonal terms in this 2-by-2 array lend themselves to the application of 
the Cauchy-Schwartz inequality, for which the reader is referred to the end-of-chapter Problem 7. 
The findings of this problem, resulting from application of this inequality, are summarized in the 
following pair of equations:
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 mLMS
min … mRLS

min      for Rv = c1Ru (13.74)

and

 dRLS
min … dLMS

min      for Rv = c2R
-1
u . (13.75)

In words, the property of reciprocal symmetry, embodied in Eqs. (13.74) and (13.75), may be 
expressed as follows: If, for Rv = c1Ru, the minimum mean-square deviation dmin produced by 
the LMS algorithm is smaller than the corresponding value produced by the RLS algorithm, then 
for Rv = c2R

-1
u , the minimum misadjustment mmin produced by the RLS algorithm is smaller 

than the corresponding value produced by the LMS algorithm.
To illustrate the validity of this statement, consider the special case of an adaptive filter with 

M = 2, for which the 2-by-2 correlation matrix of the input vector u(n) is denoted by

Ru = c r11 r21

r21 r22
d ,  r12 = r21.

For this specification of Ru, the 2-by-2 array of Table 13.1 takes on the particular form pre-
sented in Table 13.2. Next, recognizing that, since any 2-by-2 correlation matrix satisfies the 
condition

1r11 - r2222 + 12r2122 Ú 0,

we see that Table 13.2 leads us to make the following statements encompassing all four entries 
of the array:

 1. For Rv = c1Ru, the LMS algorithm performs better than the RLS algorithm, in that it yields 
smaller values for both dmin and mmin.

 2. For Rv = c2R
-1
u , the RLS algorithm performs better than the LMS algorithm, in that it 

yields smaller values for both dmin and mmin.

Examples 2 and 3 clearly illustrate that neither the LMS algorithm nor the RLS algorithm has a 
complete monopoly over good tracking behavior, which, in itself, is an insightful theoretical point-
of-view to take away from Examples 2 and 3.

From a practical perspective, however, we do typically find that one of these two algorithms, 
LMS or RLS, is the preferred choice for tracking a nonstationary environment, bearing in mind 
the environmental conditions that are to be resolved. Such issues are addressed in Sections 13.8 
to 13.11 that go beyond traditional adaptive filtering algorithms, LMS and RLS.

TAbLE 13.2 Comparative Yardsticks for LMS and RLS Algorithms for 
Examples 2 and 3, Assuming That M = 2

Rv = c1Ru Rv = c2R
-1
u  

dLMS
min

dRLS
min

 
22r11r22 - r 2

21

r11 + r22
 

22(r 2
11 + 2r 2

21 + r 2
22)

r11 + r22
 

mLMS
min

mRLS
 min 

 
r11 + r2222(r 2

11 + 2r 2
21 + r 2

22)
 

r11 + r22

22r11r22 - r 2
21
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13.8 tuNiNg of adaptatioN parameters

In light of the material covered in the preceding six sections on a time-varying system 
identification problem, we may say that Issue 1 raised in Section 13.1 on traditional LMS 
and RLS algorithms has been addressed, except for the matter of how to choose their 
adaptation parameters. The most straightforward approach is to tune them manually, 
which is feasible in a stationary environment. However, in a nonstationary environment, 
the more logical procedure is to tune the adaptation parameters automatically, so as to 
closely match the continually varying state of the nonstationary environment. This task 
is the essence of Issue 2 in Section 13.1.

Basically, to modify the LMS or RLS algorithm so that the respective adaptation 
parameter, m or 1 - l, is tuned in an automatic manner, we propose to expand the algo-
rithm by including a second level of adaptation.

The need for this expansion is satisfied by means of a learning-within-learning 
scheme, a block diagram of which is depicted in Fig. 13.3. This new scheme embodies 
two separate control mechanisms that work together side-by-side. Specifically, we have:

 •	 Primary control mechanism, which is driven by the estimation error, e(n); the objec-
tive here is to automatically control the adjustments applied to the tap-weights of 
the FIR filter in the algorithm in the traditional manner.

 •	 Secondary control mechanism, which is also driven by the estimation error, e(n). 
This time, however, the objective is to automatically apply appropriate adjust-
ments to the adaptation parameter embedded in the primary control mechanism.

FIgurE 13.3 Block diagram of supervised learning-within-learning scheme.
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There are two approaches on how to implement the learning-within-learning 
scheme of Fig. 13.3:

 1. Scaler approach. In this first approach, the adaptation parameter takes the form 
of a time-varying scaler. For example, in the LMS algorithm, we use m(n + 1) for 
the step-size parameter m in place of the traditional fixed-value m, as shown by

  wn 1n + 12 = wn 1n2 + m1n + 12(u1n2e*1n2).

 2. Vector approach. In this second approach, the adaptation parameter takes the form 
of a time-varying vector, each element of which is correlated with some feature of 
the input data vector u(n). Again, considering the LMS algorithm, we now write

  wn 1n + 12 = wn 1n2 + M1n + 12o1u1n2e*1n22,

  where the operator o denotes the element-wise section product, involving M(n + 1) 
and u(n). Note that  according to this formula, dimensionality of the step-size 
parameter vector M(n + 1) is the same as that of the input vector u(n), or, equiva-
lently, the tap-weight vector wn 1n2, which is intuitively satisfying.

The difference between these two approaches may be summed up as follows: In 
the scaler approach, the error-performance surface is of a quadratic form, with its mini-
mum point (i.e., optimum Wiener solution) varying with time. On the other hand, the 
vector approach has an advantage over the scaler one in that it can deal with an error- 
performance surface that is more complex, with different curvatures in different directions.

In a way, there is nothing to stop us from extending the vector approach and apply-
ing it to the RLS algorithm, too. Unfortunately, with complexity of the RLS algorithm 
following a square law, the resulting complexity of the expanded RLS algorithm based 
on the scheme of Fig. 13.3 could become computationally unmanageable, particularly 
so if dimensionality of the FIR filter is high. For this reason, when we have to deal with 
big data (i.e., data that are continually growing in volume), simplicity in computational 
complexity is of the essence, hence the compulsion to opt for the LMS algorithm as the 
basis for algorithmic modification.

To summarize the discussion presented in this section, we may identify two proce-
dures for implementing the learning-within learning scheme of Fig. 13.3:

   Procedure 1: The adaptation parameter in the primary control mechanism is auto-
matically tuned, but the adaptation parameter in the secondary control mechanism 
is manually tuned.

   Procedure 2: The adaptation parameters in the primary and secondary control 
mechanisms are both automatically tuned, thereby becoming tuning-free.

Clearly, Procedure 2 is much more difficult than Procedure 1.
Having settled on the idea of expanding the LMS algorithm, a related issue that 

needs to be addressed is the following:

How do we mechanize the learning-within-learning scheme of Fig. 13.3, so that 
adaptive-parametric training is performed automatically throughout the entire 
scheme in a rigorous manner analytically?
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In a way, we may view this question as the ultimate in automatically tuned linear adap-
tive filtering. Needless to say, it presents a challenge by requiring not only operating in 
an unknown nonstationary environment but also ruling out manual tuning altogether.

With the exposé presented in this section, we have set the stage for addressing 
the issues to be covered in the next two sections. To be specific, Section 13.9 presents a 
detailed treatment of an algorithm known as the incremental delta-bar-delta (IDBD) 
algorithm, and Section 13.10 describes a new procedure called the Autostep method. 
With both the IDBD algorithm and the Autostep method employing a pair of adapta-
tion parameters, henceforth the following terminology is adopted:

 •	 The step-size parameter, m, is retained for the primary control mechanism in  
Fig. 13.3.

 •	 The meta-learning-rate parameter, k, is adopted for the secondary control mecha-
nism in the figure.

The term “meta-learning” is used in the literature on neural networks and learning 
machines to describe “learning-how-to-learn” the adaptation parameters (i.e., learning 
rate) of an algorithm based on the scheme in Fig. 13.3.

13.9 iNCremeNtal delta-bar-delta (idbd) algorithm

The incremental delta-bar-delta (IDBD) algorithm is an incremental meta-learning 
 algorithm.4 Basically, mathematical composition of the algorithm consists of two  
parts:

 •	 The first part pertains to the LMS algorithm as its basis, with a slight modifica-
tion that involves the use of a time-varying step-size parameter, mi(n + 1), where  
i = 0, 1, c, M - 1, and where each of the M tap weights in the FIR filter is tuned 
automatically in accordance with the vector approach.

 •	 The second part is an addendum made up of three equations, two of which involve 
the use of memory-related parameters and the third of which is a meta-learning-
rate parameter that is tuned manually.

4In an intuitive sense, the IDBD algorithm, devised by Sutton (1992), is the same as the delta-bar-delta 
(DBD) algorithm originally devised by Jacobs (1988). The “I” in IDBD stands for “incremental,” which means 
that the adjustments applied to the tap weights in the FIR filter are relatively small, in accordance with the 
underlying principle of stochastic gradient descent.

The IDBD algorithm differs from its DBD counterpart, however, in the following two ways:

 1.  First, the DBD algorithm was originally developed by Jacobs for the supervised training of neural 
networks on a batch-by-batch basis. On the other hand, the IDBD algorithm devised by Sutton 
deals with supervised training of a stochastic gradient descent algorithm that progresses in a se-
quential manner, with each data point being used only once.

 2.  Second, the DBD algorithm has three free parameters, whereas the IDBD algorithm has a single 
free parameter, namely, the meta-learning (step-size) parameter.
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the lms part of idbd

To proceed, let {u(n - i), d(n)}, i = 0, 1, c, M - 1, denote the data set used for supervised 
training of the LMS part of the IDBD algorithm for n = 1, 2, c. As usual, M denotes 
the number of tap weights in the FIR filter. Following the traditional form of the LMS 
algorithm, we write

 e1n2 = d1n2 - a
M - 1

i = 0
wn *i 1n2u1n - i2 (13.76)

and

 wn i1n + 12 = wn i1n2 + mi1n + 12u1n - i2e*1n2, i = 0, 1, c, M - 1, (13.77)

where e(n) is the estimation error. For reasons that will become apparent later, the 
time-varying step-size parameter mi is updated before updating the tap weights in  
Eq. (13.77). Note also that in Eq. (13.77), the step-size parameter varies with the tap 
weight in accordance with the vector approach described in Section 13.8.

The step-size parameter in the LMS algorithm plays a key role in the supervised 
learning process, which is why it is also commonly referred to in the neural networks 
literature as a “learning-rate parameter.” In dealing with adaptation in a nonstationary 
environment, this parameter should be carefully distributed, such that the following 
desirable condition is attained (see Sutton, 1992):

Inputs that are likely to be irrelevant should be given small learning rates (step 
sizes); on the other hand, inputs that are likely to be relevant, and therefore impor-
tant, should be given relatively large learning rates.

With this desirable condition in mind, the time-varying step-size parameter mi(n) in the 
IDBD algorithm is defined as follows:

 mi1n2 = exp1ai1n22, i = 0, 1, c, M - 1, (13.78)

where ai(n) is its first one of two adaptable memory parameters of the IDBD algorithm. 
The exponential relationship in Eq. (13.78) offers two practical advantages:

 1. It assures that the step-size parameter mi(n) is positive for all i and all n, which is 
how it should be for stochastic gradient descent.

 2. It provides a simple mechanism for producing “geometric” steps in ai(n), which 
are described by relatively slow additive updates in ai(n) for all i.

the idbd addendum

The adaptive process responsible for updating the step-size parameter mi(n) from 
one adaptation cycle to the next is performed in the secondary control mechanism in  
Fig. 13.3. Specifically, the ai in Eq. (13.78) is updated as follows (Sutton, 1992):

 ai1n + 12 = ai1n2 + ku1n - i2e*1n2hi1n2, i = 0, 1, . . . , M - 1, (13.79)
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where k is a positive constant, denoting the meta-learning rate (step-size) parameter in 
the IDBD algorithm.

In Eq. (13.79), we have also introduced a new parameter, hi(n), denoting the 
second adaptable memory parameter of the IDBD algorithm. This new parameter is 
updated as follows (Sutton, 1992):

hi1n + 12 = 11 - mi1n + 12 ∙ u1n - i2∙22+hi1n2 + mi1n + 12u1n - i2e*1n2, 

 i = 0, 1, c, M - 1, (13.80)

where we have introduced the following new notation for a positive bounding operation:

 1x2+ = ex if x 7 0
0 otherwise

. (13.81)

The memory parameter hi plays the role of a decaying trace of the cumulative sum of 
changes recently made in the ith tap weight wi.

For an intuitive understanding of the IDBD algorithm, consider first the update 
formula of Eq. (13.79), in which the notion of correlation plays a significant role in how 
the incremental change to ai materializes, putting aside the meta-step-size parameter k. 
Specifically, we may view the multiple product term u(n - i)e*(n)hi(n) as the correlation 
between the following two terms at each adaptation cycle n:

 1. The product term u(n - i)e*(n), which represents the incremental change to the 
ith tap-weight wn i1n2.

 2. The term hi(n), which represents a trace of tap-weight changes in the recent past.

Accordingly, we may say that if this correlation is positive, then the cumulative effect of 
past adaptation cycles results in an increase in the first adaptable memory parameter ai for  
i = 0, 1, c, M - 1. If, on the other hand, the correlation has a negative (opposite) effect, 
the end result is a decrease in ai.

Turning next to an intuitive understanding of the second adaptable memory para-
meter hi in Eq. (13.80), we may say the following for i = 0, 1, c, M - 1:

 •	 The first term on the right-hand side of Eq. (13.80) is a decay term because the 
product term mi1n + 12 ∙ u1n - 12 ∙2 is a small positive quantity or else is zero.

 •	 The second term on the right-hand side of Eq. (13.80) changes the hi by an amount 
equal to the incremental change made in the tap-weight wn i1n2, in accordance with 
Eq. (13.77).

We therefore conclude that whatever change is made to the hi in Eq. (13.80), it will be 
incrementally small at each adaptation cycle.

Putting it all together, we may intuitively state that the IDBD algorithm is another 
example of stochastic gradient descent in the first memory parameter ai. This intuitive 
statement is confirmed next mathematically.

derivation of the idbd addendum

In algorithmic terms, the IDBD addendum consists of Eqs. (13.79) and (13.80). We first 
derive Eq. (13.79) on the meta-step-size parameter, k, by following a procedure similar 
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to that described for the LMS algorithm in Chapter 5. Specifically, in place of the update 
formula of Eq. (5.4), for the issue at hand, we write the following:

 ai1n + 12 = ai1n2 -
1
2
k

0 ∙e1n2∙2

0ai
, (13.82)

The second term involves k, and the scaling factor 1/2 has been introduced for conve-
nience of presentation. Note also that the partial derivative of the squared absolute 
value of the estimation error, e(n), in Eq. (13.82) is written with respect to ai without 
dependence on the adaptation cycle n; the rationale for doing this is to signify that this 
partial differentiation is carried out with respect to an infinitesimally small ai for all n. 
To proceed further, we would like to bring partial differentiation of ∙ e1n2 ∙2 with respect 
to wn i1n2 into the evaluation of 0 ∙e1n2 ∙2>0ai. To this end, we use the chain rule of calculus 
to express this partial derivative in the following equivalent form:

 
0 ∙ e1n2 ∙2

0ai
= a

M - 1

j = 0

0 ∙ e1n2 ∙2

0wn j1n2  
0wn j1n2

0ai
, (13.83)

where the summation is intended to cover all M tap-weights in the FIR filter. Under 
the reasonable proposition that the primary effect of applying an incrementally small 
change to the ai in Eq. (13.83) is centered on the wn i1n2, that is,

 
0wn j1n2

0ai
≈ 0   for all i ≠ j, (13.84)

we may then approximate Eq. (13.83) as follows:

 
0 ∙ e1n2 ∙2

0ai
≈

0 ∙ e1n2 ∙2

0wn i1n2  
0wn i1n2

0ai
.  

In Chapter 5, we previously showed that [see Eq. (5.3)]

 
0 ∙ e1n2∙2

0wn i1n2 ≈ -2u1n - i2e*1n2, 

where we have substituted the symbol i for k. Furthermore, introducing the definition

 hi1n2 =
0wn i1n2

0ai
 (13.85)

for the second adaptable memory parameter, we may now go on to approximate  
Eq. (13.83) as follows:

 
0 ∙ e1n2 ∙2

0ai
≈ -2u1n - i2e*1n2hi1n2. (13.86)

Accordingly, substituting Eqs. (13.84) to (13.86) into Eq. (13.82), we obtain the update 
formula for the first adaptable memory parameter ai previously presented in Eq. (13.79).
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Next, we go on to derive the update formula for the second adaptable memory 
parameter hi. With time-updating in mind, we use the defining equation (13.85), followed 
by Eq. (13.77), to write

  hi1n +  12 =
0wn i1n + 12

0ai
 

  =
0

0ai
 1wn i1n2 + mi1n + 12u1n - i2e*1n22  

(13.87)

  =
0wn i 1n2

0ai
+ u1n - i2 

0
0ai

 1mi1n + 12e*1n22 

  = hi1n2 + u1n - i2 
0

0ai
 1mi1n + 12e*1n22.  

Applying the product rule of calculus to the second term in the last line of Eq. (13.87), 
we write

 
0

0ai
 1mi1n + 12e*1n22 = e*1n2 

0mi1n + 12
0ai

+ mi1n + 12 
0e*1n2

0ai
. (13.88)

For the first partial derivative in the right-hand side of Eq. (13.88), we use the defining 
formula of Eq. (13.78) to write

  
0mi1n + 12

0ai
=

0
0ai

 exp1ai1n + 122 

  = exp1ai1n + 122  (13.89)

  = mi1n + 12.  

For the second partial derivative in Eq. (13.88), we use Eq. (13.76) for the estimation 
error, e(n), to write

0e*1n2
0ai

 =
0

0ai
 ad*1n2 - a

M - 1

j = 0
wn j1n2u*1n - j2b  

 ≈ -u*1n - i2
0wn j1n2

0ai
; as for Eq. 113.842, where 

0wn j1n2
0ai

≈ 0 for all j ≠ i 

 = -u*1n - i2hi1n2. (13.90)

Thus, substituting Eqs. (13.89) and (13.90) into Eq. (13.88), we obtain

0
0ai

 1mi1n + 12e*1n22 = mi1n + 12e*1n2 - mi1n + 12u*1n - i2hi1n2.

Using this partial derivative in Eq. (13.87) and collecting common terms, we obtain

 hi1n + 12 = 11 - mi1n + 12 ∙ u1n - i2 ∙ 22 hi1n2 + mi1n + 12u1n - i2e*1n2 . (13.91)
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All that is left for us to do now is to apply the positive-bounding operation previously 
introduced in Eq. (13.81) to the large pair of parentheses on the right-hand side of  
Eq. (13.91). In so doing, the derivation of the update formula of Eq. (13.80) for the 
second memory parameter hi is completed.

With the LMS part of the IDBD algorithm being of a stochastic gradient kind, 
and having proved that the IDBD addendum is likewise, we may therefore state that 
the IDBD algorithm, treated as a whole, is an example application of the method of 
stochastic gradient descent. Consequently, computational complexity of the IDBD algo-
rithm does indeed scale linearly with respect to dimensionality of the FIR filter inside 
the algorithm.

summary of the idbd algorithm

In Table 13.3, we present a summary of the IDBD algorithm, described in its complex 
form.5 As with the Autostep method, presented in the next section that builds on the 
IDBD algorithm, the algorithm follows a strict order of algorithmic assignments. In 
particular, the update formula of Eq. (13.79) is formulated differently in Table 13.3 by 
making use of Eq. (13.78).

5The real-valued version of the IDBD algorithm, first described in Sutton (1992), is a special case of 
its complex IDBD algorithm summarized in Table 13.3.

TAbLE 13.3 Summary of the IDBD Algorithm

Definitions:
Training data: {u(n - i), d(n)} for i = 0, 1, c, M - 1 and n = 0, 1, 2, c
mi(n): step-size parameter for tap-weight wn i1n2
k: meta-step-size parameter

Initialization: Set
k = 10-2

hi(0) = 0
wn i(0) = 0

mi(0) = manually tuned or 
0.1
lmax 

 if the largest eigenvalue of the correlation matrix of input vector 

u(n) is computable
Computation:

For each point in the training data: {u(n - i), d(n)} for i = 0, 1, c, M - 1 at adaptation cycle n, 
compute

e1n2 = d1n2 - a
M - 1

i = 0
wn *

i 1n2u1n - i2

ai1n + 12 = log1mi1n22 + ku1n - i2e*1n2hi1n2
mi1n + 12 = exp1ai1n + 122

wn i1n + 12 = wn i1n2 + mi1n + 12u1n - i2e*1n2
hi1n + 12 = 11 - mi1n + 12 ∙ u1n - i2∙22+  hi1n2 + mi1n + 12u1n - i2e*1n2
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13.10 autostep method

The Autostep method is the result of a major endeavor to develop a tuning‐free step‐size 
adaptive procedure for the LMS algorithm (Mahmood, 2010). When the input data are 
high‐dimensional and abundant, linear adaptive filtering algorithms rooted in the method 
of stochastic gradient descent, such as the LMS algorithm, are among the few choices 
available. Therefore, an obvious logical step is to mitigate their inherent drawbacks. 

One of the most notorious problems encountered in the use of traditional gradient-
descent methods is associated with their step‐size parameters. The IDBD algorithm is a 
powerful solution to mitigate the step‐size problem of the LMS algorithm. As explained 
in the previous section, the IDBD algorithm vectorizes the step‐size parameter of the 
LMS algorithm, where each element of this vector matches a particular feature that 
characterizes the input data; as with the LMS algorithm, linearity across time as well as 
memory complexity are preserved by construction. By means of this adaptive procedure, 
the IDBD algorithm improves on the level of performance achievable by the LMS algo-
rithm. Unfortunately, a potential drawback is that in employing the new meta‐step‐size 
parameter, k, the IDBD algorithm may very well end up needing manual tuning of its own.

The next important issue to resolve is therefore to make the IDBD algorithm 
 tuning‐free; that is, the parameter k is assigned a fixed value. To achieve this highly 
desirable objective is to do the following:

Find the means whereby the large fluctuations in the pre‐assigned value of the 
meta‐step‐size size parameter, k, experienced in going from application of the 
IDBD algorithm to another, are stabilized.

Unfortunately, a mathematical approach to realize this objective is difficult. To get 
around this difficulty, we may follow an exhaustive experimental approach, covering a 
wide range of different applications.

To this end, Mahmood carried out a detailed experimental study on a large data-
base made up of simulated data as well as variety of real‐world data sets; the study is 
summarized as follows:

	 •	 For the simulated data, inputs were drawn from independent and identically dis-
tributed (i.i.d.) standard Gaussian distributions, with the target tap weights assum-
ing Gaussian random walks. In this way, different varieties of simulation problems 
were generated by altering the variance of the input data as well as the variance 
of drifts in the target tap weights.

	 •	 For the real‐world data, inputs were drawn from the sensorimotor records of a 
robot that had 56 different sensors, including light sensors, distance sensors, heat 
sensors, an accelerometer, a magnetometer, and so on. The input data collected 
from the different classes of sensors had different scales of statistics (i.e., means 
and variances). Three million data samples were collected by running the robot for 
several hours. The task of the IDBD algorithm was to use all the sensors so that, 
at a particular sample point, the algorithm would predict the output of one of the 
sensors at the next sample point. Six such tasks were generated by choosing the 
target sensors from a different class of sensors for each task.
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With this extensive database at hand, it was discovered experimentally that the 
IDBD algorithm performed better than the LMS algorithm on each of the simulated 
and real‐world problems. However, the IDBD algorithm required its meta‐step‐size 
parameter k to be tuned for each specific problem. Moreover, the best-tuned values of 
the parameter k were different by orders of magnitude from one problem to the next. 
This form of tuning dependence was also observed for all other well‐known linear 
adaptive filtering algorithms that were part of the experimental study.

During the course of the study, it was also discovered that the meta‐step‐size para-
meter of the IDBD algorithm, k, has units, representing an important property that makes 
its best value dependent on the training data (i.e., input vector applied to the IDBD 
algorithm and corresponding desired response). Before application, with the training data 
being naturally unobservable, the parameter k of the IDBD algorithm had to be tuned 
to the specific problem under study, presenting another issue to be resolved. To this end, 
the first step in improving the IDBD algorithm was to normalize the parameter k in such 
a way that it became unit‐less. In effect, this normalization attempted to adjust the para-
meter, k, based on the training data. The resulting method was substantially less dependent 
on the parameter k than the original IDBD algorithm. However, the method was still 
not entirely tuning‐free, needing the use of manual tuning from one problem to the next.

To make the IDBD algorithm even less sensitive to the parameter, k, the next step 
was to impose a bound on permissible values of k. Specifically, whenever overshooting 
occurred in the sample cost function, the step size was reduced such that there would 
be no overshooting. This modification of the IDBD algorithm did indeed make the 
estimation process even less sensitive to the meta‐step‐size parameter.

One last point of interest: In the experiments described in this section, a common 
range of the meta‐step‐size values of the Autostep method was discovered (around the 
value of 0.01), which, amazingly enough, seemed to “work best” for all the simulated 
and real‐world problems. Moreover, the achieved performance was at worst comparable 
to and at best better than that of the IDBD algorithm. The insensitivity of the Autostep 
method to its fixed meta‐step‐size parameter, also denoted by k, was finally tested on a 
new set of six real‐world robot problems. These experiments confirmed practical utility 
of the Autostep method as a new linear adaptive filtering algorithm whose step size is 
tuning-free—a remarkable achievement.

To summarize, in adopting the two modifications of the IDBD algorithm just 
described, the net result was formulation of the so‐called Autostep method, the name of 
which is made up of two words: “auto” for automatic and “step” for step‐size parameter.

rules governing the autostep method

The steps involved in the underlying heuristic rules of the Autostep method, developed 
first in the thesis by Mahmood (2010) and then presented in the paper by Mahmood  
et al. (2012), are as follows (for real-valued data):

Step 1: Normalization. A recursive normalizer, denoted by vi (n), is introduced 
in the incremental adjustment of the multiple product term, kui(n)e(n)hi(n) in the real-
valued version of Eq. (13.79), as shown by

 vi1n + 12 = vi1n2 + gmi1n2u2
i 1n21∙ui1n2e1n2hi1n2∙ - vi1n22, (13.92)
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where the input is

ui1n2 = u1n - i2, i = 0, 1, c, M - 1.

The new parameter, g, called the forgetting factor, is defined as the reciprocal of the 
time-update scale parameter, t. Correspondingly, Eq. (13.79) is modified as follows:

 ai1n + 12 = ai1n2 + kaui1n2e1n2hi1n2
vi1n + 12 b , (13.93)

or 

 ai(n + 1) = ai(n) if vi(n + 1) = 0. (13.94)

Thus, the new term vi (n + 1) plays the role of a normalizer whenever it is nonzero.

Step 2: Modification of the Normalizer. To upper bound the update formula of 
Eq. (13.92), the normalizer is next modified as follows:

vi1n + 12 =  max1 ∙ ui1n2e1n2hi1n2 ∙ , vi1n2 + gmi1n2u2
i 1n21 ∙ ui1n2e1n2hi1n2 ∙ - vi1n222. 

 (13.95)

The net effect of this second modification is to have the term ui1n2e1n2hi1n2>vi1n + 12 
essentially upper bounded to unity. In so doing, the choice of the meta-step-size param-
eter k is guarded against the occasional occurrence of abrupt increases in the value of 
the multiple product term ui(n)e(n)hi(n).

Step 3: High-Step Detection. The last step in formulating the Autostep method 
involves two matters:

 a. Detection of high steps taken along the direction of tap-weight update in the 
FIR filter, which could arise in a sample realization of the error-performance 
surface.

 b. Scaling of the M-by-1 step-size vector M to smaller values to ensure that the 
updated tap-weight vector wn  does not overshoot the minimum point along the 
update direction on the surface.

The detection of such large step sizes (and their reduction) is attained by using the fol-
lowing “if-then” rule:

 If a
M - 1

j = 0
mj1n + 12m2

j 1n2 7 1, then mi1n + 12 is replaced with 
mi1n + 12

a
M - 1

j = 0
mj1n + 12u2

j 1n2
. 

(13.96)

All the rules just described can be used individually in the IDBD algorithm. 
However, it is when all the rules are used collectively together that the IDBD algorithm 
is at its most robust behavior, which has been demonstrated experimentally in various 
applications of the algorithm (Mahmood et al., 2012).
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TAbLE 13.4 Summary of the Autostep Method

Initialization: Set
k and g as 10-2 and 10-4, respectively
hi102 = 0
vi102 = 0
wn i102 = 0 or as desired

mi(0) = 0.1 or 
0.1
lmax 

 if lmax , where lmax is the largest eigenvalue of the correlation matrix of the input 

vector u(n), if it is computable.

Computation:
For each sample point in the training data: {u(n - i), d(n)} for i = 0, 1, c, M - 1 at adaptation cycle 

n, compute

 e1n2 = d1n2 - a
M - 1

i = 0
wn i1n2u1n - i2 

 vi1n + 12 = max1 ∙ e1n2u1n - i2hi1n2 ∙ , vi1n2 + gmi1n2 ∙ u1n - i2 ∙2 1 ∙ e1n2u1n - i2hi1n2 ∙ - vi1n222

 ai1n + 12 = log1mi1n22 + k 
e1n2u1n - i2hi1n2

vi1n +  12 ,  or  ai1n + 12 = log1mi1n22 if vi1n +  12 = 0

 mi1n + 12 = exp1ai1n + 122

 B = max a a
M - 1

i = 0
mi1n + 12∙u1n - i2∙2, 1b

 mi1n + 12 =
mi1n + 12

B
 wn i1n + 12 = wn i1n2 + mi1n + 12e1n2u1n - i2
 hi1n + 12 = 11 - mi1n + 12 ∙ u1n - i2 ∙ 22hi1n2 + mi1n + 12e1n2u1n - i2

Note: Each line is for i = 0, 1, to M - 1, except for the line that computes e(n) and B.

summary of the autostep method

Summary of this Autostep method is presented in Table 13.4, based on the use of real-
valued data. In this table, it is important to note that unlike the IDBD algorithm, the 
Autostep method does not require the notation (·)+, because it is guaranteed by the 
upper bound operation imposed in the step-size parameter m, as shown by

 mi1n + 12 d
mi1n + 12

B
, (13.97)

where

 B =  max a a
M - 1

i = 0
mi1n + 12u21n - i2, 1b . (13.98)

Accordingly, the mi is always nonnegative. Note that, in formulating Table 13.4, we have 
also made use of Eq. (13.78).

M13_HAYK4083_05_SE_C13.indd   547 21/06/13   8:49 AM



548   Chapter 13  Adaptation in Nonstationary Environments

the meta‐step‐size‐parameter, K

We started the second part of this chapter in Section 13.8 by stating the ultimate goal in 
linear adaptive filtering algorithm to be that of discovering an algorithm that is tuning 
free. That goal has indeed been realized with an experimentally oriented formulation 
of the Autostep method, summarized in Table 13.4.

Now, the alert reader, examining this table, may well raise the following question:

What is the justification for fixing the meta‐step‐size parameter, k, at the nominal 
value of 0.01?

Before responding to this question, it is instructive to explain the basic way in 
which the Autostep method differs from the IDBD algorithm: the parameter k has 
to be manually tuned, varying drastically in value from one application of the IDBD 
algorithm to another.

In the Autostep method, on the other hand, the algorithm summarized in Table 13.4 
has been formulated by performing a variety of computer experiments, such that it is 
essentially insensitive to the tuning of parameter k. Moreover, it has been found, again 
experimentally, that the fixed value k = 0.01 is a reliable choice.

In effect, setting k = 0.01 has rendered the Autostep method assume a near‐optimal 
performance without the need for manual tuning. To conclude this discussion, we may 
therefore go on to say the following (Mahmood, 2013):

In operating in a nonstationary environment, when there is nothing known about a 
tracking application of interest or the requirement is to solve a large‐scale tracking 
problem, the use of k = 0.01 as the meta‐step‐size parameter in the Autostep method 
is a sound choice.

13.11  Computer eXperimeNt: miXture of statioNary  
aNd NoNstatioNary eNviroNmeNtal data

This experiment is based on the system-identification problem described in Section 13.2. 
Referring to Fig. 13.1, the data generator is described by a first-order Markov process, 
namely, Eq. (13.1). Correspondingly, the desired response is described by the multiple 
linear regression model of Eq. (13.2).

For the experiment, dimensionality of the unknown weight vector wo in Eqs. (13.1) 
and (13.2) is chosen to be M = 20, which is large enough to make the experiment reason-
ably challenging. For Eq. (13.2), we have the following:

  Measurement (input) convariance matrix, Ru = I, when I is the identity matrix.
  Measurement noise variance, s2

v = 1.0.

Turning next to Eq. (13.1), we have

  Scalar constant, a = 0.9998.
  Process noise covariance matrix is described as follows:

Rv, ii = es
2
v for i = 0, 1, c, 4

0 for i = 5, 6, c, 19
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TAbLE 13.5 Tunable Parameters

Algorithm or method Tunable parameter

LMS Step-size parameter, m

RLS 1 - l, where l is the exponential weighting factor

IDBD Meta-step-size parameter, k

Autostep Meta-step-size parameter, k

and
Rv, ij = 0 for all i ≠ j.

Thus, the data generated by the regression model in Fig. 13.1 are made up of a mixture 
of nonstationary and stationary data.

Two different problems are studied in this experiment:

  Problem 1: s2
v = 0.1

  With s2
v denoting the variance of the process noise V(n) in Eq. (13.1), the driving 

force for the process equation is relatively small. Therefore, Problem 1 addresses a 
mixture of slightly nonstationary and stationary data, which are generated by the 
first 5 and remaining 15 tap weights of the regression model, respectively.

  Problem 2: s2
v = 10

  In this second problem, we have a mixture of highly nonstationary data alongside 
stationary data.

Other points of interest in the experiment are as follows:

 1. A sequential data set consisting of 50,000 samples is generated for both Problems 
1 and 2, in which the LMS, RLS, and IDBD algorithm, and the Autostep method 
are tested individually.

 2. For all three algorithms and the Autostep method, the tunable adaptation para-
meter is varied from 10-12 to 1.0, with equal logarithmic intervals. Table 13.5 identi-
fies the tunable parameters.

 3. For the Autostep method, the time-scale parameter t = 10+4.
 4. For initialization, the estimated tap weights for all three algorithms and the 

Autostep method are set to zero.
 5. The initial step-size parameter, mi(0), for both the IDBD algorithm and Autostep

  method is set to
1
M

= 0.05, where the model size M = 20, as pointed out previously.

 6. The root mean-square error (RMSE) is used as the measure of performance, 
 averaged over the last 25,000 samples, for which all three algorithms and the 
Autostep method would have relaxed to their respective steady-state responses.

 7. For a final measure of performance, the RMSE is considered relative to the best 
LMS algorithm performance averaged over the two problems. To this end, let the 
RMSE of the IDBD algorithm with meta-step-size parameter k for Problems 1 and 2  
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be denoted by RMSEIDBD(k),1 and RMSEIDBD(k),2, respectively. Correspondingly, 
let RMSELMSbest,1 and RMSELMSbest,2 denote the best RMSE of the LMS algorithm 
(after tuning) for Problems 1 and 2, respectively. Then, our averaged measure  
of performance for the IDBD algorithm is defined by the following metric:

 S1k2 =
1
2

 a
RMSEIDBD1k2,1

RMSELMSbest,1
+

RMSEIDBD1k2,2

RMSELMSbest,2
b . (13.99)

  In a similar manner, we may define the final measure of performance for the RLS 
algorithm and the Autostep method. According to Eq. (13.99), the metric S = 1 for 
the LMS algorithm.

results of the experiment

Table 13.6 presents the values of the best metric S for each of the three algorithms and 
the Autostep method. According to this table, the Autostep method comes out with the 
best averaged metric, S.

Figure 13.4 plots the averaged metric, S, versus the pertinent tunable parameter 
for each of the algorithms and the Autostep method. Each point in this figure represents 
how good each algorithm is for a particular value of its tunable adaptation parameter, 
compared to the best LMS algorithm performance. The results plotted in the figure show 
that the Autostep method outperforms the three algorithms, particularly the IDBD.

The results presented in Table 13.6 and Figure 13.4 are based on an average of 
the two different problems. In this context, we may wonder how each of the algorithms  
and the Autostep method performs on these two problems, addressed separately. With 
this objective in mind, parts (a) and (b) of Figure 13.5 plot the RMSE for each with 

FIgurE 13.4 The averaged metric, S, plotted versus tunable parameters for the LMS, RLS, 
and IDBD algorithms and the Autostep method.
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Algorithm or method Adaptation parameter Averaged metric, S

LMS m = 0.05 1
RLS 1 - l = 0.1 0.89
IDBD a = 2 * 10-6 0.79

Autostep a = 0.2 0.73

(a)

(b)

FIgurE 13.5 Experimental results for the LMS, RLS, and IDBD algorithms and the 
Autostep method for two different problems: (a) slightly stationary environmental data;  
(b) highly nonstationary environmental data. 
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parts (a) and (b) referring to Problems 1 and 2, respectively. Two observations may be 
made on the results shown in Figure 13.5:

 1. The IDBD algorithm and the Autostep method outperform both the RLS and 
LMS algorithms.

 2. In an overall sense, the recommended value for the meta-step-size parameter, k, for 
the Autostep method is k = 0.01 for both Problems 1 and 2, for which the RMSE 
is minimal. In direct contrast, the IDBD algorithm requires a vast range of recom-
mended values for k, changing from k = 10-3 for Problem 1 all the way down to  
k = 10-6 for Problem 2 so as to realize minimal RMSE for both problems.

Simply stated:

The IDBD algorithm requires manual tuning when we go from Problem 1 to 
Problem 2, whereas the Autostep method has the built-in capability to go from 
Problem 1 to Problem 2 without tuning.

What have We learned from this experiment?

The two problems studied in this experiment are representative of a typical real-world 
problem. In problems of this kind, we do not know whether the given data are stationary 
or nonstationary. Ideally, for a stationary scenario, the step-size parameter in an adaptive 
filtering algorithm should get smaller as the algorithm relaxes to a steady-state response. 
On the other hand, for a nonstationary scenario, the step-size parameter should remain 
large to maintain tracking of the data.

The experiment demonstrates that having the capability to adapt the step-size 
parameter along different directions in response to statistical variations in environmental 
data does matter. To be specific, neither the LMS nor the RLS algorithm is able to tackle 
statistical variations when it is confronted with a mixture of stationary and nonstationary 
data. Moreover, confronted with such a situation in practice, the IDBD algorithm requires 
manual tuning of the step-size parameter, whereas the Autostep method does not.

13.12 summary aNd disCussioN

In this chapter, we studied the important practical issue of how to deal with adaptive 
filtering of nonstationary data. To do so, an adaptive filter would have to track statisti-
cal variations in the environment responsible for generating the data, having reached a 
steady-state response (i.e., convergence process has been completed).

In the first part of the chapter, we compared the LMS and RLS algorithms  
in  dealing with nonstationary data, using the system-identification problem to do  
the  comparison. The conclusion to be drawn from that study is summarized as 
follows:

 1. Neither the LMS nor the RLS algorithm has the built-in ability to monopolize 
good tracking behavior.

 2. One or the other of these two adaptive filtering algorithms is the preferred choice 
for tracking a nonstationary environment, depending on the nonstationary behav-
ior of the environment responsible for data generation.
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 3. Regardless of which one of these two algorithms is the preferred choice, the adap-
tation parameter needs to be manually tuned.

In the second part of the chapter, we described the IDBD algorithm and the 
Autostep method. The IDBD algorithm builds on the LMS algorithm by replacing 
the fixed step-size parameter of the LMS with a vectorized step-size  parameter, such 
that each elemental step-size parameter correlates with a particular feature of the 
input data. The rationale behind this modification of the LMS algorithm is summed 
up as follows:

 • Input data that are likely to be irrelevant should be given small step sizes.
 • Input data that are likely to be relevant, and therefore important, should be given 

relatively large step sizes.

Typically, dimensionality of the step-size vector is chosen to be the same as that of the 
tap-weight vector in the IDBD algorithm.

The IDBD algorithm is an example of a learning-within-learning strategy: In 
catering to a step-size vector, we now have a new parameter, called the meta-step-size 
 parameter. As it is with the traditional LMS algorithm, the meta-step-size parameter of 
the IDBD algorithm would have to be manually tuned. To get around the need for this 
manual tuning, we may look to the Autostep method that builds on the IDBD algorithm. 
To be specific, the Autostep method is formulated by deriving insights, and therefore 
rules, from many different experiments performed on the IDBD algorithm, and then 
integrating them into a composite algorithm. The computer experiments presented in 
Section 13.11 support practical applicability of the Autostep as a quasi‐tuning‐free 
method for addressing unknown nonstationary environments as well as solving large‐
scale tracking problems.

In a related context, we may conclude the chapter with the following question on 
the ultimate in adaptive filtering:

How do we automatically tune an adaptive filtering algorithm, preferably in a 
rigorous manner, by building on:

 •  the method of stochastic gradient descent, to be assured of a linear law of 
computational complexity, and

 • the learning-within-learning strategy, exemplified by the IDBD algorithm?

Presently, the Autostep method is the only known adaptive filtering method that has 
addressed this question of practical importance, albeit in a heuristic manner.

problems

 1. Find the quantization error that arises in computing the updated inverse-correlation matrix 
P(n). How are we justified in making this assertion?

 2. Explain in detail the evaluation process for the tracking capability of the RLS algorithm for 
the system identification problem described in Fig. 13.2, subject to the condition that the 
model parameter a is close to unity.
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 3. The weight-error vector E(n) may be expressed as the sum of the weight vector noise E1(n) 
and weight vector lag E2(n). Show that

  𝔼3EH
 1  1n2E2 1n24 = 𝔼3EH

 2  1n2E1 1n24 = 0.

  Using the assumptions of Section 13.2, show that

  𝔼3 7E1n2 7 24 = 𝔼3 7E1 1n2 7 24 +  𝔼3 7E2 1n2 7 24.
 4. Continuing with Problem 3, use the assumptions of Section 13.2 to show that

  𝔼3EH
 1  1n2u1n2uH

 1n2E1 1n24 = tr 3RuK1 1n24,
  𝔼3EH

2  1n2u1n2uH
 1n2E2 1n24 = tr 3RuK2 1n24,

  and

  𝔼3EH
 1  1n2u1n2uH

 1n2E2 1n24 = 𝔼3EH
2  1n2u1n2uH

 1n2E1 1n24 = 0,

  where u(n) is the input vector, assumed to be of zero mean; Ru is the correlation matrix of 
u(n); and K1(n) and K2(n) are the correlation matrices of E1(n) and E2(n), respectively. How 
is the correlation matrix K(n) of E(n) related to K1(n) and K2(n)?

 5. Derive the mean-square deviation of the LMS algorithm and show the optimum value of the 
step-size parameter for which the mean square deviation attains its minimum value.

 6. Evaluate the maladjustment of the LMS algorithm for the system identification scenario 
described in Fig. 13.2.

 7. Describe the IDBD algorithm and the autostep method.

 8. List the various types of approaches to implement the learning-within-learning scheme of 
Fig. 13.3.

 9. Consider a real-valued nonstationary problem where, at each adaptation cycle n, a single input 
u(n) and corresponding actual response y(n) are observed. The actual response (output) is 
evaluated as follows:

  y1n2 = w1n2u1n2 + n1n2,

  where w1n2 is the target weight and n(n) is drawn from a white-noise process of zero mean 
and unit variance. The target weight alternates between -1 and +1 every 10 adaptation cycles. 
The input u(n) = 10 is always maintained.

 (a) Use the IDBD algorithm to learn the output from the input, under the following conditions:
 (i) w102 = 0,
 (ii) step-size parameter, m(0) = 0, and
 (iii) meta-step-size parameter, k = 0.001.

   Convince yourself that the IDBD algorithm learns the output well; to do this, plot the 
 estimated weight, wn 1n2, over adaptation cycle n, wherein, after the transient response 
is over, wn 1n2 should resemble the target weight, w1n2, approximately (i.e., alternating 
between -1 and +1 every 10 adaptation cycles).

 (b) Change the problem description minimally, keeping the IDBD parameter unchanged, so 
that the IDBD algorithm diverges. For example, you may increase the value of the input 
by 10-fold or increase the variances of the white noise by 100-fold. Hence, respond to the 
following two questions for each example case:

   (i) Why does the IDBD algorithm diverge?
   (ii)  What is the minimal change required in IDBD parameters (e.g., the initial step-size 

parameter, m(0), or the meta-step-size-parameter, k) so that the divergence is prevented?
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 10. Conduct the experiment described in Problem 9 for the Autostep method. This time, set

 initial condition, wn 102 = 0,
 meta-step-size parameter, k = 0.01,
 initial value of step-size parameter, m(0) = 0.1,
 forgetting factor, g = 0.0001.

 (a) Is it possible for the Autostep method to diverge at all?
 (b) How do the characteristics of the Autostep method differ from those of the IDBD algo-

rithm in this problem?

  Justify your answers.

 11. Suppose that the step-size parameter of the Autostep method is initialized to a positive 
number.

 (a) Is it theoretically possible for the step-size parameter to go to the value zero, ever?
 (b) Is such an event practically possible on a computer due to finite-precision effects, leading 

to underflow?
 (c) If the answer to part (b) is yes, what measure can be taken to prevent the step-size param-

eter from going to the value zero on a computer?
 (d) Can a similar problem arise in the other Autostep parameters, namely w, h, and g, due to 

overflow or underflow?

  Justify your answers.

  To clarify the answer to part (d) of the problem, the following two points are noteworthy:

  (i)  Arithmetic underflow refers to a condition in a computer program which can occur 
when the net result of a floating-point operation is smaller in magnitude (i.e., closer 
to zero) than the smallest value representable as a normal floating-point number in 
the target data of interest.

  (ii)  Arithmetic overflow refers to a condition in a computer program, which can occur 
when a calculation produces a result greater in magnitude than what a given register 
or storage location in the program can store or represent.

Computer experiments

Note for Problems 12, 13, and 14

The input data for all three problems are stationary. The unknown weight vector w is therefore 
fixed, and the process noise V(n) is zero.

 12. Stationary symmetric input data. The input covariance matrix Ru for this experiment is 
described as follows:

  Ru,ii = 1 for all i = 0, 1, c, 19

  and

  Ru,ij = 0 for all i ≠ j.

  In other words, all the inputs in this experiment have the same variance, with the result that 
we have a spherical cost function to be minimized.

 (a)  Generate 25,000 sequential samples, and test each of the LMS, RLS, and IDBD algo-
rithms, and the Autostep method on the data separately.

 (b)  For each of the algorithms and the Autostep method, vary the tunable step-size parameter 
from 10-12 to 1 with equal logarithmic intervals.
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 (c)  For the Autostep method, set the time-scale parameter t = 104, and the initial step-size, 
m(0), equal to (1/M) = 0.05, the latter being the same for the IDBD algorithm.

 (d) As usual, set the initial values of the estimated tap weights to zero.
 (e)  Use the RMSE as the measure of performance, averaged over the entire set of 25,000 

samples.

  Since in this experiment the data are stationary, we only consider the transient response of 
each algorithm and the Autostep method. With this objective in mind, do the following:

  (i) Tabulate the best RMSE for each of the four algorithms.
  (ii) Plot the RMSE versus the tunable step-size parameter pertinent to each algorithm.

  Finally, summarize your findings by describing how the LMS, RLS, and IDBD algorithms, and 
the Autostep method compare with each other.

 13. Stationary asymmetric input data. The specifications of this second experiment are the 
same as those of Problem 12. However, assume that the input covariance matrix Ru is 
such that

  Ru,ii = e100 for i = 0, 1, c, 4
1 for i = 5, 6, c, 19

  and

  Ru,ij = 0 for all i ≠ j.

  Accordingly, the different inputs have different variances, thereby resulting in a cost function 
that is elliptical. Also, set the initial step-size parameter, m(0), for the IDBD algorithm and the 
Autostep method to 1/(100 * M) = 0.0005.

   Incorporating the changes described above, repeat all the other steps, tabulation of the 
best RMSE and plotting the RMSE versus the tunable parameter, as described in Problem 12.

 14. Stationary, correlated input data. The specifications of this third experiment are the same as 
those of Problem 12, except for the following modification: The input covariance matrix, Ru, 
is a positive definitive matrix, generated randomly such that we have

 Ru,ii = 1, for i = 0, 1, c, 19 and

 Ru,ij = Rv,ji ∈ 3-1, +14 for all i ≠ j.

  In this case, all the input data have the same variance but they are correlated, thereby pro-
ducing a somewhat rotated elliptical cost function. Otherwise, all the other specifications are 
exactly the same as those described in Problem 12.

   Incorporating the changes described above, repeat all the other steps, tabulation of the 
best RMSE and plotting the RMSE versus the tunable parameter, as described in Problem 12.

 15. Nonstationary input data. In this fourth and last computer experiment, dealing with a non-
stationary environment, everything is the same as that described in Problem 12, but with the 
following changes:

  input covariance matrix, Ru = I,
  measurement noise variance, s2

n = 1.0,
  scaler parameter, a = 0.9998.

  Process noise covariance matrix Rv is such that we have

  Rv,ii = e100 for i = 0, 1, c, 4
1 for i = 5, 6, c, 19
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  and

  Rv,ij = 0 for all i ≠ j.

  Thus, in this experiment, we find that all the elements are nonstationary, but five of the 
 target tap weights have rates of nonstationarity different from those of the remaining 
15 tap weights. Otherwise, the experiment follows the same specifications described in 
Problem 12.

   Incorporating the changes described above, repeat all the other steps, tabulation of  
the best RMSE and plotting of the RMSE versus the tunable parameter, as discussed in 
Problem 12.
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C h a p t e r  1 4

Kalman Filters

In this chapter, we continue the study of tracking in a nonstationary environment, which 
was a focus of attention in the preceding chapter. This time, however, we broaden the 
scope of the study by developing the underlying ideas of Kalman filters (Kalman, 1960).

To pave the ground for this development, we begin by introducing the notion of 
state to provide the basis for a mathe matical exposition of Kalman filtering. This notion 
plays a key role in formulating the state-space model, which embodies the following pair 
of equations:

	 •	 System equation, which describes evolution of the state across time.
	 • Measurement equation, which describes the dependence of measurements on the state.

In a sense, we may view this pair of equations as a generalization of the first-order 
Markov model and the multiple linear regression model, described by Eqs. (13.1) and 
(13.2) in Chapter 13, respectively. Simply put, the state-space model is central to the 
formulation of the Kalman filter.

Another novel feature of the Kalman filter is that its solution is computed 
 recursively, applying without modification to stationary as well as nonstationary 
 environments. In particular, each updated estimate of the state is computed from the 
previous estimate and the new input data, so only the previous estimate requires stor-
age. In addition to eliminating the need for storing the entire past measured data, the 
Kalman filter is computationally more efficient than computing the estimate directly 
from all of those past data at each adaptation cycle of the filtering process, as it is with 
the Wiener filter, discussed in Chapter 2.

The study of Kalman filtering provides the mathematical basis for estimating the 
unknown “hidden” state of a linear time-varying system in a Gaussian environment, 
given a set of measurements, whereby the state estimation is performed in a recursive 
manner. This recursive computation makes Kalman filtering well suited for data pro-
cessing on a computer, just as the least-mean-square (LMS) and recursive least-squares 
(RLS) algorithms are. Most importantly, the Kalman filter together with its variants and 
extensions provides an indispensable tool for solving target-tracking problems in signal 
processing and control.

However, insofar as this chapter is concerned, primary interest in Kalman filter-
ing is motivated by the fact that it provides a unifying framework for the family of RLS 
adaptive filtering algorithms:
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	 •	 The conventional RLS algorithm, discussed in Chapter 10.
	 •	 The square-root RLS algorithms, to be discussed in Chapter 15.
	 •	 The order-recursive RLS algorithms, to be discussed in Chapter 16.

We begin the study of Kalman filtering by solving the recursive minimum mean-square 
estimation problem for the simple example of a scalar random variable.

14.1  reCursive MiniMuM Mean-square estiMation 
For sCalar randoM variables

Let us assume that, on the basis of a complete set of measured random variables y(1), 
y(2), c, y(n - 1), starting with the first measurement at adaptation cycle 1 and extending  
up to and including adaptation cycle n - 1, we have found the minimum mean-square 
estimate xn1n - 1 ∙yn - 12 of a related zero-mean random variable x(n - 1). We are assum-
ing that the measurement at (or before) n = 0 is zero. The space spanned by the measure-
ment y(1), c, y(n - 1) is denoted by yn - 1. Suppose that we now have an additional 
measurement y(n) at adaptation cycle n, and the requirement is to compute an updated 
estimate xn1n ∙  yn2 of the related random variable x(n), where yn denotes the space 
spanned by y(1), c, y(n). We may do this computation by storing the past measure-
ment, y(1), y(2), c, y(n - 1) and then redoing the whole problem with the available data  
y(1), y(2), c, y(n - 1), y(n), including the new measurement. Computationally, however, 
it is much more efficient to use a recursive estimation procedure, in that we store the previ-
ous estimate xn1n - 1 ∙yn - 12 and exploit it to compute the updated estimate xn1n ∙yn2 in 
light of the new measurement y(n). There are several ways of developing the algorithm to 
do this recursive estimation. We will use the notion of innovations (Kailath, 1968, 1970), 
the origin of which may be traced back to Kolmogorov (1939).

We define the forward prediction error

 fn - 1 1n2 = y1n2 - yn1n ∙yn - 12,  n = 1, 2, c, (14.1)

where yn1n ∙  yn - 12 is the one-step prediction of the measured random variable y(n) at 
adaptation cycle n, using all past measurements available up to and including adaptation  
cycle n - 1. The past measurements used in this estimation are y(1), y(2), c, y(n - 1), 
so the order of the prediction equals n - 1. We may view fn - 1(n) as the output of a 
forward  prediction-error filter of order n - 1 and with the filter input fed by the time 
series y(1), y(2), c, y(n). Note that the prediction order n - 1 increases linearly with n. 
According to the principle of orthogonality, the prediction error fn - 1(n) is orthogonal 
to all past measurements y(1), y(2), c, y(n - 1) and may therefore be regarded as a 
measure of the new information in the random variable y(n) measured at adaptation 
cycle n—hence the name “innovation.” The fact is that the measurement y(n) does 
not itself convey completely new information, since the predictable part, yn1n ∙yn - 12, 
is already completely determined by the past measurements y(1), y(2), c, y(n - 1). 
Rather, the part of the measurements y(n) that is really new is contained in the for-
ward prediction error fn - 1(n). We may therefore refer to this prediction error as the 
innovation and, for simplicity of notation, write

 a1n2 = fn - 11n2, n = 1, 2, c. (14.2)
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The innovation a(n) has several important properties, described next.

Property 1. The innovation a(n) associated with the measured random variable 
y(n) is orthogonal to the past measurements y(1), y(2), c, y(n - 1), as shown by

 𝔼3a1n2y*1k24 = 0,  1 … k … n - 1, (14.3)

where the asterisk denotes complex conjugation. This is simply a restatement of the 
principle of orthogonality.

Property 2. The innovations a(1), a(2), c, a(n) are orthogonal to each other, 
as shown by

 𝔼3a1n2a*1k24 = 0,  1 … k … n - 1. (14.4)

This is a restatement of the fact that [see part (e) of Problem 20, Chapter 3]

 𝔼3fn - 11n2f *k - 11k24 = 0, 1 … k … n - 1. 

Equation (14.4), in effect, states that the innovation process a(n), described by  
Eqs. (14.1) and (14.2), is white.

Property 3. There is a one-to-one correspondence between the measured data 
{y(1), y(2), c, y(n)} and the innovations {a(1), a(2), c, a(n)}, in that the one sequence 
may be obtained from the other by means of a causal and causally invertible filter without 
any loss of information. We may thus write

 5y112, y122, c, y1n26 ∆ 5a112, a122, c, a1n26. (14.5)

To prove this property, we use a form of the Gram–Schmidt orthogonalization procedure 
(described in Chapter 3). The procedure assumes that the measurements y(1), y(2), c, 
y(n) are linearly independent in an algebraic sense. We first put

 a112 = y112,  (14.6)

where it is assumed that yn11 ∙y02 is zero. Next, we put

 a122 = y122 + a1, 1 y112. (14.7)

The coefficient a1, 1 is chosen such that the innovations a(1) and a(2) are orthogonal, 
as shown by

 𝔼3a122a*1124 = 0. (14.8)

This requirement is satisfied by choosing

 a1, 1 = -  
𝔼3y122y*1124
𝔼3y112y*1124. (14.9)

Except for the minus sign, a1, 1 is a partial correlation coefficient in that it equals the 
cross-correlation between the measurements y(2) and y(1), normalized with respect to 
the mean-square value of y(1).

Next, we put

 a132 = y132 + a2, 1 y122 + a2, 2 y112,  (14.10)
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where the coefficients a2,1 and a2,2 are chosen such that a(3) is orthogonal to both a(1) 
and a(2), and so on. Thus, in general, we may express the transformation of the measure-
ments y(1), y(2), c, y(n) into the innovations a(1), a(2), c, a(n) by writing

 Da112
a122
f

a1n2
T = D1 0 g 0

a1, 1 1 g 0
f f  f f
an - 1, n - 1 an - 1, n - 2 g 1

T  D y112
y122
f

y1n2
T . (14.11)

The nonzero elements of row k of the lower triangular transformation matrix on the 
right-hand side of Eq. (14.11) are deliberately denoted as ak-1, k-1, ak-1, k-2 c, 1, where 
k = 1, 2, c, n. These elements represent the coefficients of a forward prediction-error 
filter of order k - 1. Note that ak,0 = 1 for all k. Accordingly, given the measurements  
y(1), y(2), c, y(n), we may compute the innovations a(1), a(2), c, a(n). There is no 
loss of information in the course of this transformation, since we may recover the origi-
nal measurements y(1), y(2), c, y(n) from the innovations a(1), a(2), c, a(n). This 
we do by premultiplying both sides of Eq. (14.11) by the inverse of the lower triangular 
transformation matrix. This matrix is nonsingular, since its determinant is unity for all n. 
The transformation is therefore reversible.

Using Eq. (14.5), we may thus write

 xn1n ∙yn2 = minimum mean@square estimate of x1n2, 
 given the measurements y112, y122, c, y1n2 

or, equivalently,

  xn1n ∙yn2 = minimum mean@square estimate of x1n2,  

  given the innovations a112, a122, c, a1n2. 

We define the estimate xn1n ∙yn2 as a linear combination of the innovations a(1),  
a(2), c, a(n):

 xn1n ∙yn2 = a
n

k = 1
bka1k2. (14.12)

Note that the bk are to be determined. With the innovations a(1), a(2), c, a(n) 
 orthogonal to each other and the bk chosen to minimize the mean-square value of the 
estimation error x1n2 - xn1n ∙yn2, we find that

 bk =
𝔼3x1n2a*1k24
𝔼3a1k2a*1k24,   1 … k … n. (14.13)

Isolating the term corresponding to k = n, we rewrite Eq. (14.12) in the form

 xn1n ∙yn2 = a
n - 1

k = 0
bka1k2 + bna1n2, (14.14)
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562   Chapter 14  Kalman Filters

where

 bn =
𝔼3x1n2a*1n24
𝔼3a1n2a*1n24. (14.15)

However, by definition, the summation term on the right-hand side of Eq. (14.14) equals 
the previous estimate, xn1n - 1 ∙yn - 12. We may thus express the recursive estimation 
algorithm that we are seeking as

 xn1n ∙yn2 = xn1n - 1 ∙yn - 12 + bna1n2, (14.16)

where bn is defined by Eq. (14.15). Thus, by adding a correction term bna(n) to the previ-
ous estimate xn1n - 1 ∙yn - 12, with the correction proportional to the innovation a(n), 
we get the updated estimate xn1n ∙yn2.

Equations (14.1), (14.3), (14.15), and (14.16) show that the underlying structure of a 
recursive minimum mean-square-error estimator is in the form of a predictor–corrector, 
as depicted in Fig. 14.1. This structure consists of two basic steps:

 1. The use of measurements to compute a forward prediction error termed “innovation.”
 2. The use of the innovation to update (i.e., correct) the minimum mean-square esti-

mate of a random variable related linearly to the measurements.

Equipped with this simple and yet powerful structure, shown in Fig. 14.1, we are now 
ready to study the more general Kalman filtering problem.

14.2 stateMent oF the KalMan Filtering probleM

Consider a linear, discrete-time dynamic model described by the signal-flow graph shown 
in Fig. 14.2. The time-domain description of the system presented here offers the follow-
ing advantages (Gelb, 1974):

	 •	 Mathematical and notational convenience.
	 •	 A close relationship to physical reality.
	 •	 A useful basis for accounting for the statistical behavior of the original system.

FiguRE 14.1 Graphical 
description of the solution to  
recursive minimum mean-square  
estimation portrayed as a 
predictor–corrector.
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The concept of state is fundamental to this formulation. The state vector, or simply state, 
denoted by x(n) in Fig. 14.2, is defined as the minimal set of data that is sufficient to 
uniquely describe the unforced dynamic behavior of the system. In other words, the 
state comprises the fewest data on the past behavior of the system that are needed to 
predict its future behavior. Typically, the state x(n), assumed to be of dimension M, is 
unknown. To estimate it, we use a set of observed data, denoted by the vector y(n) in 
the figure. The measurement vector, or simply measurement, y(n) is assumed to be of 
dimension N, which is typically different from the dimension M.

In mathematical terms, the signal-flow graph of Fig. 14.2 embodies the following 
pair of equations:

 1. System equation,

 x1n + 12 = F1n + 1, n2x1n2 + N11n2. (14.17)

  In this equation, the M-by-1 vector N11n2 represents system noise, modeled as a 
zero-mean, white-noise process whose correlation matrix is defined by

 𝔼3N1 1n2NH
1  1k24 = eQ1 1n2, n = k

O, n ≠ k
, (14.18)

where the superscript H denotes Hermitian transposition (i.e., transposition com-
bined with complex conjugation). The system equation (14.7), also referred to as the 
process equation, models an unknown physical stochastic phenomenon described 
by the state x(n) as the output of a linear dynamic model excited by the white noise 
N1(n), as depicted in the left-hand portion of Fig. 14.2. The linear dynamic model 
is uniquely characterized by the feedback connection of two units: the transition 
matrix, denoted by F(n + 1, n), and the memory unit, denoted by z-1I, where  

FiguRE 14.2 Signal-flow graph representation of a linear, discrete-time dynamic model.
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z-1 is the unit delay and I is the M-by-M identity matrix. The transition matrix 
F(n + 1, n) indicates a transition of the system from adaptation cycle n to n + 1; 
it has the following properties:

 (i) Product rule:

F1n, m2 F1m, l2 = F1n, l2, 

  where l, m, and n are integers.
 (ii) Inverse rule:

F-11n, m2 = F1m, n2, 

  where m and n are integers.
From these two rules, we readily see that

 F1n, n2 = I. 

 2. Measurement equation, which describes the measurement vector as

 y1n2 = C1n2x1n2 + N21n2,  (14.19)

  where C(n) is a known N-by-M measurement matrix. The N-by-1 vector N2(n) is 
called measurement noise, modeled as a zero-mean, white-noise process whose 
correlation matrix is

 𝔼3N2 1n2NH
 2  1k24 = eQ2 1n2, n = k

O, n ≠ k
. (14.20)

  The measurement equation (14.19) relates the measurable output of the system y(n) 
to the state x(n), as depicted in the right-hand portion of Fig. 14.2.

It is assumed that x(0), the initial value of the state, is uncorrelated with both N1(n) 
and N2(n) for n Ú 0. The noise vectors N1(n) and N2(n) are statistically independent, so 
we may write

 𝔼3N11n2NH
2 1k24 = O  for all n and k. (14.21)

The Kalman filtering problem, namely, the problem of jointly solving the system 
and measurement equations for the unknown state in an optimal manner, may now be 
formally stated as follows:

Use the entire measured data, consisting of the measurements y(1), y(2), c,  
y(n), to find, for each n Ú 1, the minimum mean-square estimate of the state 
x(i).

The problem is called filtering if i = n, prediction if i 7 n, and smoothing if 1 … i 6 n. 
In this chapter, we shall be concerned only with filtering and prediction, which are 
closely related.
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14.3 the innovations proCess

To solve the Kalman filtering problem, we will use an approach based on the innovations 
process.1 Building on the notion of innovation introduced in Section 14.1, let the vector 
yn1n ∙yn - 12 denote the minimum mean-square estimate of the measurement y(n) at adap-
tation cycle n, given all the past values of the measurements starting at adaptation cycle 
n = 1 and extending up to and including adaptation cycle n - 1. These past values are rep-
resented by the measurements y(1), y(n), c, y(n - 1), which span the vector space yn - 1. 
In light of Eqs. (14.1) and (14.2), we define the innovations process associated with y(n) as

 A1n2 = y1n2 - yn1n ∙yn - 12,    n = 1, 2, c. (14.22)

The M-by-1 vector A(n) represents the new information in the measurement y(n).
Generalizing the results of Eqs. (14.3), (14.4), and (14.5), we find that the innova-

tions process A(n) has the following properties:

 1. The innovations process A(n), associated with the measurement y(n) at adaptation 
cycle n, is orthogonal to all past measurements y(1), y(2), c, y(n - 1), as shown by

 𝔼3A1n2yH
 1k24 = O,    1 … k … n - 1. (14.23)

 2. The innovations process consists of a sequence of vector random variables that 
are orthogonal to each other, as shown by

 𝔼3A1n2AH
 1k24 = O,    1 … k … n - 1. (14.24)

 3. There is a one-to-one correspondence between the sequence of vector random 
variables {y(1), y(2), c, y(n)}, representing the measured data, and the sequence 
of vector random variables {A(1), A(2), c, A(n)}, representing the innovations 
process, in that the one sequence may be obtained from the other by means of 
linear stable operators without loss of information. Thus, we may state that

 5y112, y122, c, y1n26 ∆ 5A112, A122, c, A1n26. (14.25)

To form the sequence of vector random variables defining the innovations process, 
we may use a Gram–Schmidt orthogonalization procedure similar to that described 

1The original derivation of the Kalman filter presented in the 1960 classic paper written by Kalman 
himself was based on the orthogonal projection theorem. For the case of scalar random variables, this theorem 
may be stated as follows (Doob, 1953; Kalman, 1960):

Let x(n) and y(n) denote scalar random processes, both with zero mean; that is,

𝔼3x1n24 = 𝔼3y1n24 = 0  for all n.

Suppose we are given the measured random variables y(1), y(2), c, y(n), and suppose also that either 
of the following two conditions holds:

(i)  The random processes x(n) and y(n) are Gaussian.

(ii)   The optimal estimate is restricted to be a linear function of the measured random variables, and the 
cost function is defined as the mean-square value of the difference between x(n) and its estimate.

Then the optimal estimate of x(n) for the given measurements y(1), y(2), c, y(n) is the orthogonal 
projection of x(n) on the linear space y(n) spanned by these measurements.

In contrast to Kalman’s approach, the derivation of the Kalman filter presented herein follows the 
innovations approach due to Kailath (1968, 1970).
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in Section 14.1, except that the procedure is now formulated in terms of vectors and 
matrices (see Problem 1).

Correlation Matrix of the innovations process

To determine the correlation matrix of the innovations process A(n), we first solve the 
state equation (14.17) recursively to obtain

 x1k2 = F1k, 02x102 + a
k - 1

i = 1
F1k, i + 12N1 1i2, (14.26)

where we have used the product rule governing the transition matrix and made two 
assumptions:

 1. The initial value of the state is x(0).
 2. The measured data, and therefore the noise vector N1(n), are zero for n … 0.

Equation (14.26) indicates that x(k) is a linear combination of x(0) and N1(1), N1(2), c, 
N1(k - 1).

By hypothesis, the measurement noise vector N2(n) is uncorrelated with both the 
initial state vector x(0) and the system noise vector N1(n). Accordingly, premultiplying 
both sides of Eq. (14.26) by NH

2  1n2 and taking expectations, we have

 𝔼3x1k2NH
2  1n24 = O,    k, n … 0. (14.27)

Similarly, from the measurement equation (14.19), we have

 𝔼3y1k2NH
2  1n24 = O,    0 … k … n - 1. (14.28)

Moreover, we may write

 𝔼3y1k2NH
 1  1n24 = O,    0 … k … n. (14.29)

Given the past measurements y(1), c, y(n - 1) that span the space yn - 1, we also 
find from the measurement equation (14.19) that the minimum mean-square estimate 
of the present measurement vector y(n):

 yn1n ∙yn - 12 = C1n2xn1n ∙yn - 12 + Nn21n ∙yn - 12. 

However, the estimate Nn21n ∙yn - 12 of the measurement noise vector is zero, because 
N2(n) is orthogonal to the past measurements y(1), c, y(n - 1). [See Eq. (14.28).] 
Hence, we may simply write

 yn1n ∙yn - 12 = C1n2xn1n ∙yn - 12. (14.30)

Therefore, using Eqs. (14.22) and (14.30), we may express the innovations process in 
the form

 A1n2 = y1n2 - C1n2xn1n ∙yn - 12. (14.31)

Substituting the measurement equation (14.19) into Eq. (14.31), we get

 A1n2 = C1n2E1n, n - 12 + N21n2,  (14.32)
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where E(n, n - 1) is the predicted state-error vector at adaptation cycle n, using data up 
to adaptation cycle n - 1. That is, E(n, n - 1) is the difference between the state x(n) and 
its one-step prediction xn1n ∙  yn - 12, or

 E1n, n - 12 = x1n2 - xn1n ∙yn - 12. (14.33)

Note that E1n, n - 12 is orthogonal to both the system noise vector N1(n) and the 
 measurement noise vector N2(n). (See Problem 2.)

The correlation matrix of the innovations process A(n) is defined by

 R1n2 = 𝔼3A1n2AH
 1n24. (14.34)

Therefore, substituting Eq. (14.32) into Eq. (14.34), expanding the pertinent terms, and then 
using the fact that the vectors E(n, n - 1) and N2(n) are orthogonal, we obtain

 R1n2 = C1n2K1n, n - 12CH
 1n2 + Q21n2, (14.35)

where Q2(n) is the correlation matrix of the measurement noise vector N2(n). The M-by-M 
matrix K(n, n - 1) is called the predicted state-error correlation matrix, defined by

 K1n, n -  12 = 𝔼3E1n, n - 12EH1n, n - 124, (14.36)

where E(n, n - 1) is the predicted state-error vector. The matrix K(n, n - 1) may be 
viewed as the statistical description of the error incurred in computing the predicted 
estimate xn1n∙yn - 12, as in Eq. (14.33).

14.4 estiMation oF the state using the innovations proCess

Consider next the problem of deriving the minimum mean-square estimate of the state 
x(i) from the innovations process. From the discussion presented in Section 14.1, we find 
that this estimate may be expressed as a linear combination of the sequence of innova-
tions processes A(1), A(2), c, A(n) [see Eq. (14.12) for comparison], or

 xn1i ∙yn2 = a
n

k = 1
Bi 1k2A1k2, (14.37)

where 5Bi 1k26n
k = 1 is a set of M-by-N matrices to be determined. According to the prin-

ciple of orthogonality, the predicted state-error vector is orthogonal to the innovations 
process, as shown by

  𝔼3E1i, n2AH
 1m24 = 𝔼53x1i2 - xn1i ∙ yn24AH

 1m26 
  = O,    m = 1, 2, c, n.  (14.38)

Substituting Eq. (14.37) into Eq. (14.38) and using the orthogonality property of the 
innovations process, namely, Eq. (14.24), we get

  𝔼3x1i2AH
 1m24 = Bi 1m2𝔼3A1m2AH

 1m24 
  = Bi 1m2R1m2.  (14.39)

Hence, postmultiplying both sides of Eq. (14.39) by the inverse matrix R-1(m), we find 
that Bi(m) is given by

 Bi1m2 = 𝔼3x1i2AH1m24R-11m2. (14.40)
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Finally, substituting Eq. (14.40) into Eq. (14.37), we get the minimum mean-square-error 
estimate

  xn1i ∙  yn2 = a
n

k = 1
𝔼3x1i2AH

 1k24R-1
 1k2A1k2 

  = a
n - 1

k = 1
𝔼3x1i2AH

 1k24R-1
 1k2A1k2 

  + 𝔼3x1i2AH
 1n24R-1

 1n2A1n2.  

For i = n + 1, we may therefore write

  xn1n + 1 ∙yn2 = a
n - 1

k = 1
𝔼3x1n + 12AH

 1k24R-1
 1k2A1k2 

  + 𝔼3x1n + 12AH
 1n24R-1

 1n2A1n2.  
(14.41)

However, the state x(n + 1) at adaptation cycle n + 1 is related to the state x(n) at adap-
tation cycle n by Eq. (14.17). Therefore, using this relation, we may write, for 0 … k … n,

  𝔼3x1n + 12AH
 1k24 = 𝔼5F31n + 1, n2x1n2 + N1 1n24AH

 1k26 

  = F1n + 1, n2𝔼3x1n2AH
 1k24,  

(14.42)

where we have made use of the fact that A(k) depends only on the measurements  
y(1), c, y(k) and, therefore, from Eq. (14.29), we see that N1(n) and A(k) are orthogo-
nal for 0 … k … n. Thus, using Eq. (14.42) and the formula for xn1i ∙  yn2 with i = n, we may 
rewrite the summation term on the right-hand side of Eq. (14.41) as

  a
n - 1

k = 1
𝔼3x1n + 12AH

 1k24R-1
 1k2A1k2 = F1n + 1, n2a

n - 1

k = 1
𝔼3x1n2AH

 1k24R-1
 1k2A1k2 

 = F1n + 1, n2xn1n∙yn - 12  
(14.43)

where in the last line of Eq. (14.43) we made use of the first line of the equation at the 
top of the page.

Kalman gain

To proceed further, define the M-by-N matrix

 G1n2 = 𝔼3x1n + 12AH1n24R-11n2,  (14.44)

where 𝔼[x(n + 1)AH(n)] is the cross-correlation matrix between the state vector  
x(n + 1) and the innovations process A(n). Then, using this definition and the result of 
Eq. (14.43), we may rewrite Eq. (14.41) simply as

 xn1n + 1 ∙yn2 = F1n + 1, n2xn1n ∙yn - 12 + G1n2A1n2. (14.45)

Equation (10.45) is of fundamental significance. It shows that we may compute 
the minimum mean-square estimate xn1n + 1 ∙yn2 of the state of a linear dynamic model 
by adding to the previous estimate xn1n ∙yn - 12, which is premultiplied by the transition 
matrix F(n + 1, n), a correction term equal to G(n)A(n). The correction term equals the 
innovations process A(n) premultiplied by the matrix G(n). Accordingly, and in recog-
nition of the pioneering work by Kalman, the matrix G(n) is called the Kalman gain.
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There now remains only the problem of expressing the Kalman gain G(n) in a 
form convenient for computation. To do this, we first use Eqs. (14.32) and (14.42) to 
express the expectation of the product of x(n + 1) and AH(n) as

  𝔼3x1n + 12AH
 1n24 = F1n + 1, n2𝔼3x1n2AH

 1n24  

  = F1n + 1, n2𝔼3x1n21C1n2E1n, n - 12 + N2 1n22H4 
  = F1n + 1, n2𝔼3x1n2EH1n, n - 124CH

 1n2,  (14.46)

where we have used the fact that the state x(n) and noise vector N2(n) are uncorrelated. 
[See Eq. (14.27).] Next we note that the predicted state-error vector E(n, n - 1) is orthog-
onal to the estimate xn1n ∙  yn - 12. Therefore, the expectation of the product of xn1n ∙yn - 12 
and EH(n, n - 1) is zero, so Eq. (14.46) is unchanged by replacing the multiplying factor 
x(n) by the predicted state-error vector E(n, n - 1) as follows:

 𝔼3x1n + 12AH1n24 = F1n + 1, n2𝔼3E1n, n - 12EH1n, n - 124CH1n2. (14.47)

From Eq. (14.36), we see that the expectation on the right-hand side of Eq. (14.47) 
equals the predicted state-error correlation matrix. Hence, we may rewrite Eq. (14.47) as

 𝔼3x1n + 12AH1n24 = F1n + 1, n2K1n, n - 12CH1n2. (14.48)

We may now redefine the Kalman gain. Substituting Eq. (14.48) into Eq. (14.44), we get

 G1n2 = F1n + 1, n2K1n, n - 12CH1n2R-11n2,  (14.49)

where the correlation matrix R(n) is itself defined in Eq. (14.35).
The block diagram of Fig. 14.3 shows the signal-flow graph representation of  

Eq. (14.49) for computing the Kalman gain G(n). Having computed G(n), we may then 
use Eq. (14.45) to update the one-step prediction—that is, to compute xn1n + 1 ∙yn2, 
given its old value xn1n ∙yn - 12, as illustrated in Fig. 14.4, in which we have also used  
Eq. (14.31) for the innovations process A(n).

FiguRE 14.3 Kalman gain computer.
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riccati equation

As it stands, Eq. (14.49) is not particularly useful for computing the Kalman gain  
G(n), since it requires that the predicted state-error correlation matrix K(n, n - 1) be 
known. To overcome this difficulty, we derive a formula for the recursive computation 
of K(n, n - 1).

The predicted state-error vector E(n + 1, n) equals the difference between the state 
x(n + 1) and the one-step prediction xn1n + 1 ∙yn2 [see Eq. (14.33)]:

 E1n + 1, n2 = x1n + 12 - xn1n + 1 ∙  yn2. (14.50)

Substituting Eqs. (14.17) and (14.45) into Eq. (14.50), and using Eq. (14.31) for the inno-
vations process A(n), we get

 E1n + 1, n2 = F1n + 1, n23x1n2 - xn1n ∙yn - 124 
 - G1n23y1n2 - C1n2xn1n ∙yn - 124 + N1 1n2. 

(14.51)

Next, using the measurement equation (14.19) to eliminate y(n) in Eq. (14.51), we get 
the following difference equation for the recursive computation of the predicted state-
error vector:

  E1n + 1, n2 = 3F1n + 1, n2 - G1n2C1n24E1n, n - 12 

  + N11n2 - G1n2N2 1n2.  (14.52)

The correlation matrix of the predicted state-error vector E(n + 1, n) equals [see  
Eq. (14.36)]

 K1n + 1, n2 = 𝔼3E1n + 1, n2EH1n + 1, n24. (14.53)

Substituting Eq. (14.52) into Eq. (14.53) and recognizing that the error vector E(n, n - 1) 
and the noise vectors N1(n) and N2(n) are mutually uncorrelated, we may express the 
predicted state-error correlation matrix as

 K1n + 1, n2 = 3F1n + 1, n2 - G1n2C1n24K1n, n - 123F1n + 1, n2 - G1n2C1n24H

 + Q1 1n2 + G1n2Q2 1n2GH
 1n2,  (14.54)

where Q1(n) and Q2(n) are the correlation matrices of N1(n) and N2(n), respectively. By 
expanding the right-hand side of Eq. (14.54) and then using Eqs. (14.49) and (14.35) for 
the Kalman gain, we get the Riccati difference equation2 for the recursive computation 
of the predicted state-error correlation matrix:

 K1n + 1, n2 = F1n + 1, n2K1n2FH1n + 1, n2 + Q11n2. (14.55)

The new M-by-M matrix K(n) introduced in Eq. (14.55) is described by the recursion

 K1n2 = K1n, n - 12 - F1n, n + 12G1n2C1n2K1n, n - 12,  (14.56)

where, in accordance with the inverse rule governing F(n + 1, n), we have 

 F1n + 1, n2F1n, n + 12 = I, 

2The Riccati difference equation is named in honor of Count Jacopo Francisco Riccati. The equation 
is of particular importance in control theory.
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Section 14.5 Filtering   573

which follows from the product and inverse rules governing the transition matrix. [The math-
ematical significance of the matrix K(n) in Eq. (14.56) will be explained later in Section 14.5.]

Figure 14.5 is a signal-flow graph representation of Eqs. (14.56) and (14.55), in that 
order. This diagram may be viewed as a representation of the Riccati equation solver in 
that, given K(n, n - 1), it computes the updated value K(n + 1, n).

Summarizing: the combined use of Eqs. (14.49), (14.35), (14.31), (14.45), (14.56), 
and (14.55), in that order, defines Kalman’s one-step prediction algorithm.

14.5 Filtering

The next signal-processing operation we wish to consider is that of filtering. In particu-
lar, we wish to compute the filtered estimate xn1n ∙yn2 by using the one-step prediction 
algorithm described previously.

We first note that the state x(n) and the system noise N1(n) are independent of 
each other. Hence, from the state equation (14.17), we find that the minimum mean-
square estimate of the state x(n + 1) at adaptation cycle n + 1, given the measured data 
up to and including adaptation cycle n [i.e., given y(1), c, y(n)], equals

 xn1n + 1 ∙yn2 = F1n + 1, n2xn1n ∙yn2 + Nn1 1n ∙yn2. (14.57)

Since the noise N1(n) is independent of the measurements y(1), c, y(n), it follows 
that the corresponding minimum mean-square estimate Nn1 1n ∙yn2 is zero. Accordingly,  
Eq. (14.57) simplifies to

 xn1n + 1 ∙yn2 = F1n + 1, n2xn1n ∙yn2. (14.58)

To find the filtered estimate x1n ∙yn2, we premultiply both sides of Eq. (14.58) by 
the transition matrix F(n, n + 1). By so doing, we obtain

 xn1n ∙yn2 = F1n, n + 12xn1n + 1 ∙yn2. (14.59)

This equation shows that knowing the solution to the one-step prediction problem 
[i.e., the minimum mean-square estimate xn1n + 1 ∙yn2], we may determine the corre-
sponding filtered estimate xn1n ∙yn2 simply by multiplying xn1n + 1 ∙yn2 by the transition 
matrix F(n, n + 1). Note that in arriving at Eq. (14.59), we used the inverse rule that 
governs the transition matrix. 

Filtered estimation error and Conversion Factor

In the filtering framework, it is natural that we define a filtered estimation error vector 
in terms of the filtered estimate of the state as follows:

 e1n2 = y1n2 - C1n2xn1n ∙yn2. (14.60)

This definition is similar to that of Eq. (14.31) for the innovations vector A(n), except that 
we have substituted the filtered estimate xn1n ∙yn2 for the predicted estimate xn1n ∙yn - 12. 
Using Eqs. (14.45) and (14.59) in (14.60), we get

  e1n2 = y1n2 - C1n2xn1n ∙yn - 12 - C1n2F1n, n + 12G1n2A1n2 

  = A1n2 - C1n2F1n, n + 12G1n2A1n2  

  = 3I - C1n2F1n, n + 12G1n24A1n2.  (14.61)
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The matrix-valued quantity inside the square brackets in Eq. (14.61) is called the conver-
sion factor: it provides a formula for converting the innovations vector A(n) into the filtered 
estimation error vector e(n). Using Eq. (14.49) to eliminate the Kalman gain G(n) from this 
definition and canceling common terms, we may rewrite Eq. (14.61) in the equivalent form

 e1n2 = Q2 1n2R-1
 1n2A1n2, (14.62)

where Q2(n) is the correlation matrix of the measurement noise process v2(n) and the 
matrix R(n) is itself defined in Eq. (14.35) as the correlation matrix of the innovations 
process A(n). Thus, except for a premultiplication by Q2(n), Eq. (14.62) shows that the 
inverse matrix R-1(n) plays the role of a conversion factor in the Kalman filter theory. 
Indeed, for the special case of Q2(n) equal to the identity matrix, the inverse matrix R-1 
is exactly the conversion factor defined herein.

Filtered state-error Correlation Matrix

Earlier, we introduced the M-by-M matrix K(n) in the formulation of the Riccati dif-
ference equation (14.55). We conclude our present discussion of Kalman filter theory 
by showing that this matrix equals the correlation matrix of the error inherent in the 
filtered estimate xn1n ∙yn2.

Define the filtered state-error vector E(n) as the difference between the state x(n) 
and the filtered estimate xn1n ∙yn2; that is,

 E1n2 = x1n2 - xn1n ∙yn2. (14.63)

Substituting Eqs. (14.45) and (14.59) into Eq. (14.63) and recognizing that the product 
F(n, n + 1) F(n + 1, n) equals the identity matrix, we get

  E1n2 = x1n2 - xn1n ∙yn - 12 - F1n, n + 12G1n2A1n2 

  = E1n, n - 12 - F1n, n + 12G1n2A1n2,  
(14.64)

where E(n, n - 1) is the predicted state-error vector at adaptation cycle n, using data up 
to adaptation cycle n - 1, and A(n) is the innovations process.

By definition, the correlation matrix of E(n) equals the expectation 𝔼[E(n)EH(n)]. 
Hence, using Eq. (14.64) in this definition, we may express this expectation as follows:

  𝔼3E1n2EH
 1n24 = 𝔼3E1n, n - 12EH

 1n, n - 124  

  + F1n, n + 12G1n2𝔼3A1n2AH
 1n24GH

 1n2FH
 1n, n + 12 

  - 𝔼3E1n, n - 12AH
 1n24GH

 1n2FH
 1n, n + 12 (14.65)

  - F1n + 1, n2G1n2𝔼3A1n2EH
 1n, n - 124.  

Examining the right-hand side of Eq. (14.65), we find that the four expectations con-
tained in it may be interpreted individually as follows:

 1. The first expectation equals the predicted state-error correlation matrix

 K1n, n - 12 = 𝔼3E1n, n - 12EH
 1n, n - 124. 

 2. The expectation in the second term equals the correlation matrix of the innova-
tions process A(n)

 R1n2 = 𝔼3A1n2AH
 1n24. 
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 3. The expectation in the third term may be expressed as

  𝔼3E1n, n - 12AH
 1n24 = 𝔼31x1n2 - xn1n ∙yn - 122AH

 1n24 
  = 𝔼3x1n2AH

 1n24,  

  where we have used the fact that the estimate xn1n ∙  yn - 12 is orthogonal to the 
innovations process A(n). Next, from Eq. (14.42), we see, by putting k = n and then 
premultiplying both sides by F -1(n + 1, n) = F(n, n + 1), that

  𝔼3x1n2AH
 1n24 = F1n, n + 12𝔼3x1n + 12AH

 1n24 
  = F1n, n + 12G1n2R1n2,  

  where, in the last line, we have made use of Eq. (14.44). Hence,

 𝔼3E1n, n - 12AH
 1n24 = F1n, n + 12G1n2R1n2. 

  Similarly, we may express the expectation in the fourth term as

 𝔼3A1n2EH
 1n, n - 124 = R1n2GH

 1n2FH
 1n, n - 12. 

We may now combine these results in Eq. (14.65) and so obtain

 𝔼3E1n2EH
 1n24 = K1n, n - 12 - F1n, n + 12G1n2R1n2GH

 1n2FH
 1n, n + 12. (14.66)

We may further simplify this result by noting that [see Eq. (14.49)]

 G1n2R1n2 = F1n + 1, n2K1n, n - 12CH
 1n2. (14.67)

Accordingly, using Eqs. (14.66) and (14.67), and applying the inverse rule for the transi-
tion matrix, we get

 𝔼3E1n2EH
 1n24 = K1n, n - 12 - K1n, n - 12CH

 1n2GH
 1n2FH

 1n, n + 12. (14.68)

Equivalently, using the Hermitian property of 𝔼3E1n2EH
 1n24 and that of K(n, n - 1),  

we may write

 𝔼3E1n2EH
 1n24 = K1n, n - 12 - F1n, n + 12G1n2C1n2K1n, n - 12. (14.69)

Comparing Eq. (14.69) with Eq. (14.56), we readily see that

 𝔼3E1n2EH
 1n24 = K1n2. (14.70)

This shows that the matrix K(n) used in the Riccati difference equation (14.55) is in 
fact the filtered state-error correlation matrix. The matrix K(n) is used as the statistical 
description of the error in the filtered estimate xn1n ∙yn2.

14.6 initial Conditions

To operate the one-step prediction and filtering algorithms described in Sections 14.4 
and 14.5, we obviously need to specify the initial conditions. We now address this issue.

The initial state of the system equation (14.17) is not known precisely. Rather, it is 
usually described by its mean and correlation matrix. In the absence of any measured 
data at adaptation cycle n = 0, we may choose the initial predicted estimate as

 xn11 ∙y02 = 𝔼3x1124 (14.71)
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and its correlation matrix

  K11, 02 = 𝔼31x112 - 𝔼3x112421x112 - 𝔼3x11242H4 
  = Π0.  (14.72)

This choice for the initial conditions is not only intuitively satisfying, but also has the 
advantage of yielding a filtered estimate of the state xn1n ∙yn2 that is unbiased. (See 
Problem 7.) Assuming that the state vector x(n) has zero mean, we may simplify  
Eqs. (14.71) and (14.72) by setting

 xn11 ∙y02 = 0 

and
 K11, 02 = 𝔼3x112xH

 1124 = Π0. 

14.7 suMMary oF the KalMan Filter

Table 14.1 presents a summary of the variables and parameters used to formulate the 
solution to the Kalman filtering problem.3 The input of the filter is the measurement 
y(n), picked from the vector space yn, and the output is the filtered estimate xn1n ∙yn2 

3In formulating the Kalman filter whose variables and parameters are summarized in Table 14.1, we 
have used xn1n ∙yn - 12 and xn1n ∙yn2 to distinguish between the a priori [before including the measurement 
y(n)] and a posteriori [after including the measurement y(n)] estimates of the state x(n), respectively. In the 
literature on Kalman filters, the alternative notations x-

n  and xn n are often used for the a priori and a posteriori 
estimates of the state, respectively. By the same token, K-

n  and Kn are often used in place of K(n, n – 1) and 
K(n), respectively.

TablE 14.1 Summary of the Kalman Variables and Parameters

Variable Definition Dimension

x(n) State at adaptation cycle n M by 1

y(n) Measurement at adaptation cycle n N by 1

F(n + 1, n) Transition matrix from adaptation cycle n to adaptation  
 cycle n + 1

M by M

C(n) Measurement matrix at adaptation cycle n N by M

Q1(n) Correlation matrix of system noise N1(n) M by M

Q2(n) Correlation matrix of measurement noise N2(n) N by N

xn1n ∙yn - 12 Predicted estimate of the state at adaptation cycle n given  
 the measurements y(1), y(2), c, y(n - 1)

 
M by 1

xn1n ∙yn2 Filtered estimate of the state at adaptation cycle n, given  
 the measurements y(1), y(2), c, y(n)

 
M by 1

G(n) Kalman gain at adaptation cycle n M by N

A(n) Innovations vector at adaptation cycle n N by 1

R(n) Correlation matrix of the innovations vector A(n) N by N

K(n, n - 1) Correlation matrix of the error in xn1n ∙yn - 12 M by M

K(n) Correlation matrix of the error in xn1n ∙yn2 M by M
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of the state. In Table 14.2, we present a summary of the Kalman filter (including initial 
conditions) based on the one-step prediction algorithm.

A block diagram representation of the Kalman filter is given in Fig. 14.6, which is 
based on three functional blocks:

 1. The one-step predictor, described in Fig. 14.4.
 2. The Kalman gain computer, described in Fig. 14.3.
 3. The Riccati equation solver, described in Fig. 14.5.

14.8  optiMality Criteria For KalMan Filtering

The core of Kalman filtering summarized in Table 14.1 may be traced to Section 14.4, 
where the recursive formula for estimating the predicted state in the state-space model 
was derived in Eq. (14.45). That derivation was accomplished by exploiting the innovations 
process, without having to invoke an optimality criterion. However, optimality is an issue 
of mathematical importance, hence the need to understand how it features in deriving the 
Kalman filter.

In this context, it is often said that Kalman filtering is a by-product of the  celebrated 
Bayesian estimation paradigm. From such a viewpoint, there are two matters that need 
attention:

 1. The manner in which the probability density function (pdf) of the state x(n) is 
conditioned on the entire past history of the measurements —namely, yn.

 2. The way in which the sequence of measurements in yn is propagated across time, 
from n to n + 1.

Once these two matters are explicitly formulated, the stage is set for optimal 
 estimation of the Kalman filter (Ho & Lee, 1964; Maybeck, 1979). In Problem 8, the 

TablE 14.2 Summary of the Kalman Filter Based on One-Step Prediction

Input vector process:
Measurements = 5y112, y122, c, y1n26

Known parameters:
Transition matrix = F(n + 1, n)
Measurement matrix = C(n)
Correlation matrix of system noise = Q1(n)
Correlation matrix of measurement noise = Q2(n)

Computation: n = 1, 2, 3, …
G1n2 = F1n + 1, n2K1n, n - 12CH

 1n23C1n2K1n, n - 12CH
 1n2 + Q2 1n24-1

A1n2 = y1n2 - C1n2xn1n ∙yn - 12
xn1n + 1 ∙yn2 = F1n + 1, n2xn1n ∙yn - 12 + G1n2A1n2
K1n2 = K1n, n - 12 - F1n, n + 12G1n2C1n2K1n, n - 12
K1n + 1, n2 = F1n + 1, n2K1n2FH

 1n + 1, n2 + Q1 1n2
Initial conditions:

xn11 ∙  y02 = 𝔼3x1124
K11, 02 = 𝔼31x112 - 𝔼3x112421x112 - 𝔼3x11242H4 = Π0
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Bayesian approach for deriving the Kalman filter is addressed under the assumption that 
the system noise N1(n) and the measurement noise N2(n) are both zero-mean Gaussian 
processes. To be more precise, solution of the maximum a posteriori probability (MAP) 
criterion yields the Kalman filter of Table 14.1.

Another optimality criterion suitable for solving the Kalman filtering problem  
is the minimum-mean-square-error (MMSE) criterion. Let xnest1n2 denote the estimate  
of the unknown state x(n) at time n given the sequence of measurements yn. It turns out 
that the particular estimate that minimizes the squared Euclidean norm of the estimation 
error vector (i.e., the difference between the vectors x(n) and xnest1n ∙ yn2) is the conditional 
mean estimator xnest1n ∙ yn2. (The conditional mean estimator is discussed in Appendix D.)  
In this second approach, the Kalman filter is viewed as an elaboration of the conditional mean 
estimator (Van Trees, 1968). The MMSE criterion plays a role similar to the least-squares-
error (LSE) criterion, which is the very criterion used in Chapter 10 to derive the recursive 
least-squares (RLS) algorithm. We therefore anticipate the existence of a close relationship 
between Kalman filtering and the RLS algorithm, which is addressed in the next section.

FiguRE 14.6 Block diagram of the Kalman filter based on one-step prediction.
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14.9 KalMan Filter as the uniFying basis For rls algorithMs

As mentioned in the introductory remarks to this chapter, a primary reason for our inter-
est in Kalman filter theory is that it provides a unifying framework for the derivation of 
those linear adaptive filtering algorithms which constitute the family of RLS algorithms.4 
The key question is: Given a Kalman filter or one of its variants based on a stochastic 
model, how do we derive the corresponding version of the RLS algorithm based on a 
deterministic model?

To address this fundamental question, we clearly need to formulate the state-space 
description for the underlying dynamics of RLS algorithms. Consider first the special 
case of an RLS algorithm with an exponential weighting factor l = 1. From Chapter 10, 
we recall that the RLS algorithm is a linear estimator of the multiple regression model 
of Fig. 10.4, which is reproduced here in the form shown in Fig. 14.7. According to that 
model, the reference signal or desired response d(n) is related to the input vector u(n) as

 d1n2 = wH
o u1n2 + eo 1n2, (14.73)

where wo is the unknown parameter vector of the model and eo(n) is the measurement error 
modeled as white noise. With l assumed to equal unity, the transition matrix of the state-space 
model is equal to the identity matrix, a relationship that is intuitively obvious. Moreover, the 
underlying dynamics of the RLS algorithm are unforced, which means that the system noise 
is zero. Hence, using the Kalman filter notations adopted in this chapter, we may postulate 
the following pair of equations for the state-space model of RLS algorithms with l = 1:

  x1n + 12 = x1n2;  (14.74)
  y1n2 = C1n2x1n2 + n1n2. (14.75)

In Eq. (14.75), the measurement noise v(n) is white with zero mean. A logical choice 
for x(n) is the parameter vector wo. Then, taking the complex conjugate of both sides of  
Eq. (14.73) and comparing it with the measurement equation (14.75), we deduce the 
following identities:

 

x1n2 =   wo, 
y1n2 = d*1n2,

C1n2 = uH
 1n2,

n1n2 = e*o 1n2,

t  for l = 1. (14.76)

Consider next the more general case of an RLS algorithm with its exponential 
weighting factor lying in the interval 0 6 l … 1. This time, we write

 x1n + 12 = F1n + 1, n2x1n2 (14.77)

4The application of Kalman filter theory to adaptive filtering was apparently first reported in the 
literature by Lawrence and Kaufman (1971). This was followed by Godard (1974), who, in an approach differ-
ent from that of Lawrence and Kaufman, formulated the adaptive filtering problem (using a tap-delay-line 
structure) as the estimation of a state vector in Gaussian noise, which represents a classical Kalman filtering 
problem. Godard’s paper prompted many other investigators to explore the application of Kalman filter 
theory to adaptive filtering problems.

However, we had to await the paper by Sayed and Kailath (1994) to discover how indeed the Riccati-
based Kalman filtering algorithm and its variants could be correctly framed into one-to-one correspondence 
with all the known algorithms in the RLS family.
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and

 y1n2 = uH
 1n2x1n2 + n1n2, (14.78)

where the only identity retained from those of Eq. (14.76) is C(n) = uH(n), which is 
 justified by the fact that u(n) is independent of l. To find the right transition matrix 
F(n + 1, n) and the correspondence between the measurement equation (14.78) for the 
Kalman filter and the multiple regression model of Eq. (14.73) for the RLS algorithm 
with 0 6 l … 1, we proceed as follows:

 1. From Eq. (14.55), we find that putting Q1(n) = 0 for an unforced dynamic model 
yields

 K1n + 1, n2 = F1n + 1, n2K1n2FH
 1n + 1, n2. (14.79)

Moreover, as will be shown presently, the transition matrix F(n + 1, n) charac-
terizing the unforced dynamic model that we are seeking is of such a form that  
except for a scaling factor, Eq. (14.79) reduces to

 K1n + 1, n2 = K1n2. 

Accordingly, henceforth we work on the basis that the predicted state-error cor-
relation matrix K(n + 1, n) and the filtered state-error correlation matrix K(n) have 
the same dependence on time n.

FiguRE 14.7 Multiple linear 
regression model.
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 2. Assuming that the measurement noise v(n) has unit variance, and using Eqs. (14.35) 
and (14.49), the formula for the Kalman gain takes the form of a vector defined as

 g1n2 =
F1n + 1, n2K1n - 12u1n2
1 + uH

 1n2K1n - 12u1n2 . (14.80)

From Eq. (10.18) of Chapter 10, the gain vector of the RLS algorithm is defined by

 k1n2 =
l-1P1n - 12u1n2

1 + l-1uH
 1n2P1n - 12u1n2. (14.81)

The denominators in Eqs. (14.80) and (14.81) are identical if we set

 K1n - 12 = l-1P1n - 12, (14.82)

in light of which we immediately deduce the identity

 g1n2 = F1n + 1, n2k1n2. (14.83)

 3. From Eq. (14.45) for the Kalman filter, we have

 xn1n + 1 ∙yn2 = F1n + 1, n2xn1n ∙yn - 12 + g1n2a1n2, (14.84)

where the innovation a(n) is now scalar. Correspondingly, from Eq. (10.25) of 
Chapter 10 on the RLS algorithm, we have

 wn 1n2 = wn 1n - 12 + k1n2j*1n2, (14.85)

where j(n) is the a priori estimation error. Let

 xn1n + 1 ∙yn2 = w1n2wn 1n2, (14.86)

where w(n) is a scalar function to be determined. Substituting Eqs. (14.83) and 
(14.86) into Eq. (14.84) and then comparing the resulting equation with Eq. (14.85), 
we deduce the following two identities:

 F1n + 1, n2w-1
 1n2w1n - 12 = I (14.87)

and

 F1n + 1, n2w-1
 1n2a1n2 = j*1n2, (14.88)

where I is the identity matrix. Equation (14.87) is satisfied by setting

 F1n + 1, n2 = l-1 >  2I (14.89)

and
 w1n2 = l-1n + 12 >  2, (14.90)

in which case Eqs. (14.88), (14.86), and (14.83), respectively, reduce to

  a1n2 = l-n >  2j*1n2,  (14.91)

  xn1n + 1 ∙yn2 = l-1n + 12 >  2wn 1n2, (14.92)

and
 g1n2 = l-1 >  2k1n2. (14.93)
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Also, we now see that, except for the scaling factor l, the use of Eq. (14.89) in  
Eq. (14.79) yields K(n + 1, n) = K(n), confirming the correct basis for step 1.

 4. From Eq. (14.31) for the Kalman filter, we have

  a1n2 = y1n2 - C1n2xn1n ∙yn - 12  

  = y1n2 - l-n >  2uH
 1n2wn 1n - 12. (14.94)

  Correspondingly, from Eq. (10.26) of Chapter 10 on the RLS algorithm, we have

 j1n2 = d1n2 - wn H
 1n - 12u1n2. (14.95)

Substituting Eq. (14.91) into Eq. (14.94) and then comparing the result with  
Eq. (14.95), we deduce the following identity:

 y1n2 = l-n >  2d*1n2. (14.96)

 5. Substituting Eq. (14.96) into the measurement equation (14.78) for the Kalman fil-
ter and then comparing the resulting equation with the multiple regression model 
of Eq. (14.73) for the RLS algorithm, we deduce the identities

 x1n2 = l-n >  2wo (14.97)

and
 n1n2 = l-n >  2e*o  1n2. (14.98)

 6. Using Eqs. (14.35) and (14.63), we may define a scalar conversion factor for the 
Kalman filter described by Eqs. (14.77) and (14.78) as

  r -1
 1n2 =

e1n2
a1n2  

  =
1

1 + C1n2K1n - 12CH
 1n2  

  =
1

1 + l-1uH
 1n2P1n - 12u1n2, (14.99)

where e(n) is the filtered estimation error and a(n) is the innovation for the 
Kalman filter. The RLS algorithm is characterized by a conversion factor of its 
own, denoted by g(n) and defined by Eqs. (10.42) and (10.18) of Chapter 10. [Note 
that the e(n) for the RLS algorithm is not to be confused with the e(n) for the 
Kalman filter.] Thus, from those equations, we have

 g1n2 =
1

1 + l-1uH
 1n2P1n - 12u1n2. (14.100)

Comparing Eqs. (14.99) and (14.100), we immediately deduce

 r -1
 1n2 = g1n2. (14.101)

Thus, on the basis of the identities defined by Eqs. (14.97), (14.96), (14.98), (14.92), 
(14.82), (14.93), (14.91), and (14.101), we may set up the correspondences between  
the stochastic Kalman variables and the deterministic RLS variables summarized in  
Table 14.3. The left half of the table pertains to Kalman variables and their descriptions 
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and the right half pertains to the RLS variables. In making up the descriptions for the RLS 
variables, however, we have ignored (for the sake of simplicity) references to the opera-
tions of complex conjugation and multiplication by powers of the exponential weighting 
vector l. The only place where the term “exponentially weighted” is used is in the second 
entry in the table, and this is done merely to distinguish that entry from the first one.

We conclude our discussion of the basic relationship between the Kalman filter 
and the RLS algorithm by postulating the unforced state-space model,

  x1n + 12 = l-1 >  2x1n2,    0 6 l … 1, (14.102)

  y1n2 = uH
 1n2x1n2 + n1n2,  (14.103)

where x(n) is the state, uH(n) is the measurement and v(n) is the measurement noise 
modeled as white noise with zero mean and unit variance. The exponential weighting 
factor l and input vector u(n) refer to the RLS algorithm. The system equation (14.102) 
follows from Eqs. (14.77) and (14.89). The measurement equation (14.103) is a repeat of 
Eq. (14.78), presented here merely for the sake of completeness. Starting with the initial 
condition x(0), we readily find from Eq. (14.102) that

 x1n2 = l-n >  2x102. 

Clearly, the relationship between x(0) and the parameter vector wo of the multiple 
regression model of Fig. 14.7 is independent of the exponential weight factor l. Hence, 
from the first line of Eq. (14.76), we may set

 x102 = wo. 

Thus, for an arbitrary l, we may define the state x(n) in terms of wo as

 x1n2 = l-n >  2wo. (14.104)

TablE 14.3 Summary of Correspondences Between Kalman Variables and RLS Variables

Kalman
(Unforced dynamic  
model of Fig. 14.8)

RLS
(Multiple regression  
model of Fig. 14.7)

Description Variable Variable Description

Initial value of state x(0) wo Parameter vector

State x(n) l-n >  2wo
Exponentially weighted 
parameter vector

Measurement y(n) l-n >  2d*1n2 Desired response
Measurement noise v(n) l-n >  2e*o  1n2 Measurement error

One-step prediction of     Estimate of parameter
state vector xn1n + 1 ∙yn2 l-1n + 12 >  2wn 1n2 vector

Correlation matrix of     Inverse of correlation
error in state prediction K(n) l-1P(n) matrix of input vector
Kalman gain g(n) l-1 >  2k1n2 Gain vector

Innovation a(n) l-n >  2j*1n2 A priori estimation error

Conversion factor r-1(n) g(n) Conversion factor

Initial conditions xn11 ∙y02 = 0 wn 102 = 0 Initial conditions

  K(0) l-1P(0)  

M14_HAYK4083_05_SE_C14.indd   583 21/06/13   8:51 AM



584   Chapter 14  Kalman Filters

The unforced linear dynamic model of Eqs. (14.102) and (14.103) is represented 
by the signal-flow graph of Fig. 14.8, which generalizes the multiple regression model 
of Fig. 14.7 by including a dynamical component for the evolution of the state. Clearly, 
the state-space model of Fig. 14.8 is more powerful than the multiple regression model 
of Fig. 14.7. Note, however, that with the exponential weighting factor l confined to the 
interval 0 6 l … 1, the state x(n) remains constant at wo or else grows exponentially with 
adaptation cycle n. (For further discussion of this latter issue, see Problem 12.)

With the unforced dynamic model of Fig. 14.8 and the accompanying Table 14.3 
representing the frame of reference for what follows—namely, Sections 14.10 and 
14.11—we will respectively study two adaptive filtering algorithms that are variants of 
the Kalman filter:

 1. Covariance filtering algorithm, which propagates the filtered covariance matrix, K(n).
 2. Information filtering algorithm, which propagates the inverse covariance matrix, 

K−1(n).

14.10 CovarianCe Filtering algorithM

Table 14.4 is a simplified version of Table 14.2, the latter pertaining to the Kalman filter 
in its most generic form. In actual fact, Table 14.4 is obtained from Table 14.2 by building 
on Table 14.3, which summarizes the correspondence between the Kalman filter and the  
RLS algorithm for the unforced dynamic model of Fig. 14.8. One of the other points to 
note in Table 14.4: The vector g(n) is the counterpart to the Kalman gain in Table 14.2. 
Henceforth, we refer to g(n) as the gain vector, which is synonymous with the RLS algorithm.

divergence phenomenon

The troublesome aspect of the covariance filtering algorithm5 is the Riccati equation, 
represented by the last line under Computation in Table 14.4. Specifically, therein we have

 K1n2 = l-1K1n - 12 - l-1>2g1n2uH1n2K1n - 12, (14.105)

FiguRE 14.8 State-space model of RLS algorithm for an exponential weighting factor in  
the interval 0 6 l … 1.

5In Kalman filtering, the serious numerical difficulties of this celebrated algorithm are well- documented 
in the literature (Kaminski et al., 1971; Bierman & Thornton, 1977).
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which is defined as the difference between two nonnegative definite matrices. Hence, 
unless the numerical accuracy employed at every step of the algorithm is high enough, the 
filtered covariance matrix, K(n), resulting from this computation may not be nonnegative 
definite. Such a situation is clearly unacceptable, because K(n) represents a correlation 
matrix. The unstable behavior of the covariance filtering algorithm, which results from 
numerical inaccuracies due to the use of finite wordlength arithmetic, is called the diver-
gence phenomenon.

A simple way of overcoming the divergence phenomenon is to artifically add white 
Gaussian noise to the (noiseless) system equation (14.102) of the unforced dynamic 
model in Fig. 14.8. The variance of this additive noise is chosen to be just large enough 
to ensure that the matrix K(n) is nonnegative for all n.

square-root Filtering

A more refined method of overcoming the divergence phenomenon is to use numeri-
cally stable unitary transformations at every adaptation cycle of the Kalman filtering 
algorithm (Potter, 1963; Kaminski et al., 1971; Morf & Kailath, 1975). In particular, the 
matrix K(n) is propagated in a square-root form by using the Cholesky factorization

 K1n2 = K1 >  2
 1n2KH >  2

 1n2, (14.106)

where K1/2(n) is reserved for a lower triangular matrix and KH/2 is its Hermitian trans-
pose. In linear algebra, the Cholesky factor K1/2(n) is commonly referred to as the square 
root of the matrix K(n). Accordingly, any variant of the Kalman filtering algorithm 
based on the Cholesky factorization is referred to as square-root filtering. (The Cholesky 
factorization was also discussed in Section 3.7 in the context of linear prediction.) The 
important point to note here is that the matrix product K1/2(n)KH/2(n) is much less 

TablE 14.4 Summary of the Covariance (Kalman) Filtering Algorithm for the Special Unforced  
Dynamic Model of Fig. 14.8

Input scalar process:
Measurements = y(1), y(2), c, y(n)

Known parameters:
Transition matrix = F1n + 1, n2 = l-1 >  2I,  I = identity matrix
Measurement matrix = C1n2 = uH

 1n2
Variance of measurement noise v(n) = s2

n = 1

Initial conditions:

 xn11 ∙y02 = 𝔼3x1124
 K11, 02 = 𝔼31x112 - 𝔼3x112421x112 - 𝔼3x11242H4 = Π0

Computation: n = 1, 2, 3, c

 g1n2 =
l-1 >  2K1n - 12u1n2

uH
 1n2K1n - 12u1n2 + 1

 a1n2 = y1n2 - uH
 1n2xn1n ∙yn - 12

 xn1n + 1 ∙yn2 = l-1 >  2xn1n ∙yn - 12 + g1n2a1n2
 K1n2 = l-1K1n - 12 - l-1 >  2g1n2uH

 1n2K1n - 12
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likely to become indefinite, because the product of any square matrix and its Hermitian 
transpose is always positive definite. Indeed, even in the presence of round-off errors, 
the numerical conditioning of the Cholesky factor K1/2(n) is generally much better than 
that of K(n) itself.

14.11 inForMation Filtering algorithM

As mentioned previously, the information filtering algorithm is the second variant of the 
Kalman filter. This new adaptive filtering algorithm, traced back to Fraser (1967), distin-
guishes itself from the covariance filtering algorithm of Section 14.10 in the  following 
respect: It propagates the inverse covariance matrix, K−1(n), in place of the filtered 
covariance matrix, K(n). By comparison with the covariance filtering algorithm, the 
information filtering algorithm is not as well-recognized in the literature, nor is it as 
widely used. However, it does have some unique and useful characteristics of its own, 
which are discussed in the latter part of the section.

derivation of the information Filtering algorithm

To derive the information filtering algorithm, we may proceed in three steps as follows:

Step 1. Starting with the Riccati Eq. (14.105), we have

 l1>2K1n2 = l-1>2K1n - 12 - g(n)uH1n2K1n - 12. (14.107)

Next, from the first line of the algorithm in Table 14.4, the gain vector for the unforced 
dynamic model of Fig. 14.8 is defined by

 g1n2 =
l-1 >  2K1n - 12u1n2

uH
 1n2K1n - 12u1n2 + 1

. (14.108)

Cross-multiplying and rearranging terms, we may rewrite Eq. (14.108) in the new form:

 g1n2 = 3l-1 >  2K1n - 12 - 1g1n2uH
 1n2K1n - 124u1n2. (14.109)

The right-hand side of Eq. (14.107) shares the same expression inside the square brack-
ets in Eq. (14.109). We may therefore simply define the gain vector as:

 g1n2 = l1 >  2K1n2u1n2. (14.110)

Next, eliminating g(n) between Eqs. (14.107) and (14.110) and multiplying the result by 
l1/2, we get

 K1n - 12 = lK1n2u1n2uH
 1n2K1n - 12 + lK1n2. (14.111)

Finally for step 1, premultiplying Eq. (14.111) by the inverse matrix K-1(n) and postmulti-
plying it by K-1(n - 1), we get the first time update of the information-filtering algorithm:

 K-1
 1n2 = lK-1

 1n - 12 + lu1n2uH
 1n2. (14.112)

Step 2. From the second and third lines of the algorithm summarized in Table 14.4, 
we have, respectively,

 a1n2 = y1n2 - uH
 1n2xn1n ∙yn - 12 (14.113)
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and

 xn1n + 1 ∙yn2 = l-1 >  2xn1n ∙yn - 12 + g1n2a1n2. (14.114)

Therefore, substituting Eq. (14.110) into Eq. (14.114), we get

 xn1n + 1 ∙yn2 = l-1 >  2xn1n ∙yn - 12 + l1 >  2K1n2u1n2a1n2. (14.115)

Next, eliminating a(n) between Eqs. (14.113) and (14.115) yields

xn1n + 1∙yn2 = 3l-1 >  2I - l1 >  2K1n2u1n2uH1n24xn1n∙yn - 12 + l1 >  2K1n2u1n2y1n2. (14.116)

But, from Eq. (14.111), we readily deduce the following relation:

 l-1 >  2I - l1 >  2K1n2u1n2uH
 1n2 = l1 >  2K1n2K-1

 1n - 12. (14.117)

Accordingly, we may simplify Eq. (14.116) to

 xn1n + 1 ∙yn2 = l1 >  2K1n2K-11n - 12xn1n ∙yn - 12 + l1 >  2K1n2u1n2y1n2. 

Premultiplying this equation by the inverse matrix K-1(n), we get the second time 
update of the information-filtering algorithm:

 K-1
 1n2xn1n + 1 ∙yn2 = l1 >  23K-1

 1n - 1)xn1n ∙yn - 12 + u1n2y1n24. (14.118)

Step 3. Finally, the updated value of the state’s estimate is computed by combin-
ing the result of step 2 with the matrix inverse of step 1, as shown by:

  xn1n + 1 ∙yn2 = K1n21K-1
 1n2xn1n + 1 ∙yn22  

  = 3K-1
 1n24-11K-1

 1n2xn1n + 1 ∙yn22. 
(14.119)

Equations (14.112), (14.118), and (14.119), in that order, constitute the information-
filtering algorithm for the unforced dynamic model of Eqs. (14.102) and (14.103). A 
summary of the algorithm is presented in Table 14.5.

startup procedure for state estimation

Given the initial conditions described in Table 14.5, it is quite likely that the inverse 
covariance matrix, K−1(0), is singular. In such a situation, a unique estimate of the full 
state x(n), using Eq. (14.119), cannot be made unless we develop a viable startup proce-
dure (Maybeck, 1979). To this end, we introduce the matrix

 𝚽1n2 = K-1(n). (14.120)

Then, according to Eq. (14.111)—that is, the first line in the algorithm summarized in 
Table 14.5—we may write

 𝚽1n2 = l3𝚽1n - 12 + u1n2uH1n24. (14.121)

Thus, starting from the initial condition, 𝚽(0) = K-1(0), the time update of Eq. (14.121) 
is carried out step-by-step. Once the matrix 𝚽(n), and therefore K-1(n), becomes non-
singular, the information filtering algorithm as described in Table 14.5, including the 
final step of computing the state estimate, can proceed forward with no difficulty.
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If, however, the state estimate, xn1n ∙ yn2, is not required until all the measurements 
have been completely processed, then we may simplify matters by setting the inverse 
covariance matrix 

 K-1102 = 0 
and proceed accordingly.

unique Characteristics of the information Filtering algorithm

Although the two adaptive filtering algorithms summarized in Tables 14.4 and 14.5 are, 
indeed, different in their computational routines, they are algebraicly equivalent and there-
fore require the same number of algebraic operations (i.e., multiplications and divisions). 
However, the information filtering algorithm has some unique characteristics of its own:

 1. The information filtering algorithm has numerical properties that are entirely dif-
ferent from those of the covariance filtering algorithm (Kaminski et al., 1971). 
To be specific, the covariance filtering algorithm is prone to instability when the 
algorithm is implemented digitally, the source of which is the Riccati equation. In 
direct contrast, the information filtering algorithm does not involve the Riccati 
equation, with the result that it is digitally stable.

 2. The information filtering algorithm allows the use of a startup procedure when the initial 
condition K−1(0) is singular (Maybeck, 1979), as described in the previous subsection.

 3. The information filtering algorithm can be directly exploited in the design of a 
fixed-interval smoother (Fraser, 1967; Maybeck, 1982). Specifically, the smoother 
is a combination of two optimum linear filters, one of which operates from the 
beginning of the input data interval in a forward manner and the other from the 
end of the data interval in a backward manner.

 4. The information filtering algorithm permits the interpretation of the filtering pro-
cess in information-theoretic terms, which, as discussed next, is highly insightful.

TablE 14.5 Summary of the Information-Filtering Algorithm for the Special Unforced Dynamic Model  
of Fig. 14.8

Input scalar process:
Measurements = y(1), y(2), c, y(n)

Known parameters:
Transition matrix = F1n + 1, n2 = l-1 >  2I,  I = identity matrix
Measurement matrix = C1n2 = uH

 1n2
Variance of measurement noise v(n) = s2

n = 1

Initial conditions:
 xn11 ∙y02 = 𝔼3x1124
 K11, 02 = 𝔼31x112 - 𝔼3x11242(x112 - 𝔼3x11242H4 = Π0

Computation: n = 1, 2, 3 c
 K-1

 1n2 = l3K-1
 1n - 12 + u1n2uH

 1n24
 K-1

 1n2xn1n + 1 ∙yn2 = l1 >  23K-1
 1n - 12xn1n ∙yn - 12 + u1n2y1n24

 xn1n + 1 ∙yn2 = 3K-1
 1n24-1

 K-1
 1n2xn1n + 1 ∙yn2
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Fisher information in the information Filtering algorithm

To address the inherent information-theoretic aspect of this algorithm, recall from 
Chapter 9 that in the course of elaborating on Property 4 of the least-squares estimator, 
we formally stated that the estimate wn  achieves the Cramér-Rao lower bound for unbiased 
estimators. More specifically, therein we said that the inverse covariance matrix of the 
estimate wn  is in fact the expected Fisher information matrix for the method of least squares. 
To be precise, using Eqs. (9.63) and (9.66), we defined this matrix, denoted by J, as follows:

  J = 𝔼 c a 0l
0 w

ba 0l

0 wH b d  
  = 3cov1wn 24-1,  

where l is the log-likelihood function of the estimation error vector

 Eo = wo - wn  

and where wo is the unknown parameter vector of the multiple linear regression model 
of Fig. 9.1.

In basic terms, Fig. 9.1 is one and the same as Fig. 14.7. In a corresponding way, we 
may therefore make the statement:

The inverse covariance matrix, K−1, used in the information filtering algorithm 
summarized in Table 14.5, is the expected Fisher information matrix.

Indeed, it is on account of this statement that the information filtering algorithm justifi-
ably bears its name.

Moreover, in light of Frieden’s book (2004), we may go on to say that in the context 
of the information filtering algorithm, Fisher information plays two key roles:

 1. Fisher information provides a measure of how capable the information filtering 
algorithm is in estimating an element of the unknown state; in a generic sense, this 
role represents the cornerstone of statistics.6

 2. Fisher information provides a measure of the state of disorder experienced by the 
algorithm, should it ever occur.

One last comment is in order: Fisher information is of a localized kind, which, therefore, 
distinguishes it from the notion of entropy in Shannon’s information theory, which is 
global.

14.12 suMMary and disCussion

The Kalman filter is a linear, discrete-time, finite-dimensional system endowed with a 
recursive structure that makes a digital computer well suited for its implementation. A key 
property of the Kalman filter is that it is the minimum mean-square (variance) estimator 
of the state of a linear dynamic model, which follows from a stochastic state-space model.

6In Cavanaugh and Shumway (1996), a recursive algorithm is derived for computing the expected 
Fisher information matrix from state-state parameters using real-valued data; the algorithm is also supported 
by the use of simulations.
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In the context of the family of linear adaptive filtering algorithms rooted in deter-
ministic least-squares estimation, Kalman filter theory is of profound theoretic as well 
as practical importance for two reasons:

 1. The underlying dynamics of recursive least-squares (RLS) algorithms, character-
ized by an exponential weighting factor l in the interval 0 6 l … 1, are described 
by the unforced dynamic model of Fig. 14.8. This model provides the basis for 
constructing the list of the correspondences between Kalman variables and RLS 
variables, summarized in Table 14.3, which was constructed by a careful compari-
son of the Kalman filtering algorithm of Table 14.2 and the RLS filtering algorithm 
of Table 10.1.

 2. The literature on Kalman filters is extensive. Hence, we may exploit it to derive 
variants of RLS algorithms, namely, square-root RLS algorithms, as will be demon-
strated in Chapter 15. Although these variants have been known for a long time, it 
is in Kalman filter theory that we have the mathematical basis for their derivations 
in a unified manner.

Numerous commentators have said that many of the problems in signal processing and 
control theory are mathematically equivalent. With the recognition that Kalman filter 
theory is rooted in the control literature, the link between Kalman filters and linear 
adaptive filters established in this chapter is further testimony to the relevance of that 
mathematical equivalence.

probleMs

 1. The Gram–Schmidt orthogonalization procedure enables the set of measurement vectors y(1), 
y(2), c, y(n) to be transformed into the set of innovations a(1), a(2), c, a(n) without loss 
of information, and vice versa. Illustrate this procedure for n = 3.

 2. Show that the predicted state-error vector є(n, n − 1) is orthogonal to both v1(n) and v2(n).

 3. Consider a set of scalar measurements y(n) of zero mean that is transformed into the cor-
responding set of innovations a(n) of zero mean and variance s2

a  1n2. Let the estimate of the 
state vector x(i), given this set of data, be expressed as

 xn1i ∙yn2 = a
n

k = 1
bi (k)a1k2, 

where yn is the space spanned by y(1), c, y(n) and bi(k), k = 1, 2, c, n, is a set of vectors 
to be determined. The requirement is to choose the bi(k) so as to minimize the expected value 
of the squared norm of the estimated state-error vector

 E1i ∙yn2 = x1i2 - xn1i ∙yn2. 

Show that this minimization yields the result

 xn1i ∙yn2 = a
n

k = 1
𝔼3x1i2f*1k24f1k2, 
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where

 f1k2 =
a1k2
sa  1k2 

is the normalized innovation. This result may be viewed as a special case of Eqs. (14.37)  
and (14.40).

 4. The Kalman gain G(n), defined in Eq. (14.49), involves the inverse matrix R-1(n). The matrix 
R(n) is itself defined in Eq. (14.35), reproduced here for convenience:

 R1n2 = C1n2K1n, n - 12CH1n2 + Q21n2. 

The matrix C(n) is nonnegative definite, but not necessarily nonsingular.
 (a) Why is R(n) nonnegative definite?
 (b) What prior condition would you impose on the matrix Q2(n) to ensure that the inverse 

matrix R-1(n) exists?

 5. In many cases, the predicted state-error correlation matrix K(n + 1, n) converges to the steady-
state value K as the number of adaptation cycles, n, approaches infinity. Show that the limiting 
value K satisfies the algebraic Riccati equation

 KCH1CKCH + Q22-1CK - Q1 = O,  

where it is assumed that the state transition matrix equals the identity matrix and the matrices 
C, Q1, and Q2 are the limiting values of C(n), Q1(n), and Q2(n), respectively.

 6. A second-order tracking system is described by the following state-space equations:

x(n + 1) = c 1 0
1 1

d x(n) + v(n)

y(n) = 31  04x(n) + v2(n)

  The system noise v(n) is white with zero mean and correlation matrix equal to the identity 
matrix. Likewise, the measurement noise v2(n) is white with zero mean and unit variance. 
Using Table 14.2, formulate the recursions for computing the Kalman filter.

 7. Using the initial conditions described in Eqs. (14.71) and (14.72), show that the resulting 
filtered estimate xn1n ∙  yn2 produced by the Kalman filter is unbiased; that is, show that

 𝔼3xn1n2 ∙y1n24 = x1n2. 

 8. Derivation of the Kalman filter presented in Section 14.4 is based on the notion of minimum 
mean-square error estimation. In this problem, we explore another derivation of the Kalman 
filter based on the maximum a posteriori probability (MAP) criterion. For this derivation, it is 
assumed that the system noise N1(n) and measurement noise N2(n) are both zero-mean Gaussian 
processes with correlation matrices Q1(n) and Q2(n), respectively. Let fX  1x1n2∙yn2 denote the 
conditional probability density function (pdf) of x(n), given that yn denotes the set of measure-
ments y(1), c, y(n). The MAP estimate of x(n), denoted by xnMAP 1n2, is defined as that particu-
lar value of x(n) that maximizes fX  1x1n2 ∙yn2 or, equivalently, the logarithm of fX  1x1n2 ∙yn2. 

   This evaluation requires that we solve for the condition

 
0 ln fX  1x1n2 ∙yn2

0x1n2 `
x1n2= xnMAP1n2

= 0 (1)
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and show that

 
02 ln fX  1x1n2 ∙yn2

02x1n2 `
x1n2= xnMAP1n2

6 0. (2)

 To proceed, do the following:
 (a) Using Bayes’ rule, we may express fX  1x1n2 ∙yn2 as follows:

 fX  1x1n2 ∙yn2 =
fXY 1x1n2, yn2

fY 1yn2
, 

 which, in light of the definition of a joint pdf, may also be expressed as

 fX  1x1n2 ∙yn2 =
fXY 1x1n2, y1n2, yn - 12

fY 1y1n2, yn - 12 . 

 Hence, show that.

 fX  1x1n2 ∙yn2 =
fY (y1n2 ∙x1n22fX  1x1n2 ∙yn - 12

fY 1y1n2, yn - 12 . 

 (b) Using the Gaussian characterizations of the system noise N1(n) and measurement 
N2(n), derive expressions for fY 1y1n2 ∙  x1n22 and fX  1x1n2 ∙yn - 12. Next, recognizing that 
fY 1y1n2 ∙yn - 12 may be treated as a constant since it does not depend on the state x(n), 
formulate the expression for fX  1x1n2 ∙yn2.

 (c) Using the results of part (b) in Eq. (1) of the problem, followed by the matrix inversion 
lemma discussed in Chapter 10, derive the formula for xnMAP 1n2 and show that it is exactly 
the same as the Kalman filter derived in Section 14.4.

 (d) Finally, using Eq. (2) of the problem, show that the MAP estimate xnMAP 1n2 derived in 
part (c) does indeed satisfy this equation.

 9. Consider a linear dynamic model described by the noiseless state-space model

  x1n + 12 = Fx1n2,  
  y1n2 = Cx1n2, 

where x(n) is the state, y(n) is the measurement, F is the transition matrix, and C is the mea-
surement matrix.

 (a) Show that

  xn1n ∙yn) = F1I - G1n2C2xn1n ∙yn - 12 + CG1n2y1n2 

  A1n2 = y1n2 - Cxn1n ∙yn - 12,  

 where G(n) is the Kalman gain and A(n) denotes the innovations. How is G(n) defined?
 (b) Using the results of part (a), justify the statement that the Kalman filter is a whitening 

filter in that it produces a “white” estimation error in response to y(n).

 10. In this problem, we explore another procedure for establishing some of the correspondences 
presented in Table 14.3.

 (a) Starting with the multiple regression model of Fig. 14.7, set up the system of linear simul-
taneous equations that define the desired response d(i) in terms of the input vector u(i) 
of an RLS algorithm for i = 0, 1, c, n.

 (b) Starting with the unforced dynamic model of Fig. 14.8, set up the corresponding system 
of linear simultaneous equations that define the measurement y(i) in terms of the state 
x(i) of a Kalman filter for i = 0, 1, c, n.
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 (c) Using the results of parts (a) and (b), derive the following identities between the RLS 
algorithm and Kalman filter:

  x102 = wo;  

  y1n2 = l-n >  2d*1n2; 

  n1n2 = l-n >  2e*o  1n2. 

 11. The system equation (14.102) for an RLS algorithm describes the evolution of the state as

 x1n + 12 = l-1 >  2x1n2. 

With the exponential weighting factor l in the interval 0 6 l … 1, the Euclidean norm of the 
state x(n) grows unboundedly with adaptation cycle n for l 6 1. Yet the RLS algorithm oper-
ates satisfactorily despite this seemingly abnormal behavior. Why?

 12. The last two entries in Table 14.3 pertain to one-to-one correspondence between the initial 
conditions of the Kalman variables and those of the RLS variables. Justify these two entries.

 13. What is a predicted state error? Illustrate its importance and derive the predicted state error 
correlation matrix.

 14. Describe the covariance (Kalman) filtering algorithm for the special unforced dynamic model 
in Fig. 14.8.

 15. Describe the basic relationship between the Kalman filter and the RLS algorithm by postulat-
ing the unforced state-space model.

Problems   593
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C h a p t e r  1 5

Square-root adaptive 
Filtering algorithms

One of the problems encountered in applying the recursive least-squares (RLS) algo-
rithm of Chapter 10 is that of numerical instability, which can arise because of the 
way in which the Riccati difference equation is formulated. This same problem is also 
known to arise in the classical Kalman filtering algorithm for exactly the same reason. 
In Chapter 14, we pointed out that the instability (divergence) problem encountered in 
a Kalman filter can be ameliorated by using a square-root variant of the filter. At that 
point in the discussion, we deferred a detailed treatment of square-root Kalman filter-
ing until we would be ready for it. In this chapter, we take up a full discussion of this 
issue, beginning in the next section. The solution to the square-root Kalman filtering 
problem sets the stage for deriving the corresponding variants of the RLS algorithm in 
light of the one-to-one correspondences that exist between the Kalman variables and 
the RLS variables, established in the previous chapter.

15.1 Square-root Kalman FilterS

The recursions in a Kalman filter of the covariance type propagate the matrix K(n), 
which denotes the correlation matrix of the error in the filtered state estimate; this 
propagation takes place via the Riccati difference equation. The recursions in a root-
square Kalman filter, on the other hand, propagate a lower triangular matrix K1/2(n), 
defined as the square root of K(n). The relation between K(n) and K1/2(n) is defined by

 K1n2 = K1>21n2KH/21n2, (15.1)

where the upper triangular matrix KH/2(n) is the Hermitian transpose of K1/2(n). Unlike 
the situation that may exist with the covariance Kalman filter, the nonnegative defi-
nite character of K(n) as a correlation matrix is preserved by virtue of the fact that 
the product of any square matrix and its Hermitian transpose is always a nonnegative 
definite matrix.

In this section, we derive the square-root forms of the covariance and information 
processing variants of the Kalman filter. However, with the covariance and informa-
tion filtering algorithms in mind, it is natural that we focus our attention on the special 
unforced dynamic model developed in Section 14.8. In this model,

 x1n + 12 = l- 1>2x1n2 (15.2)
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and

 y1n2 = uH1n2x1n2 + v1n2, (15.3)

where x(n) is the state vector, the row vector uH(n) is the measurement matrix, the 
scalar y(n) is an observable or reference signal, the scalar n(n) is a white-noise process 
of zero mean and unit variance, and the positive real scalar l is a constant of the model. 
Equations (15.2) and (15.3) are the same as Eqs. (14.102) and (14.103), respectively; they 
have been reproduced here for convenience of presentation. Before proceeding with 
derivations of square-root covariance and information filtering algorithms, we digress 
briefly to consider a lemma in matrix algebra that is pivotal to our present discussion.

matrix Factorization lemma

Given any two N-by-M matrices A and B with dimension N … M, the matrix factoriza-
tion lemma states that (Stewart, 1973; Sayed & Kailath, 1994; Golub & Van Loan, 1996)

 AAH = BBH (15.4)

if, and only if, there exists a unitary matrix 𝚯 such that

 B = A𝚯 . (15.5)

Assuming that the condition (15.5) holds, we readily find that

 BBH = A𝚯𝚯HAH. (15.6)

From the definition of a unitary matrix, we have

 𝚯𝚯H = I, (15.7)

where I is the identity matrix. Hence, Eq. (15.6) reduces immediately to Eq. (15.4).
Conversely, the equality described in Eq. (15.4) implies that the matrices A and 

B must be related. We may prove the converse implication of the matrix factorization 
lemma by invoking the singular-value decomposition theorem, according to which the 
matrix A may be factored as (see Section 9.11):

 A = UA𝚺AVH
A, (15.8)

where UA and VA are N-by-N and M-by-M unitary matrices, respectively, and 𝚺A is an 
N-by-M matrix defined by the singular values of matrix A. Similarly, the second matrix 
B may be factored as

 B = UB𝚺BVH
B . (15.9)

The identity AAH = BBH implies that we have

 UA = UB (15.10)

and

 𝚺A = 𝚺B. (15.11)

Now, let

 𝚯 = VAVH
B . (15.12)
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Then, using Eqs. (15.8) and (15.12) to evaluate the matrix product A𝚯, we obtain a result 
equal to matrix B by virtue of Eqs. (15.9) to (15.11); this result is precisely the converse 
implication of the matrix factorization lemma.

Square-root Covariance Filtering algorithm

Returning to the issue of square-root Kalman filtering, we note that the Riccati dif-
ference equation for the covariance filtering algorithm may be expressed as follows  
(by combining the first and final lines of the algorithm summarized in Table 14.4):

 K1n2 = l-1K1n - 12 - l-1K1n - 12u1n2r -1
 1n2uH

 1n2K1n - 12. (15.13)

The scalar r(n) is the variance of the filtered estimation error and is defined by

 r1n2 = uH1n2K1n - 12u1n2 + 1. (15.14)

The following four distinct matrix terms constitute the right-hand side of the Riccati 
equation (15.13):

 1. Scalar: uH(n)K(n - 1)u(n) + 1.
 2. 1-by-M vector: l-1 >  2uH

 1n2K1n - 12.
 3. M-by-1 vector: l-1 >  2K1n - 12u1n2.
 4. M-by-M matrix: l-1K(n - 1).

Keeping in mind the dimensional compatibility of these four terms, we may arrange 
these four terms in the form of a block matrix that contains the complete information 
on K(n):

 H1n2 = BuH1n2K1n - 12u1n2 + 1
l-1/2K1n - 12u1n2

l-1/2uH1n2K1n - 12
l-1K1n - 12 R . (15.15)

Expressing the correlation matrix K(n - 1) in its factored form yields

 K1n - 12 = K1>21n - 12KH>21n - 12. (15.16)

Recognizing that the matrix H(n) is a nonnegative-definite matrix, we may use Cholesky 
factorization to express Eq. (15.15) as

 H1n2 = B1
0

uH1n2K1/21n - 12
l-1/2K1/21n - 12 R  B 1

KH/21n - 12u1n2
0T

l-1/2KH/21n - 12R , (15.17)

where 0 is the null vector and the superscript T denotes transposition.
The matrix product on the right-hand side of Eq. (15.17) may be interpreted as the 

product of matrix A, say, and its Hermitian transpose AH. The stage is therefore set for 
invoking the matrix factorization lemma, according to which we may write

 B1
0

uH1n2K1/21n - 12
l-1/2K1/21n - 12 R𝚯1n2 = Bb111n2

b211n2
0T

B221n2R , (15.18)

 (+++++)+++++* (++1+)++1+* 
 A B
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where 𝚯(n) is a unitary rotation and the scalar b11(n), the vector b21(n), and the matrix 
B22(n) denote the nonzero block elements of matrix B. In Eq. (15.18), we may distinguish 
two arrays of numbers:

 1. Prearray, A, which is operated on by a unitary rotation.
 2. Postarray, B, which is characterized by a block zero entry resulting from the action 

of the unitary rotation. The postarray therefore has a “triangular” structure in a 
block sense.

To evaluate the unknown block elements b11, b21, and B22 of the postarray, we proceed 
by squaring both sides of Eq. (15.18). Then, recognizing that 𝚯(n) is a unitary matrix 
and, therefore, 𝚯(n)𝚯H(n) equals the identity matrix for all n, we may writeB1

0
uH1n2K1>21n - 12
l-1>2K1>21n - 12 R  B 1

KH>21n - 12u1n2
0T

l-1>2KH>21n - 12R  

(+++++)+++++*  (1++++++++)+++++++1+* 
 A AH (15.19)

 = Bb111n2
b211n2

0T

B221n2R  Bb*111n2
0

bH
211n2

BH
221n2R , 

 (++1+)+++1* (+++1)+++1* 
 B BH

where the asterisk denotes complex conjugation. Expanding the matrix products and 
then comparing the respective terms on both sides of Eq. (15.19), we get the following 
three identities:

 ∙ b11 1n2 ∙2 = uH
 1n2K1n - 12u1n2 + 1 = r1n2; (15.20)

 b211n2b*11 1n2 = l-1 >  2K1n - 12u1n2; (15.21)

 b21 1n2bH
21 1n2 + B22 1n2BH

22 1n2 = l-1K1n - 12. (15.22)

Equations (15.20) through (15.22) may be satisfied by choosing

 b111n2 = r 1>21n2, (15.23)

 b211n2 = l- 1>2K1n - 12u1n2r - 1>21n2 = g1n2r 1>21n2, (15.24)

and
 B221n2 = K1>21n2, (15.25)

where, in the second line, g(n) denotes the gain vector, a definition of which is given in 
the first computation step of Table 14.4.

We may thus rewrite Eq. (15.18) as

 c 1 uH
 1n2K1 >  21n - 12

0 l-1 >  2K1 >  2
 1n - 12 d𝚯1n2 = c r 1 >  2

 1n2 0T

g1n2r 1 >  2
 1n2 K1 >  21n2 d . (15.26)

The block elements of the prearray and postarray in Eq. (15.26) deserve close scrutiny, 
as they reveal properties of their own:

	 •	 The block elements l-1/2K1/2(n - 1) and uH(n)K1/2(n - 1) of the prearray uniquely 
characterize the constitution of the quantities contained in the right-hand side 
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of the Riccati difference equation (15.13), except for r(n). Correspondingly, the 
block element K1/2(n) of the postarray provides the quantity needed to update the 
prearray and, therefore, initiate the next adaptation cycle of the algorithm.

	 •	 Inclusion of the block elements 1 and 0 in the prearray induces the generation 
of two block elements in the postarray, namely, r1/2(n) and g(n)r1/2(n). These ele-
ments make it possible to calculate two useful variables: the gain vector g(n) and 
the variance r(n) of the filtered estimation error. The variance is obtained simply 
by squaring the scalar entry r1/2(n). The gain vector is obtained equally simply by 
dividing the block entry g(n)r1/2(n) by r1/2(n).

Building on the latter result, we may readily time update of the state estimate as

 xn1n + 1 ∙yn2 = l-1 >  2xn1n ∙yn - 12 + g1n2a1n2, (15.27)

where

 a1n2 = y1n2 - uH
 1n2xn1n ∙yn - 12 (15.28)

is the innovation.
Equations (15.28) and (15.27) are respectively taken from the second and third 

computation steps of Table 14.4. Part 1 of Table 15.1 presents a summary of the compu-
tations performed in the square-root covariance filtering algorithm (Sayed & Kailath, 
1994). The initialization of the algorithm proceeds in exactly the same way as for the 
conventional covariance filtering algorithm (see Table 14.4).

Square-root information Filtering algorithm

Consider next the square-root implementation of information filtering algorithm, which 
propagates the inverse matrix K-1(n) rather than K(n) itself. This form of propagation 
is useful particularly when there exist large initial uncertainties (i.e., the initial cova-
riance matrix K(0) is singular). A summary of the information-filtering algorithm is 

TAble 15.1 Summary of the Computations Performed in Square-Root Covariance Filtering Algorithm

1.  Square-root covariance filtering algorithm:

c1 uH
 1n2K1 >  2

 1n - 12
0 l-1 >  2K1 >  2

 1n - 12 d𝚯1n2 = c r 1 >  2
 1n2 0T

g1n2r 1 >  2
 1n2 K1 >  2

 1n2 d

g1n2 = 1g1n2r 1>21n221r 1>21n22-1

a1n2 = y1n2 - uH
 1n2xn1n ∙yn - 12

xn1n + 1 ∙yn2 = l-1 >  2  xn1n ∙yn - 12 + g1n2a1n2
2.  Square-root information filtering algorithm:C l1 >  2K-H >  2

 1n - 12 l1 >  2u1n2
xnH

 1n ∙yn - 12K-H >  2
 1n - 12 y*1n2

0T 1
S𝚯1n2 = C K-H >  2

 1n2 0
xn H

 1n + 1 ∙yn2K-H >  2
 1n2 r -1 >  21n2a*1n2

l1 >  2uH
 1n2K1 >  2

 1n2 r -1 >  2
 1n2

S
xnH

 1n + 1 ∙yn2 = 1xnH
 1n + 1 ∙yn2K-H >  2

 1n221K-H >  2
 1n22-1

Note: In both algorithms, 𝚯(n) is a unitary rotation that produces a block zero entry in the top row of the  
postarray.
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presented in Table 14.5. The first two time updates of the algorithm are reproduced here 
for convenience of presentation:

  K-1
 1n2 = lK-11n - 12 + lu1n2uH

 1n2;  (15.29)

  K-1
 1n2xn1n + 1 ∙yn2 = l1 >  2K-1

 1n - 12xn1n ∙yn - 12 + l1 >  2u1n2y1n2. (15.30)

Let the inverse matrix K-1(n) be expressed in its factored form:

 K-1
 1n2 = K-H >  21n2K-1 >  2

 1n2. (15.31)

For reasons that will become apparent presently, we find it more convenient to express 
Eqs. (15.29) and (15.30) in their Hermitian transposed forms, in which case we may 
express the four quantities on the right-hand sides of these two equations in their indi-
vidual factored forms as follows:

  lK-H
 1n - 12 = 1l1 >  2K-H >  2

 1n - 1221l1 >  2K-1 >  2
 1n - 122;  

  lu1n2uH
 1n2 = 1l1 >  2u1n221l1 >  2uH

 1n22;  

  l1 >  2xnH1n ∙yn - 12K-H
 1n - 12 = 1xnH

 1n ∙yn - 12K-H >  2
 1n - 1221l1 >  2K-1 >  2

 1n - 122; 

  l1 >  2y*1n2uH
 1n2 = 1y*1n221l1 >  2u1n22.  

We may now identify four distinct factors as the block elements of the prearray, which 
are paired in the following manner:

	 •	 l1/2K-H/2(n - 1) and l1/2u(n), which are of dimensions M by M and M by 1, 
respectively.

	 •	 xnH
 1n ∙yn - 12K-H >  2

 1n - 12 and y*(n), which are of dimensions 1 by M and 1 by 1, 
respectively.

Insofar as the prearray is concerned, the first two factors are naturally compatible by 
virtue of being a matrix and a vector, respectively. The compatibility of the last pair of 
factors as row vectors is the reason for working with the Hermitian transposed forms of 
Eqs. (15.29) and (15.30). We may thus construct the following prearray:

 C l1 >  2K-H >  2
 1n - 12 l1 >  2u1n2

xnH
 1n ∙yn - 12K-H >  2

 1n - 12 y*1n2
0T 1

S . 

The last row, made up of a block of M zeros followed by a unity term, has been added 
in order to make room for the generation of other filtering variables in the postarray 
(Morf & Kailath, 1975; Sayed & Kailath, 1994). Suppose next that we choose a unitary 
rotation 𝚯(n) that transforms the prearray so as to produce a block zero in the second 
entry of the postarray’s top block row, as shown by

 C l1 >  2K-H >  2
 1n - 12 l1 >  2u1n2

xnH
 1n ∙yn - 12K-H >  2

 1n - 12 y*1n2
0T 1

S𝚯1n2 = CBH
11 1n2 0

bH
21 1n2 b*22 1n2

bH
31 1n2 b*32 1n2

S . (15.32)

In effect, the vector l1/2u(n) in the prearray is annihilated by the transformation. By 
proceeding in a manner similar to that described for the square-root covariance filter-
ing algorithm [i.e., by squaring both sides of Eq. (15.32) and then comparing respective 
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terms on both sides of the resulting equality], we may choose the block elements of the 
postarray as follows (see Problem 1):

  BH
11 1n2 = K-H >  2

 1n2;  (15.33)

  bH
21 1n2 = xnH

 1n + 1 ∙yn2K-H >  2
 1n2; (15.34)

  bH
31 1n2 = l1 >  2uH

 1n2K1 >  2
 1n2;  (15.35)

  b*22 1n2 = r -1 >  2
 1n2a*1n2;  (15.36)

  b*32 1n2 = r -1 >  2
 1n2.  (15.37)

Accordingly, we may rewrite Eq. (15.32) in the desired formC l1 >  2K-H >  2
 1n - 12 l1 >  2u1n2

xnH
 1n ∙yn - 12K-H >  2

 1n - 12 y*1n2
0T 1

S𝚯1n2

= C K-H >  2
 1n2 0

xnH
 1n + 1 ∙yn2K-H >  2

 1n2 r -1 >  2
 1n2a*1n2

l1 >  2 uH
 1n2K1 >  2

 1n2 r -1 >  2
 1n2

S . (15.38)

The block elements of the postarray provide two sets of useful results:

 1. Updated block elements of the prearray:
	 •	 The updated square root K-H/2(n) is given by BH

11 1n2.
	 •	 The updated matrix product xnH

 1n + 1 ∙yn2K-H >  2
 1n2 is given by bH

21 1n2.

 2. Two other filtering variables:
	 •	 The conversion factor, r-1(n), is obtained by squaring b32(n), which is real.
	 •	 The innovation, a(n), is obtained by dividing b22(n) by b32(n).

The updated state estimate xn1n + 1 ∙yn2 is computed from the upper triangular 
system of Eq. (15.34), where K-H/2(n) is known by virtue of Eq. (15.33). Specifically, the 
individual elements of xn1n + 1 ∙yn2 are computed by using the method of back substitu-
tion that exploits the upper triangular structure of the square root K-H/2(n).

Part 2 of Table 15.1 presents a summary of the square-root information-filtering 
algorithm; initialization of the algorithm proceeds in the same way described in Table 14.5.

The square-root covariance filter and the square-root information filter summa-
rized in Table 15.1 share a common feature: The number of operations (multiplications 
and additions) needed to proceed from one adaptation cycle of the algorithm to the 
next, in both cases, is O(M2), where O is order and M is the state dimension.

15.2  Building Square-root adaptive FilterS on 
the two Kalman Filter variantS

The two square-root variants of the Kalman filter described in the previous section pro-
vide the general framework for the derivation of known square-root adaptive filtering 
algorithms for exponentially weighted RLS estimation. We say so in light of the one-
to-one correspondences that exist between the Kalman variables and RLS variables, as 
demonstrated in Chapter 14. (See Table 14.3.)

Two important square-root adaptive filtering algorithms for RLS estimation 
are known as the QR-decomposition-based RLS (QRD-RLS) algorithm and inverse 
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QRD-RLS algorithm. The reason for this terminology is that derivation of these algo-
rithms has traditionally relied, in one form or another, on the use of an orthogonal trian-
gularization process known in matrix algebra as QR-decomposition. The motivation for 
using QR-decomposition in adaptive filtering is to exploit its good numerical properties.

The QR-decomposition of a matrix A(n) may be written as (Stewart, 1973; Golub & 
Van Loan, 1996)

 Q1n2 A1n2 = cR1n2
O

d , (15.39)

where Q(n) is a unitary matrix, R(n) is an upper triangular matrix, and O is the null 
matrix. The pervasive use of the symbols Q and R in such a transformation has led, in the 
course of time, to the common use of “QR-decomposition.” By the same token, adaptive 
RLS filtering algorithms based on QR-decomposition, in a broad sense, became known 
as “QRD-RLS algorithms.” Traditionally, the QRD-RLS algorithms for exponentially 
weighted RLS estimation were derived starting from the prewindowed version of a data 
matrix, which was then triangularized by applying the QR-decomposition. In light of 
the material presented in Section 15.2, these adaptive filtering algorithms can indeed 
be deduced directly from the two square-root variants of the Kalman filter, thereby 
achieving two highly desirable objectives:

 1. The unified treatment of QRD-RLS adaptive filtering algorithms for exponentially 
weighted RLS estimation.

 2. Consolidating the bridge between the deterministic RLS estimation theory and 
the stochastic Kalman filter theory.

In the remainder of this chapter, we follow this insightful approach in deriving different 
QRD-RLS adaptive filtering algorithms. However, the order in which these algorithms 
are considered follows the traditional development of RLS estimation theory rather 
than the order of square-root Kalman filters summarized in Table 15.1.

15.3 qrd-rlS algorithm

The QRD-RLS algorithm, or, more precisely, the QR-decomposition-based RLS algo-
rithm, derives its name from the fact that the computation of the least-squares weight 
vector in a finite-duration impulse response (FIR) filter implementation of the adaptive 
filtering algorithm is accomplished by working directly with the incoming data matrix 
via the QR-decomposition rather than working with the (time-average) correlation 
matrix of the input data, as in the traditional RLS algorithm (Gentleman & Kung, 1981; 
McWhirter, 1983; Haykin, 1991). Accordingly, the QRD-RLS algorithm is numerically 
more stable than the traditional RLS algorithm.

Assuming the use of prewindowing on the input data, the data matrix is defined by

  AH
 1n2 = 3u112, u122, c, u1M2, c, u1n24  

  = Du112 u122 g u1M2 g u1n2
0 u112 g u1M - 12 g u1n - 12
f f f f
0 0 g u112 g u1n - M + 12

T ,   (15.40)
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where M is the number of FIR filter coefficients (i.e., filter order). Correspondingly, the 
correlation matrix of the input data is defined by

  𝚽1n2 = a
n

i = 1
ln - iu1i2uH

 1i2  

  = AH
 1n2𝚲1n2A1n2. 

(15.41)

The matrix

 𝚲1n2 = diag 3ln - 1, ln - 2, c, 14 (15.42)

is called the exponential weighting matrix; l is the exponential weighting factor. Equation 
(15.41) represents a generalization of Eq. (9.45) used in the method of least squares.

From Chapter 10, we recall that the matrix P(n), used in deriving the RLS algo-
rithm, is defined as the inverse of the time-average correlation matrix 𝚽(n), as shown 
by [see Eq. (10.17)]

 P1n2 = 𝚽-11n2. (15.43)

From Table 14.3 of Chapter 14, we also note the following correspondences 
between the Kalman variables and RLS variables:

Kalman Variable RLS Variable Description

K-1(n) lP-1(n) = l𝚽(n) Correlation matrix

r-1(n) g(n) Conversion factor

g(n) l-1/2k(n) Gain vector

a(n) l-n/2j*(n) A priori estimation error

y(n) l-n/2d*(n) Desired response (observable)

xn1n ∙yn - 12 l-n >  2wn 1n - 12 Estimate of tap-weight vector

Before proceeding to formulate the QRD-RLS algorithm in light of these correspon-
dences, we find it convenient to make a change of notation. According to the normal 
equations, the least-squares estimate of the tap-weight vector wn 1n2 is defined by [see 
Eq. (9.35)]

 𝚽1n2wn 1n2 = z1n2, (15.44)

where z(n) is the time-average cross-correlation vector between the desired response 
d(n) and input data vector u(n). Let 𝚽(n) be expressed in its factored form:

 𝚽1n2 = 𝚽1 >  2
 1n2𝚽H >  2

 1n2. (15.45)

Then, premultiplying both sides of Eq. (15.44) by the inverse square root 𝚽-1/2(n), we 
may introduce a new vector variable defined by

 p1n2 = 𝚽H >  2
 1n2wn 1n2 = 𝚽-1 >  2

 1n2z1n2. (15.46)

Thus, by propagating 𝚽1 >  2
 1n2 and p1n2, we may view the QRD-RLS algorithm as the 

square-root information-filtering algorithm in Kalman filter theory, Chapter 14.
We are now ready to formulate the QRD-RLS algorithm for linear adaptive filtering. 

Specifically, we may translate Eq. (15.38) pertaining to the square-root information-filtering 
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algorithm into the corresponding prearray-to-postarray transformation for the QRD-RLS 
algorithm as follows (after the cancellation of common terms):

 Cl1 >  2𝚽1 >  2
 1n - 12 u1n2

l1 >  2 pH1n - 12 d1n2
0T 1

S𝚯1n2 = C 𝚽1 >  2
 1n2 0

pH
 1n2 j1n2g1 >  2

 1n2
uH

 1n2𝚽-H >  2
 1n2 g1 >  2

 1n2
S . (15.47)

Basically, 𝚯(n) is any unitary rotation that operates on the elements of the input data 
vector u(n) in the prearray, annihilating them one by one so as to produce a block zero 
entry in the top block row of the postarray. Naturally, the lower triangular structure of the 
square root of the correlation matrix, namely, 𝚽1/2, is preserved in its exact form before 
and after the transformation. This is indeed the very essence of the QR-decomposition 
for RLS estimation—hence the name “QRD-RLS algorithm.”

Having computed the updated block values 𝚽1/2(n) and pH(n), we may then solve 
for the least-squares weight vector wn 1n2 by using the formula [see Eq. (15.46)]

 wn H
 1n2 = pH

 1n2𝚽-1 >  2
 1n2. (15.48)

The computation of this solution is accomplished with the method of back substitution 
that exploits the lower triangular structure of 𝚽1/2(n). Note, however, that this compu-
tation is feasible only for adaptation cycle n 7 M, for which the data matrix A(n), and 
therefore 𝚽1/2(n), is of full column rank and therefore nonsingular.

To initialize the QRD-RLS algorithm, we may set 𝚽1/2(0) = d1/2I and p(0) = 0, where d 
is the regularization parameter. The exact initialization of the QRD-RLS algorithm occupies 
the period 0 … n … M for which the a posteriori estimation error e(n) is zero. At adaptation 
cycle n = M, the initialization is completed, whereafter e(n) may assume a nonzero value.

A summary of the QRD-RLS algorithm is presented in Table 15.2, including 
details of the initialization and other matters of interest.

TAble 15.2 Summary of the QRD-RLS Algorithm for Exponentially Weighted RLS Estimation

Inputs:
data matrix: AH(n) = [u(1), u(2), c, u(n)]
desired response: dH(n) = [d(1) d(2), c, d(n)]

Prescribed parameters:
exponential weighting factor = l
regularization parameter = d
unitary rotation = 𝚯(n)

Initial conditions:
𝚽1/2(0) = d1/2I
p(0) = 0

Computation:
For n = 1, 2, c, computeCl1 >  2𝚽1 >  2

 1n - 12 u1n2
l1 >  2pH

 1n - 12 d1n2
0T 1

S𝚯1n2 = C 𝚽1 >  2
 1n2 0

pH
 1n2 j1n2g1 >  2

 1n2
uH

 1n2𝚽-H >  2
 1n2 g1 >  2

 1n2
S

wn H
 1n2 = pH

 1n2𝚽-1 >  2
 1n2

Note: 𝚯(n) is a unitary rotation that operates on the prearray to produce a block zero entry in the top 
block row of the postarray.
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Systolic array implementation of the qrd-rlS algorithm

Thus far, we have not focused on the particulars of the unitary rotation 𝚯(n), other than 
to require that it be chosen to produce a block zero entry in the top block row of the 
postarray. A unitary matrix that befits this requirement is the transformation based on 
the Givens rotation, detailed discussion of which is presented in Appendix G.

The use of Givens rotations lends itself to a parallel implementation in the form of 
a systolic array (Kung & Leiserson, 1978).1 A systolic array consists of an array of indi-
vidual processing cells arranged as a regular structure. Each cell in the array is provided 
with local memory of its own and is connected only to its nearest neighbors. The array 
is designed such that regular streams of data are clocked through it in a highly rhythmic 
fashion, much like the pumping action of the human heart—hence the name “systolic” 
(Kung, 1982). The important point to note here is that systolic arrays are well suited for 
implementing complex signal-processing algorithms such as the QRD-RLS algorithm, 
particularly when the requirement is to operate in real time and at high data bandwidths.

Figure 15.1 shows an efficient systolic array structure for implementing the QRD-RLS 
algorithm (McWhirter, 1983); the structure applies to the example of a weight vector wn 1n2 
with three elements (i.e., M = 3). The (M + 1)-by-(M + 1) unitary matrix 𝚯 in Eq. (15.47) is 
implemented as a sequence of M Givens rotations, each of which is configured to annihilate 
a particular element of the M-by-1 vector u(n) in the prearray. We may thus write

 𝚯 = q
M

k = 1
𝚯k, (15.49)

1The first systolic implementation of the QRD-RLS algorithm was published by Gentleman and Kung 
(1981), who used a systolic array structure consisting of two distinct sections: a triangular systolic array and a 
linear systolic array. The Gentleman–Kung array differs from the McWhirter array of Fig. 15.1 in the  following 
respects:

 • The transformation of Eq. (15.47), constituting the mathematical basis of the QRD-RLS algorithm, is 
implemented in two stages. In stage 1, the last rows of the prearray and postarray are deleted, with a 
corresponding reduction in the dimensions of the unitary matrix 𝚯(n); thus, we now write

cl
1 >  2𝚽1 >  2

 1n - 12 u1n2
l1 >  2pH

 1n - 12 d1n2 d𝚯1n2 = c 𝚽1 >  2
 1n2 0

pH
 1n2 j1n2g1 >  2

 1n2 d ,

  which is implemented by the triangular section of the Gentleman–Kung array. In stage 1 of the com-
putation, the updated lower triangular matrix 𝚽1 >  2

 1n2 and row vector pH(n) are produced. Once the 
entire orthogonal triangularization process is completed, the data flow stops, and the stored values of 
𝚽1 >  2

 1n2 and pH(n) are clocked out for stage 2 of the computation to proceed by the linear systolic 
section. In particular, a form of backward substitution is used by that section to compute the filter 
weights wn M - 1 1n2, c, wn 2 1n2, wn 1 1n2. In contrast, the McWhirter array consists of a single triangular 
array designed to compute the a posteriori estimation error e(n).

 • In structural terms, the Gentleman–Kung array uses internal and boundary cells, whereas the 
McWhirter array uses an additional cell, namely, the final processing cell to compute the a posteriori 
estimation error.

Practically speaking, we may say the following: If the requirement is to compute the a posteriori 
estimation error and the least-squares filter weights are needed only on an occasional basis, then the recom-
mended systolic procedure is to use the McWhirter array. If, on the other hand, obtaining the least-squares 
filter weights is the primary requirement, then the systolic version of the inverse QRD-RLS algorithm 
described in Section 15.5 is the preferred method over the Gentleman–Kung array.
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where 𝚯k consists of a unitary matrix except for four strategic elements located at the 
points where the pair of rows k and M + 1 intersects the pair of columns k and M + 1. 
These four elements, denoted by ukk, uM + 1, k, uk, M + 1, and uM + 1, M + 1, are defined as

 
ukk =  uM + 1, M + 1 = ck

uM + 1, k = s*k
uk, M + 1 = -sk

s , (15.50)

where k = 1, 2, c, M. The cosine parameter ck is real, whereas the sine parameter sk is 
complex. The choice of ck and sk is constrained by the relation

 c2
k + ∙ sk ∙2 = 1   for all k. (15.51)

A transformation of the form defined in Eq. (15.50) is called the Givens rotation.
The systolic structure of Fig. 15.1 is configured with two points in mind. First, data 

flow through the structure from left to right, consistent with all other adaptive filters 
considered in previous chapters. Second, the systolic array operates directly on the input 
data that are represented by successive values of the input signal vector u(n) and the 
desired response d(n).

The systolic array is controlled by a single clock and consists of three types of 
processing cells arranged in the form of a triangular section:

 1. Internal cells, which are depicted as squares. The internal cells perform only addi-
tions and multiplications, as described in Fig. 15.2(a).

FiguRe 15.1 Systolic array implementation of the QRD-RLS algorithm. The dots along the 
diagonal of the array represent storage elements. The processing delay, which is a consequence 
of the temporal skew imposed on the input data, may be incorporated within the associated 
boundary cells.
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 2. Boundary cells, which are depicted as large circles. The boundary cells are consider-
ably more complex than the internal cells, in that they compute square roots and 
reciprocals, as described in Fig. 15.2(b).

 3. Final processing cell, which is depicted by a small circle. The final cell produces an 
output simply by multiplying its two inputs, as described in Fig. 15.2(c).

FiguRe 15.2 Cells for systolic array of Fig. 15.1: (a) internal cell; (b) boundary cell; (c) final cell.
Note: The stored value x is initialized to be zero (i.e., real). For the boundary cell, it always 
remains real. Hence, the formulas for the rotation parameters c and s computed by the 
boundary cell can be simplified considerably, as shown in part (a). Note also that in parts 
(a) and (b), the values x stored in the array are elements of the lower triangular matrix RH; 
hence, r* = x for all elements of the array.
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Each processing cell of the triangular section excited by elements of the input vector 
u(n) stores a particular element of the lower triangular matrix 𝚽1 >  2

 1n2, depending on the 
location of the cell under consideration. The function of each column of processing cells in 
the triangular section is to rotate one column of the stored triangular matrix with a vector 
of data received from the left in such a way that the leading element of the received input 
vector u(n) is annihilated. The reduced data vector is then passed to the right on the next 
column of processing cells. The boundary cell in each column of the triangular section 
computes the pertinent rotation parameters and then passes them downward on the next 
clock cycle. The internal cells subsequently apply the same rotation to all other elements 
of the input vector u(n). Since a delay of one clock cycle per cycle is incurred in passing the 
rotation parameters downward along a column, it is necessary that the input vector u(n) 
enter the array in a skewed order, as illustrated in Fig. 15.1 for the case of M = 3; likewise, 
for the desired response d(n). This arrangement of the input data ensures that, as each 
column vector u(n) of the data matrix AH(n) propagates through the array, it interacts with 
the previously stored triangular matrix 𝚽1 >  2

 1n - 12 and thereby undergoes the sequence 
of Givens rotations denoted by 𝚯1n2, as required. Accordingly, all the elements of the 
column vector u(n) are annihilated, one by one, and an updated lower triangular matrix 
𝚽1 >  2

 1n2 is produced and stored in the process, ready for the next sequence of operations.
The systolic array operates in a highly pipelined manner, whereby, as (time-

skewed) input data vectors enter the array from the left, we find that, in effect, each 
such vector defines a processing wave front that moves across the array. Consequently, 
on any particular clock cycle, elements of the pertinent lower triangular matrix 𝚽1 >  2

 1n2 
exist only along the pertinent wave front.

As the orthogonal triangularization is being performed by the systolic section 
labeled ABC in Fig. 15.1, the row vector pH(n) is computed by the appended bottom row 
of internal cells, the last one of which produces the output j1n2g1 >  2

 1n2. (See Problem 7.)
From Fig. 15.2(b), we note that the kth boundary cell in the systolic array structure 

of Fig. 15.1 performs the computation

 g1 >  2
out, k = ck 1n2g1 >  2

in, k 1n2, k = 1, 2, c, M, (15.52)

where ck(n) is the cosine parameter of that cell. Accordingly, with a set of M boundary 
cells connected together as in Fig. 15.1, the output of the last boundary cell produced in 
response to a unit input applied to the first boundary cell may be expressed as

  g1 >  2
 1n2 = g1 >  2

out, M 1n2 `
g1 >  2

in, 11n2= 1
 

  = q
M

k = 1
ck 1n2 .  

(15.53)

With inputs equal to g1/2(n) and j(n)g1/2(n), the final processing cell in Fig. 15.1 
produces an output equal to the a posteriori estimation error e(n), in accordance with 
the relation [see the first line of Eq. (10.42) of Chapter 10]

  e1n2 = j1n2g1n2  

  = 1j1n2g1 >  2
 1n221g1 >  2

 1n22. 
(15.54)
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As the time-skewed input data vectors enter the systolic array of the figure, we find that 
updated estimation errors are produced at the output of the array at the rate of one 
every clock cycle. The estimation error produced on a given clock cycle corresponds, of 
course, to the particular element of the desired response vector d(n) that entered the 
array M clock cycles previously.

It is noteworthy that the a priori estimation error j(n) may be obtained by divid-
ing the output that emerges from the last cell in the appended (bottom) row of internal 
cells by the output from the last boundary cell. Also, the conversion factor g(n) may be 
obtained simply by squaring the output that emerges from the last boundary cell.

Figure 15.3 summarizes, in a diagrammatic fashion, the flow of signals in the sys-
tolic array of Fig. 15.1. To simplify the presentation, we have used RH(n) in place of 
𝚽1 >  2

 1n2 in Fig. 15.3. The figure includes the external inputs u(n) and d(n), the resulting 
transformations in the internal states of the triangular section and appended row of 
internal cells, the respective outputs of these two sections, and the overall output of the 
complete processor.

A distinctive feature of the systolic structure shown in Fig. 15.1 is that computa-
tion of the a posteriori estimation error bypasses the need for computing the weight 
vector wn 1n2. However, if the weight vector is required, then it can be computed by a 
serial weight flushing that is performed nonsystolically (Ward et al., 1986; Shepherd & 
McWhirter, 1993). To explain the method, let u(n) denote the input vector and d(n) 
denote the desired response, both at adaptation cycle n. Given that the weight vector at 
this adaptation cycle is wn 1n2, the corresponding a posteriori estimation error is

 e1n2 = d1n2 - wn H
 1n2u1n2. (15.55)

Suppose that the state of the array is frozen at adaptation cycle n+, immediately after the 
systolic computation at adaptation cycle n is completed. That is, suppose that any update 
of stored values in the array is suppressed, but the processor is permitted to function 
normally in all other respects. At adaptation cycle n+, we also set the desired response 
d(n) equal to zero. We now define an input vector that consists of a string of zeros, except 
for the ith element, which is set equal to unity, as shown by

FiguRe 15.3 Diagrammatic 
representation of the flow of signals  
in the systolic array of Fig. 15.1.
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 uH1n+2 = 30 c010 c04. 
 c  (15.56)
 ith element 

Then, setting d(n) = 0 and substituting Eq. (15.56) into Eq. (15.55), we get

 e1n+2 = -wn *i  1n+2. (15.57)

In other words, except for a trivial sign change, we may compute the ith element  
of the M-by-1 weight vector wH(n) by freezing the state of the processor at adaptation 
cycle n, setting the desired response equal to zero, and feeding the processor with 
an input vector in which the ith element is unity and the remaining M - 1 elements 
are all zero. The essence of all of this is that the Hermitian-transposed weight vector 
wn H

 1n2 may be viewed as the impulse response of the nonadaptive (i.e., frozen) form 
of the systolic array processor, in the sense that it can be generated as the system 
output produced by inputting an (M - 1)-by-(M - 1) identity matrix to the main trian-
gular array and a zero vector to the bottom row of the array in Fig. 15.1 (Shepherd &  
McWhirter, 1993). To “flush” the entire M-by-1 weight vector wn H

 1n2 out of the sys-
tolic processor, the procedure is therefore simply to halt the update of all stored 
values and input a data matrix that consists of a unit diagonal matrix (i.e., an identity 
matrix) of dimension M.

15.4 adaptive BeamForming

From the discussions of adaptive beamforming presented in previous chapters, we 
recall that the objective of this spatial form of adaptive filtering is to modify the indi-
vidual outputs of an array of sensors so as to produce an overall far-field pattern that 
optimizes, in some statistical sense, the reception of a target signal along a direction of 
interest. As with any adaptive filter, such an optimization is achieved by suitable modi-
fications of a set of weights built into the construction of the array. However, unlike 
other adaptive filtering applications, adaptive beamforming does not require explicit 
knowledge of the weights. This suggests a possible area of application for the QRD-
RLS algorithm implemented in the form of a systolic array, particularly the structure 
described in Fig. 15.1.

In this section, we revisit the minimum variance distortionless response (MVDR) 
beamformer, previously discussed in Chapters 2, 6, and 9. The key question, of course, is 
how to formulate the QRD-RLS algorithm, and therefore the triangular systolic array 
of Fig. 15.1, so as to perform the MVDR beamforming task.

the mvdr problem

Consider a linear array of M uniformly spaced sensors whose outputs are individually 
weighted and then summed to produce the beamformer output

 e1i2 = a
M

l = 1
w*l  1n2ul1i2, (15.58)
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610   Chapter 15  Square-Root Adaptive Filtering Algorithms

where ul(i) is the output of sensor l at adaptation cycle i and wl(n) is the associated 
(complex) weight. To simplify the mathematical presentation, we consider the simple 
case of a single look direction. Let s1(u), s2(u), c, sM(u) be the elements of a prescribed 
steering vector s(u); the electrical angle u is determined by the look direction of interest. 
In particular, the element sl(u) is the output of sensor l of the array under the condition 
that there is no signal other than that due to a source of interest. We may thus state the 
MVDR problem as follows:

Minimize the cost function

 e1n2 = a
n

i = 1
ln - i ∙ e1i2 ∙2 (15.59)

subject to the constraint

 a
M

l = 1
w*l  1n2sl 1u2 = 1  for all n. (15.60)

Using matrix notation, we may redefine the cost function of Eq. (15.59) as

 e1n2 = EH
 1n2𝚲1n2E1n2, (15.61)

where 𝚲(n) is the exponential weighting matrix and E(n) is the vector of constrained 
beamformer outputs. According to Eq. (15.58), the beamformer output vector E(n) is 
related to the data matrix A(n) by

  E1n2 = 3e112, e122, c, e1n24H 

  = A1n2w1n2,  
(15.62)

where w(n) is the weight vector and A(n) is defined in terms of the snapshots u(1),  
u(2), c, u(n) by

  AH
 1n2 = 3u112, u122, c, u1n24  

  = D u1 112 u1 122 g u1 1n2
u2 112 u2 122 g u2 1n2
f f f

uM 112 uM 122 g uM 1n2
T . (15.63)

We may now restate the MVDR problem in matrix terms as follows:

Given the data matrix A(n) and the exponential weighting matrix 𝚲(n), minimize 
the cost function

 e1n2 = 7 𝚲1 >  2
 1n2A1n2w1n2 7 2 (15.64)

with respect to the weight vector w(n), subject to the constraint

 wH1n2s1u2 = 1  for  all n, 

where s(u) is the steering vector for a prescribed electrical angle u.
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The solution to this constrained optimization problem is described by the MVDR 
formula [see Eq. (9.91)]

 wn 1n2 =
𝚽-11n2s1u2

sH
 1u2𝚽-1

 1n2s1u2, (15.65)

where

 𝚽1n2 = AH1n2𝚲1n2A1n2 (15.66)

is the M-by-M correlation matrix of the exponentially weighted sensor outputs averaged 
over n snapshots.

Systolic mvdr Beamformer

Let the correlation matrix 𝚽(n) be expressed in its factored form:

 𝚽1n2 = 𝚽1>21n2𝚽H>21n2. (15.67)

Correspondingly, we may rewrite Eq. (15.65) as

 wn 1n2 =
𝚽-H >  2

 1n2𝚽-1 >  21n2s1u2
sH

 1u2𝚽-H >  2
 1n2𝚽-1 >  2

 1n2s1u2. (15.68)

To simplify matters, we define the auxiliary vector:

 a1n2 = 𝚽-1>21n2s1u2. (15.69)

We now note that the denominator of Eq. (15.68) is a real-valued scalar equal to the 
squared Euclidean norm of the auxiliary vector a(n). The numerator is equal to the 
Hermitian-transposed inverse square root 𝚽-H/2(n) postmultiplied by the auxiliary vec-
tor a(n). We may thus simplify Eq. (15.68) to

 wn 1n2 =
𝚽-H >  21n2a1n2

7a1n2 7 2 . (15.70)

The MVDR beamformer output, or, in adaptive filtering terminology, the a posteriori 
estimation error produced at adaptation cycle n in response to the snapshot u(n), is given by

  e1n2 = wn H
 1n2u1n2  (15.71)

  =
aH

 1n2𝚽-1 >  2
 1n2u1n2

7a1n2 7 2 . 

Let

 e′1n2 = aH1n2𝚽-1>21n2u1n2 (15.72)

denote a new estimation error. We may then reduce Eq. (15.71) to

 e1n2 =
e′1n2
7a1n2 7 2. (15.73)
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612   Chapter 15  Square-Root Adaptive Filtering Algorithms

This equation shows that the MVDR beamformer output e(n) is uniquely defined by 
two quantities: e′(n) and a(n).

At this point in the discussion, we find it informative to recall the formula for the a pos-
teriori estimation error e(n) actually computed by the QRD-RLS algorithm. By definition,

 e1n2 = d1n2 - wn H
 1n2u1n2, (15.74)

where d(n) is the desired response, wn 1n2 is the least-squares weight vector, and u(n) is 
the input data vector. Substituting Eq. (15.48) into Eq. (15.74) yields

 e1n2 = d1n2 - pH1n2𝚽-1>21n2u1n2. (15.75)

Thus, comparing Eqs. (15.72) and (15.75), we readily deduce the correspondences 
between the QRD-RLS adaptive filtering and MVDR beamforming variables listed in 
Table 15.3. The correspondences listed herein merely indicate the “similarity of roles,” 
and not equivalence, between the variables listed under MVDR beamforming and those 
listed under QRD-RLS adaptive filtering.

TAble 15.3 Correspondences between the QRD-RLS Adaptive Filtering and MVDR  
Beamforming Variables

QRD-RLS adaptive filtering MVDR beamforming Description

e(n) -e′(n) Estimation error
d(n) 0 Desired response

p(n) a(n) Auxiliary vector

u(n) u(n) Snapshot

The stage is now set for a recasting of the QRD-RLS algorithm to suit the MVDR 
beamforming problem. First, we apply the correspondences of Table 15.3 to the prearray 
in Eq. (15.47) for the QRD-RLS algorithm, thereby formulating the prearray for the 
MVDR beamformer as

 Cl1 >  2𝚽1 >  2
 1n - 12 u1n2

l1 >  2aH1n - 12 0
0T 1

S . 

Next, we determine the postarray that goes with this prearray by proceeding in the same 
manner as that described in Section 15.3. We may thus write

 Cl1 >  2𝚽1 >  2
 1n - 12 u1n2

l1 >  2aH1n - 12 0
0T 1

S𝚯1n2 = C 𝚽1 >  2
 1n2 0

aH
 1n2 -e′1n2g-1 >  2

 1n2
uH

 1n2𝚽-H >  2
 1n2 g1 >  2

 1n2
S . (15.76)

We now see that the two quantities of interest in the MVDR problem may be obtained 
from the postarray of Eq. (15.76) as follows:

	 •	 The updated auxiliary vector a(n) is read directly from the second row of the 
postarray.

M15_HAYK4083_05_SE_C15.indd   612 21/06/13   8:52 AM



Section 15.4 Adaptive beamforming   613

	 •	 The estimation error is given by

 e′1n2 = 1e′1n2g-1>21n221g1>21n22, (15.77)

  where e′(n)g-1/2(n) and g1/2(n) are read directly from the nonzero entries of the 
second column of the postarray.

Finally, we may implement the MVDR beamformer by using the systolic array 
structure shown in Fig. 15.4, which is basically the same as that of Fig. 15.1 except for 
some minor changes (McWhirter & Shepherd, 1989). Specifically, d(n) is set equal to 
zero for all n. With this change in place, we note the following from Fig. 15.4:

	 •	 The auxiliary vector a(n) is generated and stored in the bottom row of cells.
	 •	 The output of the final processing cell is identically equal to –e′(n).

With a continuing sequence of snapshots u(n), u(n + 1), c applied to the systolic array 
processor in Fig. 15.4, a corresponding sequence of estimation errors e(n), e(n + 1), c 
is generated by the MVDR beamformer in accordance with Eq. (15.73).

Computer experiment

We now illustrate the performance of the systolic array implementation of an adaptive 
MVDR beamformer by considering a linear array of five uniformly spaced sensors. The 
spacing d between adjacent elements equals one-half of the received wavelength. The 
array operates in an environment that consists of a target signal and a single interfer-
ence, which originate from uncorrelated sources. The exponential weighting factor l = 1.

FiguRe 15.4 Systolic array for solving the MVDR beamforming problem.
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614   Chapter 15  Square-Root Adaptive Filtering Algorithms

The aims of the experiment are twofold:

 1. To examine evolution of the adapted spatial response (pattern) of the beamformer 
across time.

 2. To evaluate the effect of varying the interference-to-target ratio on the interference-
nulling capability of the beamformer.

The directions of the target and source of interference are as follows:

 
Excitation

Actual angle of incidence, W, measured with  
respect to normal to the array (radians)

Target sin-1 (0.2)
Interference 0

The steering vector is defined by

 sT1u2 = 31, e-ju, e-j2u, e-j3u, e-j4u4, (15.78)

where the electrical angle

 u = p sin w, (15.79)

in which w is the actual angle of incidence.
The data set used for the experiment consists of three components: a target signal, 

elemental receiver noise, and an interfering signal. The target signal and the interfering 
signal originate in the far field of the array antenna and are therefore represented by 
plane waves impinging on the array along their respective directions. Let these direc-
tions be denoted by angles w1 and w2, measured (in radians) with respect to the normal 
to the array antenna. The elemental signals of the array antenna are thus expressed in 
baseband form as

 u1n2 = A0 exp1jnu02 + A1 exp1jnu1 + jc2 + n1n2, n = 0, 1, 2, 3, 4, (15.80)

where A0 is the amplitude of the target signal and A1 is the amplitude of the interfering 
signal. The electrical angles u0 and u1 are related to the individual angles of arrival w0 and 
w1, respectively, by Eq. (15.79). Since the target and interfering signals are uncorrelated, 
the phase difference c associated with the second component in Eq. (15.80) is a random 
variable uniformly distributed over the interval (0, 2π]. Lastly, the additive receiver noise 
n(n) is a complex-valued Gaussian random variable with zero mean and unit variance. 
The target-to-noise ratio is held constant at 10 dB; the interference-to-noise ratio is 
variable, assuming the values 40, 30, and 20 dB.

Figure 15.5 shows the effects of varying the target-to-interference ratio and the 
number of snapshots (excluding those needed for initialization) on the adapted response 
of the beamformer. The amplitude response, expressed in decibels, is obtained by com-
puting 20 log10|e(n)ejnu|, where multiplication by the exponential factor ejnu provides a 
means of spatially sampling the beamformer output e(n). The results are presented in 
three parts, corresponding to 20, 100, and 200 snapshots; each part includes the three 
different values of interference-to-noise ratio, namely, 40, 30, and 20 dB.
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FiguRe 15.5 Results of the computer experiment on the spatial response of the systolic 
MVDR beamformer for varying interference-to-noise ratio and different number of snapshots: 
(a) n = 20; (b) n = 100; and (c) n = 200. Part (c) of the figure is shown on the next page.
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616   Chapter 15  Square-Root Adaptive Filtering Algorithms

On the basis of the results, presented in Fig. 15.5, we may make the following 
observations:

	 •	 The response of the beamformer along the target is held fixed at a value of unity 
(i.e., 0 dB) under all conditions, as required.

	 •	 With as few as 20 snapshots, excluding initialization, the beamformer exhibits a 
reasonably effective nulling capability, which continually improves as the beam-
former processes more snapshots.

	 •	 The response of the beamformer is relatively insensitive to variations in the 
interference-to-target ratio.

15.5 inverSe qrd-rlS algorithm

We now come to our last square-root adaptive filtering algorithm, known as the inverse 
QRD-RLS algorithm.2 The algorithm derives its name from the fact that, instead of oper-
ating on the correlation matrix 𝚽(n) as in the conventional QRD-RLS algorithm, the new 

FiguRe 15.5 (continued)

2The important virtue of the inverse QRD-RLS algorithm is that it permits the computation of a least-
squares filter’s weights systolically. As such, it is a better alternative to the extended QRD-RLS algorithm, the 
original motivation for which was to eliminate the need for using back substitution via the linear section in 
the Gentleman–Kung array. However, in historical terms, the invention of the extended QRD-RLS algorithm 
(Hudson & Shepherd, 1989) preceded that of the inverse QRD-RLS algorithm (Alexander & Ghirnikar, 1993). 
A derivation of the extended QRD-RLS algorithm is presented as Problem 3.

M15_HAYK4083_05_SE_C15.indd   616 21/06/13   8:52 AM



Section 15.5 inverse QRD-RlS Algorithm   617

algorithm operates on the inverse of 𝚽(n) (Pan & Plemmons, 1989; Alexander & Ghirnikar, 
1993). More specifically, in square-root terms, the inverse QRD-RLS algorithm propa-
gates P1/2(n) = 𝚽-1/2(n). In light of the fact that the Kalman parameter K(n) corresponds 
to the weighted RLS parameter l-1P(n), we see that the inverse QRD-RLS algorithm is 
basically a reformulation of the square-root covariance filtering algorithm.

Referring to Eq. (15.26), which pertains to the square-root covariance filtering 
algorithm, we readily see that (after canceling the common term l-1/2 from the bottom 
rows) the corresponding prearray-to-postarray transformation for the inverse QRD-
RLS algorithm may be written as

 c 1 l-1 >  2uH
 1n2P1 >  2

 1n - 12
0 l-1 >  2P1 >  21n - 12 d𝚯1n2 = c g-1 >  2

 1n2 0T

k1n2g-1 >  2
 1n2 P1 >  2

 1n2 d , (15.81)

where 𝚯(n) is a unitary rotation that operates on the block entry l-1/2uH(n)P1/2(n - 1) in 
the prearray by annihilating its elements, one by one, so as to produce a block zero entry 
in the first row of the postarray. The gain vector k(n) of the RLS algorithm is readily 
obtained from the entries in the first column of the postarray in Eq. (15.81) by writing

 k1n2 = 1k1n2g-1 >  2
 1n221g-1 >  2

 1n22-1. (15.82)

Hence, the least-squares weight vector may be updated in accordance with the recursion

 wn 1n2 = wn 1n - 12 + k1n2j*1n2, (15.83)

where the a priori estimation error is defined in the usual way:

 j1n2 = d1n2 - wn H
 1n - 12u1n2. (15.84)

A summary of the inverse QRD-RLS algorithm, including initial conditions, is 
presented in Table 15.4.

TAble 15.4 Summary of the Inverse QRD-RLS Algorithm

Inputs:
data matrix: AH(n) = {u(1), u(2), c, u(n)}
desired response vector: dH(n) = {d(1), d(2), c, d(n)}

Prescribed parameters:
exponential weighting factor = l
regularization parameter = d

Initial conditions:
P1/2(0) = d-1/2I
  wn 102 = 0

Computations:
For n = 1, 2, c, compute

c1 l-1 >  2uH
 1n2P1 >  2

 1n - 12
0 l-1 >  2P1 >  2

 1n - 12 d𝚯1n2 = c g-1 >  2
 1n2 0T

k1n2g-1 >  2
 1n2 P1 >  2

 1n2 d ,

where 𝚯(n) is a unitary rotation that produces a zero entry in the first row of the postarray.

 k1n2 = 1k1n2g-1 >  2
 1n221g-1 >  2

 1n22-1

 j1n2 = d1n2 - wn H
 1n - 12u1n2

 wn 1n2 = wn 1n - 12 + k1n2j*1n2
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Here we note that, since the square root 𝚽1/2(n) is lower triangular in accordance 
with Eq. (15.45), its inverse matrix 𝚽-1/2(n) = P1/2(n) is upper triangular.

The inverse QRD-RLS algorithm differs from the conventional QRD-RLS algo-
rithm in a fundamental way, namely, the input data vector u(n) does not appear by itself 
as a block entry in the prearray of the algorithm; rather, it is multiplied by l-1/2P1/2(n - 1). 
Hence, the input data vector u(n) has to be preprocessed prior to performing the rota-
tions described in Eq. (15.81). The preprocessor to do this simply computes the inner 
product of u(n), with each of the columns of the square-root matrix P1/2(n - 1) scaled 
by l-1/2. The preprocessor can be structured to take advantage of the upper triangular 
form of P1/2(n - 1).

The systolic processing in the inverse QRD-RLS algorithm lends itself to imple-
mentation in the form of two sections connected together as illustrated in Fig. 15.6:

	 •	 The triangular systolic array operates on the preprocessed input vector  
l-1/2PH/2(n - 1)u(n) in accordance with the Hermitian transposed form of  
Eq. (15.81). Nonzero elements of the updated matrix PH/2(n) are stored in the 
internal cells of the systolic array. The two other products of the systolic computa-
tion are g-1/2(n) and g-1 >  21n2 kH

 1n2.
	 •	 The linear section, which is appended to the triangular section, operates on the 

latter two products of the systolic computation to produce the elements of the 
updated weight vector wn 1n2 in accordance with Eqs. (15.82), (15.84), and (15.83), 
in that order.

The combination of these two sections can be designed to operate in a completely 
 parallel fashion (Alexander & Ghirnikar, 1993).

FiguRe 15.6 Block diagram of the inverse QRD-RLS algorithm.
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15.6 Finite‐preCiSion eFFeCtS

In Chapter 12, we discussed the impact of finite‐precision effects on the least‐mean‐
square (LMS) and RLS algorithms. In this section, we build on the material pre-
sented in that chapter by discussing the impact of finite‐precision effects on the 
performance of square‐root adaptive filtering algorithms—the focus of attention 
in this chapter.

qrd-rlS algorithm

It is generally agreed that QR‐decomposition is one of the best numerical procedures 
for solving the RLS estimation problem because of two important properties:

 1. QR‐decomposition operates on the input data directly.
 2. QR‐decomposition involves the use of only numerically well‐behaved unitary rota-

tions (e.g., Givens rotations).

In particular, the QRD-RLS algorithm propagates the square root of the correlation 
matrix ≥(n) rather than ≥(n) itself. Hence, the condition number of ≥1/2(n) equals the 
square root of the condition number of ≥(n). This results in a significant reduction in 
the dynamic range of data handled by QR‐decomposition–based algorithms and, in 
turn, a more accurate computation than the traditional RLS algorithm that propagates 
≥(n). Moreover, the finite‐precision form of the QRD-RLS algorithm is stable in a 
bounded‐input, bounded‐output (BIBO) sense (Leung & Haykin, 1989). However, it 
must be stressed that the BIBO stability of the QRD-RLS algorithm does not guar-
antee that the various quantities computed by the algorithm remain meaningful in 
any sense when the algorithm is operating in a finite‐precision environment (Yang & 
Böhme, 1992). In particular, a unitary rotation (e.g., a sequence of Givens rotations) is 
used to annihilate a certain vector in the prearray and then operate on other related 
entries in the prearray. A perturbation in internal computations may produce a cor-
responding perturbation in rotation angles, which introduces yet another source of 
numerical error in the rotated entries of the postarray. These errors, in turn, produce 
further perturbations of their own in subsequent computations of the rotation angles, 
and the process goes on. The net result is that we have a complicated parametric feed-
back system, and it is not entirely clear whether this feedback system is in fact numeri-
cally stable.

Yang and Böhme (1992) presented experimental results that demonstrate the 
numerical stability of the QRD-RLS algorithm for l 6 1; they used the algorithm to per-
form adaptive prediction of an autoregressive (AR) process. All the computer simulations 
reported in that paper were performed on a personal computer (PC), using floating‐ 
point arithmetic. To observe finite‐precision effects in a reasonable simulation time, the 
effective number of mantissa bits in the floating‐point representation was reduced by 
truncating the mantissa at a predefined position without affecting the exponent. In the 
experiments reported by Yang and Böhme, the mantissa length took on the values 52, 12, 
and 5 bits; the resulting changes in wordlength were found to have only a minor effects 
on the convergence behavior of the algorithm. In addition, Yang and Böhme showed 
that the QRD-RLS algorithm diverges when l = 1.
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The numerical stability of the QRD-RLS algorithm for l 6 1 was also demon-
strated experimentally by Ward et al. (1986) in the context of adaptive beamforming. 
In particular, they showed that, for the same number of bits of arithmetic precision, the 
QRD-RLS algorithm offers a significantly better performance than the sample matrix 
inversion algorithm described in Reed et al. (1974).

inverse qrd-rlS algorithm

The inverse QRD-RLS algorithm propagates P1/2(n)—the square root of the inverse 
correlation matrix P(n) = ≥-1(n). Although the inverse QRD-RLS algorithm differs 
from the QRD-RLS algorithm that propagates ≥1/2(n), the two algorithms do share 
a common feature: They both avoid the propagation of the Hermitian inverse of their 
respective matrix quantities. Accordingly, the inverse QRD-RLS algorithm is able to 
exploit the good numerical properties of the QR‐decomposition in a manner similar to 
that of the QRD-RLS algorithm.

For l 6 1, the propagation of a single error in the inverse QRD-RLS algorithm 
(and, for that matter, in the QRD-RLS algorithm) is exponentially stable. The rationale 
for this statement follows the numerical stability analysis of the RLS algorithm pre-
sented in Section 12.3. However, for l = 1, the single‐error propagation is not contractive. 
It may therefore be conjectured that the accumulation of quantization errors can cause 
the inverse QRD-RLS algorithm to be numerically divergent; this phenomenon has 
been confirmed experimentally, using computer simulations.3 A similar remark applies 
to the QRD-RLS algorithm itself, for which experimental validation is presented in 
Yang and Böhme (1992).

In sum, regarding the requirement to operate a square‐root adaptive filtering algo-
rithm in a finite‐precision environment, we may state that4

	 •	 If only the estimation error e(n) is required, the QRD-RLS algorithm is the pre-
ferred choice.

	 •	 If the weight vector wn 1n2 is required, the inverse QRD-RLS algorithms is a good 
candidate.

15.7 Summary and diSCuSSion

In this chapter, we discussed the derivations of two square-root adaptive filtering algo-
rithms for exponentially weighted recursive least-squares (RLS) estimation in a uni-
fied manner. The algorithms are known as the QRD-RLS algorithm and the inverse 
QRD-RLS algorithm. These two algorithms were derived by exploiting their one-to-
one  correspondences with the square-root information filtering and the square-root 
covariance filtering algorithms, respectively, which represent square-root variants of 

3Yang private communication, 1995.
4The summarizing comments presented herein are based on Yang private communication, 1995.
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the celebrated Kalman filter. The QRD-RLS algorithm and the inverse QRD-RLS 
algorithm propagate a single square root each, namely, 𝚽1/2(n) and P1/2(n) = 𝚽-1/2(n), 
respectively.

A common feature of the QRD-RLS algorithm and the inverse QRD-RLS algo-
rithm is that, in varying degrees, they lend themselves to parallel implementation in the 
form of systolic arrays. Naturally, the actual details of the systolic array implementations 
depend on which algorithm is being considered. In particular, there are some basic 
differences that should be carefully noted. The QRD-RLS algorithm operates directly 
on the input data. On the other hand, in the inverse QRD-RLS algorithm, the input 
data vector u(n) is multiplied by the scaled square-root matrix l-1/2PH/2(n - 1) before 
it is processed by the systolic array. This adds computational complexity to the parallel 
implementation of the inverse QRD-RLS algorithm.

The parallel implementation of the inverse QRD-RLS algorithm permits a direct 
computation of the least-squares weight vector in an efficient manner. Accordingly, this 
square-root adaptive filtering algorithm is well suited for applications such as system 
identification, spectrum estimation, and adaptive equalization, wherein knowledge of 
the weight vector is a desirable requirement. In contrast, the QRD-RLS algorithm com-
putes the a posteriori estimation error e(n), which basically restricts its application to 
areas such as adaptive beamforming and acoustic echo cancellation, in which it is not 
necessary to have explicit knowledge of the weight vector.

Finally, the point that needs to be stressed is that both the QRD-RLS and inverse 
QRD-RLS algorithms preserve the desirable convergence properties of the traditional 
RLS algorithm, namely, a fast rate of convergence and insensitivity to variations in the 
eigenvalue spread of the correlation matrix of incoming data.

proBlemS

 1. For the prearray-to-postarray transformation described in Eq. (15.32) for the square-root 
information filter, illustrate the summary of the square root information-filtering algorithm.

 2. In this problem, we revisit the square-root information filtering algorithm. Specifically, 
the term n(n) in the state-space model of Eqs. (15.2) and (15.3) is assumed to be a random 
variable of zero mean and variance Q(n). Show that the square-root information filtering 
algorithm may now be formulated as

  K-1
 1n2 = l1K-1

 1n - 12 + Q-1
 1n2u1n2uH

 1n22,  

  K-1
 1n2xn1n + 1 ∙yn2 = l1 >  2

 1K-1
 1n - 12xn1n ∙yn - 12 + Q-1

 1n2u1n2y1n22, 

  which includes Eqs. (15.29) and (15.30) as a special case.
 3. (a) Starting with the prearray

 D l1 >  2K-H >  2
 1n - 12 l1 >  2u1n2

xnH
 1n ∙yn - 12K-H >  2

 1n - 12 y * 1n2
0T 1

l-1 >  2K1 >  2
 1n - 12 0

T , 
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622   Chapter 15  Square-Root Adaptive Filtering Algorithms

  which is the expanded version of the prearray in Eq. (15.38), show that the extended 
square-root information filtering algorithm is described byD l1 >  2K-H >  2

 1n - 12 l1 >  2u1n2
xnH

 1n ∙yn - 12K-H >  2
 1n - 12 y * 1n2

0T 1
l-1 >  2K1 >  2

 1n - 12 0

T𝚯1n2

= D K-H >  2
 1n2 0

xnH
 1n + 1 ∙yn2K-H >  2

 1n2 r -1 >  2
 1n2a*1n2

l1 >  2uH
 1n2K1 >  2

 1n2 r -1 >  2
 1n2

K1 >  2
 1n2 - g1n2r 1 >  2

 1n2
T .

  Hence, formulate an expression for the updated state estimate xn1n + 1 ∙yn2.
 (b) Using the results of part (a), show that the extended QRD-RLS algorithm is described by 

the following recursions:
   For n = 1, 2, c, compute

 D l1 >  2𝚽1 >  2
 1n - 12 u1n2

l1 >  2pH
 1n - 12 d1n2
0T 1

l-1 >  2𝚽-H >  2
 1n - 12 0

T𝚯1n2 = D 𝚽1 >  2
 1n2 0

pH
 1n2 j1n2g1 >  2

 1n2
uH

 1n2𝚽-H >  2
 1n2 g1 >  2

 1n2
𝚽-H >  2

 1n2 - k1n2g-1 >  2
 1n2

T , 

  where 𝚯(n) is a unitary rotation that operates on the prearray to produce a block zero 
entry in the top block row of the postarray. How is the least-squares weight vector com-
puted by the algorithm?

 4. The extended QRD-RLS algorithm is defined by the following recursions (see Problem 3):
  For n = 1, 2, c, compute

 D l1 >  2𝚽1 >  2
 1n - 12 u1n2

l1 >  2pH
 1n - 12 d1n2
0T 1

l-1 >  2𝚽-H >  2
 1n - 12 0

T𝚯1n2 = D 𝚽1 >  2
 1n2 0

pH
 1n2 j1n2g1 >  2

 1n2
uH

 1n2𝚽-H >  2
 1n2 g1 >  2

 1n2
𝚽-H >  2

 1n2 - k1n2g-1 >  2
 1n2

T  

 and

 wn 1n2 = wn 1n - 12 + 1k1n2g-1 >  2
 1n221j1n2g-1 >  21n22*, 

where 𝚯1n2 is a unitary rotation that operates on the prearray to produce a block zero entry 
in the top block row of the postarray.

  Let
 X1n2 = 𝚽-H >  2

 1n2 + Hx 1n2 

denote the quantized version of the Hermitian inverse matrix 𝚽-H >  2
 1n2. Show that error 

propagation due to Hx 1n2 in the extended QRD-RLS algorithm at time step n - 1 is not 
necessarily stable, in that local errors tend to grow unboundedly.

 5. Let the n-by-n unitary matrix Q(n) involved in the QR-decomposition of the data matrix A(n) 
be partitioned as follows:

 Q1n2 = cQ1 1n2
Q2 1n2 d . 
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Here, Q1(n) has the same number of rows as the upper triangular matrix R(n) in the 
QR-decomposition of A(n). Suppose that the exponential weighting factor l = 1.

   According to the method of least squares presented in Chapter 9, the projection operator is

 P1n2 = A1n21AH1n2A1n22-1AH1n2. 

Show that, for the problem at hand,

 P1n2 = QH
1  1n2Q11n2. 

How is the result modified for the case where 0 6 l … 1?

 6. Explain the way in which the systolic array structure of Fig. 15.1 may be used to operate as a 
prediction-error filter.

 7. In describing the systolic implementation of the QRD-RLS algorithm in Section 15.3, com-
pute the ith element of the M-by-1 weight vector wH(n) by freezing the state of the processor 
at adaptation cycle n, setting the desired response equal to zero, and feeding the processor 
with an input vector in which the ith element is unity and the remaining M - 1 elements are 
all zero.

 8. Figure P15.1 is a block diagram representation of an MVDR beamforming algorithm. The 
triangular array in part (a) of the figure is frozen at adaptation cycle n, and the steering vector 
s(u) is input into the array. The stored RH(n) of the array and its output aH(n) are applied to 
a linear systolic section in part (b) of the figure.

FiguRe P15.1 

 (a) Show that the output of the triangular array is

 aH1n2 = sH1u2R-11n2. 

 (b) Using the method of back substitution, show that the linear systolic array produces the 
Hermitian transposed weight vector wH(n) as its output.

 9. By using the systolic array structure shown in Fig. 15.4, explain how to implement a MVDR 
beamformer.

 10. Illustrate the condition used, as well as the procedure, for exact initialization for a QRD-RLS 
algorithm.

Problems   623
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624   Chapter 15  Square-Root Adaptive Filtering Algorithms

Computer experiments

 11. In this problem, revisit the computer experiment on MVDR beamforming described 
in Section 15.4, which involves uncorrelated sources of target signal and interfer-
ence. The target signal-to-noise ratio is 10 dB, and the interference-to-noise ratio is  
40 dB. As before, the angle-of-arrival for the interference is

 winterf = sin-1102. 

This time, however, investigate what happens to the spatial response of the beamformer as 
the target moves closer to the interference. Thus, plot the spatial response of the beamformer 
for an increasing number of adaptation cycles for each of the following angles-of-arrival for 
the target:
(i) wtarget = sin-1(-0.15),
(ii) wtarget = sin-1(-0.10),
(iii) wtarget = sin-1(-0.05).
Comment on your results.

 12. The sources of target signal and interference in the computer experiment of Problem 11 are 
uncorrelated with each other. In this problem, we study what happens to the spatial response 
of the MVDR beamformer when these two sources are correlated. That is, the elemental 
signals of the array antenna, defined in baseband form, are now as follows:

 u1n2 = A0 exp1jnu02 + A1 exp1jnu1 + jc12 + n1n2,  n =  0, 1, 2, 3, 4, 

where A0 and A1 are, respectively, the amplitudes of the target signal and interference, u0 and 
u1 are their respective electrical angles, and c1 is some fixed phase shift. 

Repeat the computer experiment of Problem 11 for the new input u(n).
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C h a p t e r  1 6

Order-recursive adaptive 
Filtering algorithm

In this chapter, we develop another class of linear adaptive filters whose designs are 
based on algorithms that involve both order-update and time-update recursions.1 Except 
for Chapter 5, these adaptive filters distinguish themselves from those studied in pre-
vious chapters by virtue of order updates, which are made possible by exploiting the 
time-shifting  property of uniformly sampled temporal data. In structural terms, order 
updates lead to a computationally efficient, modular, latticelike structure whereby certain 
information gathered from previous computations for filter order m - 1 is carried over 
to the updated filter order m. The net result is the realization of an adaptive filter whose 
computational complexity is linear in filter order (length) m.

Recall that the gradient adaptive lattice (GAL) algorithm, covered in Chapter 5, is 
also a computationally efficient adaptive lattice-like filtering algorithm in its own way; it 
is rooted in the method of stochastic gradient descent, just like the celebrated least-mean-
square (LMS) algorithm. On the other hand, the corresponding order-recursive adaptive 
filtering algorithms, occupying this whole chapter, belong to the class of least-squares 
estimators known for their exact algebraic formulations; hence, they are referred to as 
order-recursive least-squares lattice (LSL) adaptive filtering algorithms.

Another point to note: Each lattice module of the GAL algorithm has a single 
complex-valued reflection coefficient. In direct contrast, each module of an order-recursive 
LSL adaptive filtering algorithm has a different pair of complex-valued reflection coef-
ficients, which, compared to the GAL algorithm, results in a much more sophisticated 
algebraic formulation.

1The family of order-recursive adaptive filtering algorithms that is discussed in this chapter is part of a 
larger class of adaptive filtering algorithms known collectively as fast algorithms. In the context of recursive 
least-squares (RLS) estimation, an algorithm is said to be fast if its computational complexity increases linearly 
with the number of adjustable parameters. A fast algorithm is therefore similar to the least-mean-square (LMS) 
algorithm in its computational requirement, but more demanding in coding terms.

The family of fast algorithms also includes the so-called fast transversal filter (FTF), which involves 
the combined use of four transversal (i.e., finite-duration impulse response) filters; these filters account for 
forward and backward prediction errors, gain-vector computation, and joint-process estimation. The FTF 
algorithm is mathematically elegant; unfortunately, the algorithm has a tendency to become unstable when it 
is implemented in finite-precision arithmetic.
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626   Chapter 16  Order-Recursive Adaptive Filtering Algorithm

The bulk of the material covered in this chapter addresses the many mathematical 
aspects of a numerically robust order-recursive algorithm, which involves the combined 
use of a posteriori as well as a priori estimation errors that are related by a conversion 
factor. In the latter part of the chapter, we finish the discussion by describing a simplified 
version of this algorithm that requires the use of a priori estimation errors. However, 
the algebraic simplification is achieved at the cost of numerical robustness, which is yet 
another example of the no-free-lunch theorem.

16.1  Order-reCursive adaptive Filters using least-squares 
estimatiOn: an Overview

In Chapter 14, we established the correspondence between Kalman filters and RLS 
algorithms. In this chapter, we use that correspondence to formulate the most basic state-
space model of lattice filtering, which, in turn, makes it possible to exploit the relevant 
aspects of Kalman filter theory in developing the algorithmic formulation of order-
recursive adaptive filters using exact least-squares estimation. As already remarked, 
least-squares order-recursive adaptive filtering algorithms involve both forward and 
backward predictions, much like the GAL filtering algorithm. However, unlike their 
GAL counterpart that uses approximate estimation with a single reflection coefficient, 
the order-recursive adaptive filtering algorithms discussed in this chapter use exact least-
squares estimation with a pair of reflection coefficients, one for the forward prediction 
and the other for the backward prediction.

There are two types of order-recursive filters using least-squares estimation:

 1. QR-decomposition-based least-squares lattice (QRD-LSL) adaptive filters, which 
rely on the use of unitary rotations for QR-decomposition. The purpose of a 
unitary rotation is to produce a postarray in which an entry in the prearray is 
annihilated.

 2. Recursive least-squares lattice (LSL) adaptive filters, which are obtained by squar-
ing the arrays in the QRD-LSL algorithm. The effect of squaring is to remove 
the unitary rotations from the algorithm, thereby simplifying the implementation. 
However, this simplification is attained at the cost of reduced numerical accuracy 
and possible instability when a recursive LSL algorithm is implemented in finite-
precision arithmetic.

It is thus apparent that the QRD-LSL algorithm is the basic order-recursive adaptive 
filtering algorithm—hence the order in which the algorithmic derivations are presented 
in the rest of the chapter.

The computations involved in the QRD-LSL algorithm address the following items:

	 •	 Adaptive forward and backward linear predictors, which are characterized by inde-
pendent parameter vectors of their own.

	 •	 A conversion factor, which provides the connecting link between different sets of 
a priori and a posteriori estimation errors.

	 •	 An LSL predictor, each stage of which is characterized by a pair of reflection 
coefficients.
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Section 16.2 Adaptive Forward Linear Prediction   627

	 •	 Angle normalization, which makes the formulation of the lattice predictor invari-
ant to the choice of a priori and a posteriori errors.

	 •	 First-order state-space models for lattice filtering, the formulation of which paves 
the way for deriving the QRD-LSL algorithm.

In addressing these items, we develop the LSL version of the Levinson–Durbin recur-
sion, which was discussed previously in Chapter 3. We also develop a time-update recur-
sion for a certain cross-correlation function denoted by ∆m - 1 1n2, which holds the key 
to the QRD-LSL algorithm’s going forward in time.

16.2 adaptive FOrward linear prediCtiOn

Consider a forward linear predictor of order m, depicted in Fig. 16.1(a) for operation at 
adaptation cycle n. The tap-weight vector wn f, m 1n2 of this predictor is optimized in the 
least-squares sense over the entire observation interval 1 … i … n. Let

 fm 1i2 = u1i2 - wn H
f, m 1n2um 1i - 12,    i = 1, 2, c, n, (16.1)

where the superscript H indicates Hermitian transposition (i.e., transposition combined 
with complex conjugation), denote the forward prediction error produced by the predic-
tor at adaptation cycle i in response to the tap-input vector um(i - 1) of size m. According 
to this definition, u(i) plays the role of the desired response for forward linear prediction. 
The compositions of input vector um(i - 1) and weight vector wn m 1n2 are respectively 
as follows:

  um 1i - 12 = 3u1i - 12, u1i - 22, c, u1i - m24T;  

  wn f, m 1n2 = 3wf, m, 1 1n2, wf, m, 2 1n2, c, wf, m, m 1n24T, 

where the superscript T denotes transposition. We refer to fm(i) as the forward a post-
eriori prediction error, since its computation is based on the current value of the forward 
predictor’s tap-weight vector, wn f, m 1n2. Correspondingly, we may define the forward a 
priori prediction error as

 hm 1i2 = u1i2 - wn H
f, m 1n - 12um 1i - 12,    i = 1, 2, c, n, (16.2)

the computation of which is based on the past value of the forward predictor’s tap-
weight vector wn f, m 1n - 12. In effect, hm(i) represents a form of innovation.

Table 16.1 lists the correspondences between the various quantities characterizing 
linear estimation in general and those characterizing forward linear prediction in par-
ticular, with the RLS algorithm in mind. With the aid of this table, it is a straightforward 
matter to modify the RLS algorithm developed in Sections 10.3 and 10.4 to write the 
recursions for adaptive forward linear prediction. Specifically, we deduce the following 
recursion for updating the tap-weight vector of the forward predictor:

 wn f, m 1n2 = wn f, m 1n - 12 + km 1n - 12h*m 1n2, (16.3)
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Section 16.2 Adaptive Forward Linear Prediction   629

where the asterisk denotes complex conjugation. Here, hm(n) is the forward a priori 
prediction error defined in Eq. (16.2) for i = n, and km(n - 1) is the past value of the 
gain vector defined by

 km 1n - 12 = 𝚽-1
m  1n - 12um 1n - 12. (16.4)

The matrix 𝚽-1
 m  1n - 12 is the inverse of the correlation matrix of the input data,  

defined by

 𝚽m 1n - 12 = a
n - 1

i = 1
ln - 1 - ium 1i2uH

m 1i2. (16.5)

The adaptive forward linear prediction problem just described is in terms of a 
predictor characterized by the tap-weight vector wn f, m 1n2. Equivalently, we may describe 
the problem by specifying a forward prediction-error filter, as depicted in Fig. 16.1(b).  
Let am(n) denote the (m + 1)-by-1 tap-weight vector of the prediction-error filter of 
order m. This tap-weight vector is related to that of the forward predictor in Fig. 16.1(a) by

 am 1n2 = c 1
-wn f, m 1n2 d , (16.6)

where the first element of am(n), namely, am, 0(n), is unity. Then we may respectively 
redefine the forward a posteriori prediction error and the forward a priori prediction 
error as

 fm1i2 = aH
m 1n2um + 1 1i2,    i = 1, 2, c, n, (16.7)

and

 hm 1i2 = aH
m 1n - 12um + 1 1i2,    i = 1, 2, c, n, (16.8)

where the input vector um + 1(i) of size m + 1 is partitioned in the following way:

um + 1 1i2 = c u(i)
um 1i - 12 d .

TAbLe 16.1 Summary of Correspondences Between Linear Estimation, Forward Prediction,  
and Backward Prediction

Quantity

Linear  
estimation  
(general)

Forward linear  
prediction of  
order m

Backward linear  
prediction of 
order m

Tap-input vector u(n) um(n - 1) um(n)
Desired response d(n) u(n) u(n - m)
Tap-weight vector wn 1n2 wn f, m  1n2 wn b, m 1n2
A posteriori estimation error e(n) fm(n) bm(n)
A priori estimation error j(n) hm(n) bm(n)
Gain vector k(n) km(n - 1) km(n)
Minimum value of sum of  
 weighted error squares

emin 1n2 fm 1n2 bm 1n2
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630   Chapter 16  Order-Recursive Adaptive Filtering Algorithm

The tap-weight vector wn f, m 1n2 satisfies the principle of orthogonality for forward 
linear prediction, which states that

 a
n

i = 1
ln - ium 1i - 12f*m  1i2 = 0. (16.9)

Table 16.2 summarizes this principle for linear least-squares estimation, forward 
prediction, and backward prediction. The first entry of the table is an exponentially 
weighted extension of Eq. (9.15) derived in Chapter 9 on the method of least squares. 
The second entry follows directly from the first one by using the correspondences 
of Table 16.1.

The tap-weight vector wn f, m 1n2 may also be viewed as the solution obtained by 
minimizing the sum of weighted forward a posteriori prediction-error squares for 
1 … i … n; that is, we minimize

 fm 1n2 = a
n

i = 1
ln - i ∙ fm 1i2∙2. (16.10)

Equivalently, the tap-weight vector am(n) of the prediction-error filter is the solution to 
the same minimization problem, subject to the constraint that the first element of am(n) 
equals unity, in accordance with Eq. (16.6).

Finally, using the definition of Eq. (16.1) in Eq. (16.10), followed by the application 
of the recursion of Eq. (16.3) and the orthogonality condition of Eq. (16.9), we get the 
following recursion for updating the minimum value of the sum of weighted forward 
prediction-error squares (i.e., the forward prediction-error energy):

 fm 1n2 = lfm 1n - 12 + hm 1n2f*m 1n2. (16.11)

In Eq. (16.11), the product term hm 1n2f*m  1n2 is real valued for all m and n.

16.3 adaptive BaCkward linear prediCtiOn

Consider next the backward linear predictor of order m, depicted in Fig. 16.2(a) for 
operation at adaptation cycle n. The tap-weight vector wn b, m 1n2 of this predictor is opti-
mized in the least-squares sense over the entire observation interval 1 … i … n. Let

 bm 1i2 = u1i - m2 - wn H
b, m 1n2um 1i2,    i = 1, 2, c, n (16.12)

TAbLe 16.2 Principle of Orthogonality Summarized for Linear Estimation, Forward Prediction,  
and Backward Prediction

Linear  
estimation  
(general)

Forward linear  
prediction of  
order m

Backward linear  
prediction of  
order m

a
n

i = 1
ln - iu1i2e*  1i2 = 0 a

n

i = 1
ln - ium 1i - 12fm*  1i2 = 0 a

n

i = 1
ln - ium 1i2b*m 1i2 = 0
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denote the backward prediction error produced by the predictor at adaptation cycle i in 
response to the tap-input vector um(i) of size m. Then, according to this definition, u(i - m)  
plays the role of the desired response for backward linear prediction, and we have

um 1i2 = 3u1i2, u1i - 12, c, u1i - m + 124T

and

wn b, m 1n2 = 3wn b, m, 1 1n2, wn b, m, 2 1n2, c, wn b, m, m 1n24T
 .

We refer to bm(i) as the backward a posteriori prediction error, since its computation 
is based on the current value of the backward predictor’s tap-weight vector, wn b, m 1n2. 
Correspondingly, we may define the backward a priori prediction error as

 bm 1i2 = u1i - m2 - wn H
b, m 1n - 12um 1i2,    i = 1, 2, c, n, (16.13)

FiguRe 16.2 (a) Backward predictor of order m; (b) corresponding backward prediction-error filter.
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the computation of which is based on the past value of the backward predictor’s tap-
weight vector, wn b, m 1n - 12.

Table 16.1 also lists the correspondences between the quantities characterizing 
linear estimation in general and those characterizing backward linear prediction in par-
ticular. To write the recursions for adaptive backward linear prediction, we may again 
modify the RLS algorithm developed in Sections 10.3 and 10.4 in light of these corre-
spondences. Thus, we deduce the following recursion for updating the tap-weight vector 
of the backward predictor:

 wn b, m 1n2 = wn b, m 1n - 12 + km 1n2b*m 1n2. (16.14)

Here, bm(n) is the backward a priori prediction error defined in Eq. (16.13) for i = n, and

 km 1n2 = 𝚽-1
m  1n2um 1n2 (16.15)

is the current value of the gain vector, in which the matrix 𝚽-1
m  1n2 is the inverse of the 

correlation matrix (ignoring the regularization term)

 𝚽m 1n2 = an

i = 1
ln - ium 1i2uH

m 1i2 (16.16)

of the input data.
The description of the backward linear prediction problem just presented is 

in terms of a backward predictor characterized by the tap-weight vector wn b, m 1n2. 
Equivalently, we may describe the problem in terms of a backward prediction-error 
filter, as depicted in Fig. 16.2(b). Let the prediction-error filter of order m be character-
ized by a tap-weight vector cm(n), which is related to that of the backward predictor in 
Fig. 16.1(a) by the formula

 cm 1n2 = c -wn b, m 1n2
1

d , (16.17)

where the last element of cm(n), namely, cm, m(n), is unity. Thus, with an input vector  
um + 1(i) of size m + 1, the backward a posteriori prediction error and the backward a 
priori prediction error may be rewritten, respectively, as

 bm 1i2 = cH
m 1n2um + 1 1i2,    i = 1, 2, c, n (16.18)

and

 bm 1i2 = cH
m 1n - 12um + 1 1i2,    i = 1, 2, c, n. (16.19)

In this case, the input vector um + 1(i) is partitioned in the following way:

um + 1 1i2 = c um 1i2
u1i - m2 d .

The tap-weight vector wn b, m 1n2 satisfies the principle of orthogonality for backward 
linear prediction, which states that

 a
n

i = 1
ln - ium 1i2b*m 1i2 = 0. (16.20)
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This equation, the last entry in Table 16.2, follows directly from the first entry pertaining 
to linear least-squares estimation by using the correspondences of Table 16.1.

The tap-weight vector wn b, m 1n2 may also be viewed as the solution obtained by 
minimizing the sum of weighted backward a posteriori prediction-error squares

 bm 1n2 = a
n

i = 1
ln - i ∙ bm 1i2 ∙2  for 1 … i … n. (16.21)

Equivalently, the tap-weight vector cm(n) of the backward prediction-error filter is the 
solution to the same minimization problem, subject to the constraint that the last ele-
ment of cm(n) equal unity, in accordance with Eq. (16.17).

Using the definition of Eq. (16.12) in Eq. (16.21), followed by the application of 
the recursion of Eq. (16.14) and the orthogonality condition of Eq. (16.20), we get the 
following recursion for updating the minimum value of the sum of weighted backward 
prediction-error squares (i.e., backward prediction-error energy):

 bm 1n2 = lbm 1n - 12 + bm 1n2b*m 1n2. (16.22)

In this equation, the product term bm 1n2b*m 1n2 is real valued for all m and n.
In closing this discussion of the RLS prediction problem, it is of interest to note 

that in the case of backward prediction, the input vector um + 1(n) is partitioned with the 
desired response u(n - m) as the last entry. On the other hand, in the case of forward lin-
ear prediction, the input vector um + 1(n) is partitioned with the desired response u(n) as 
the leading entry. Note also that the update recursion for the tap-weight vector wn b, m 1n2 
of the backward linear predictor in Eq. (16.14) requires knowledge of the current value 
km(n) of the gain vector. On the other hand, the update recursion for the tap-weight 
vector wn f, m 1n2 of the forward linear predictor in Eq. (16.3) requires knowledge of the 
old value km(n - 1) of the gain vector.

16.4 COnversiOn FaCtOr

The definition of the m-by-1 vector

km 1n2 = 𝚽-1
m  1n2um 1n2

may also be viewed as the solution of a special case of the normal equations for least-
squares estimation. To be specific, the gain vector km(n) defines the tap-weight vector 
of an FIR filter that contains m taps and that operates on the input data u(1), u(2), c, 
u(n) to produce the least-squares estimate of a special desired response defined by

 d1i2 = e1, i = n
0, i = 1, 2, c, n - 1

. (16.23)

The n-by-1 vector whose elements equal the d(i) of Eq. (16.23) is called the first coordi-
nate vector. This vector has the property that its inner product with any time-dependent 
vector reproduces the upper or “most recent” element of that vector.

Substituting Eq. (16.23) into Eq. (10.9), we find that the m-by-1 cross-correlation 
vector zm(n) between the m tap inputs of the FIR filter and the desired response equals 
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um(n). This therefore confirms the gain vector km(n) as the special solution of the normal 
equations that arises when the desired response is defined by Eq. (16.23).

For the problem described here, we define the estimation error

  gm 1n2 = 1 - kH
m 1n2um 1n2  (16.24)

  = 1 - uH
m 1n2𝚽-1

m  1n2um 1n2. 

The estimation error gm(n) represents the output of an FIR filter whose tap-weight 
vector equals the gain vector km(n) and that is excited by the tap-input vector um(n), 
as depicted in Fig. 16.3. Since the filter output has the structure of a Hermitian form, it 
follows that the estimation error gm(n) is a real-valued scalar. Moreover, gm(n) has the 
important property that it is bounded by zero and unity; that is,

 0 6 gm 1n2 … 1. (16.25)

This property is readily proved by substituting the recursion of Eq. (10.16) for the 
inverse matrix 𝚽-1

m  1n2 into Eq. (16.24) and then simplifying to obtain the result

 gm 1n2 =
1

1 + l-1uH
m 1n2𝚽-1

m  1n - 12um 1n2. (16.26)

The Hermitian form uH
m 1n2𝚽-1

m  1n - 12um 1n2 Ú 0 and 0 6 l … 1; consequently, the 
estimation error gm(n) is bounded as in Eq. (16.25).

It is noteworthy that gm(n) also equals the sum of weighted error squares result-
ing from the use of the FIR filter in Fig. 16.3, whose tap-weight vector equals the gain 
vector km(n), to obtain the least-squares estimate of the first coordinate vector. (See 
Problem 1.)

FiguRe 16.3 FIR filter for defining the estimation error gm(n).
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Other useful interpretations of Gm(n)

Depending on the approach taken, the parameter gm(n) may be given three other 
entirely different interpretations:

 1. The parameter gm(n) may be viewed as a likelihood variable (Lee et al., 1981). 
This interpretation follows from a statistical formulation of the tap-input vector 
in terms of its log-likelihood function, under the assumption that the tap inputs 
have a joint Gaussian distribution. (See Problem 14.)

 2. The parameter gm(n) may be interpreted as an angle variable (Lee et al., 1981; 
Carayannis et al., 1983). This interpretation follows from Eq. (16.24). In particular, 
following the discussion presented in Section 15.3, we may express the (positive) 
square root of gm(n) as

g1 >  2
m  1n2 = cos fm 1n2,

  where fm(n) represents the angle of a plane (Givens) rotation. [See Eq. (15.53).]
 3. Finally, the parameter gm(n) may be interpreted as a conversion factor (Carayannis 

et al., 1983). According to this interpretation, the availability of gm(n) helps us 
determine the value of an a posteriori estimation error, given the value of the cor-
responding a priori estimation error.

It is this third interpretation that we pursue here. Indeed, it is because of that interpre-
tation that we have adopted the terminology “conversion factor” as a description for 
gm(n).

three kinds of estimation error

In linear least-squares estimation theory, there are three kinds of estimation error 
to be considered: the ordinary estimation error (involved in the estimation of some 
desired response), the forward prediction error, and the backward prediction error. 
Correspondingly, gm(n) has three useful interpretations as a conversion factor:

 1. For RLS estimation,

 gm 1n2 =
em1n2
jm 1n2, (16.27)

  where em(n) is the a posteriori estimation error and jm(n) is the a priori estimation 
error. Equation (16.27) states that, given the a priori estimation error jm(n), we 
may determine the corresponding value of the a posteriori estimation error em(n) 
by multiplying jm(n) by gm(n). We may therefore view jm(n) as a tentative value 
of the estimation error em(n) and gm(n) as the multiplicative correction.

 2. For adaptive forward linear prediction,

 gm1n - 12 =
fm1n2
hm1n2 . (16.28)
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  Equation (16.28) states that, given the forward a priori prediction error hm(n), 
we may compute the forward a posteriori prediction error fm(n) by multiplying 
hm(n) by the delayed estimation error gm(n - 1). We may therefore view hm(n) as 
a tentative value for the forward a posteriori prediction error fm(n) and gm(n - 1) 
as the multiplicative correction.

 3. Lastly, for adaptive backward linear prediction,

 gm 1n2 =
bm 1n2
bm 1n2. (16.29)

  Equation (16.29) states that, given the backward a priori prediction error bm(n),  
we may compute the backward a posteriori prediction error bm(n) by multiplying 
bm(n) by the estimation error gm(n). We may therefore view bm(n) as a tentative value 
for the backward prediction error bm(n) and gm(n) as the multiplicative correction.

For proofs of these three points, the reader is referred to Problem 6.
The foregoing discussion teaches that the unique role of the variable gm(n): It is 

the common factor (either in its regular or delayed form) in the conversion of an a priori 
estimation error into the corresponding a posteriori estimation error, be it in the context 
of ordinary estimation, forward prediction, or backward prediction. Accordingly, we may 
refer to gm(n) as a conversion factor. Indeed, it is remarkable that, through the use of 
this conversion factor, we are able to compute the a posteriori errors em(n), fm(n), and 
bm(n) at adaptation cycle n before the tap-weight vectors of the pertinent filters that 
produce them have actually been computed (Carayannis et al., 1983).

16.5 least-squares lattiCe (lsl) prediCtOr

Returning to the time-shifting property of the input data, we note from the partitioned 
vector

um + 1 1n2 = c um 1n2
u1n - m2 d

that the input vector um(n) for a backward linear predictor of order m - 1 and the input 
vector um + 1(n) for a backward linear predictor of order m have exactly the same first 
m - 1 entries. Likewise, we note from the partitioned vector

um + 1 1n2 = c u1n2
um 1n - 12 d

that the input vector um(n - 1) for a forward linear predictor of order m - 1 and the input 
vector um + 1(n) for a forward linear predictor of order m have exactly the same m - 1 
last entries. These observations prompt us to raise the following fundamental question: 

In the course of increasing the prediction order from, say, m - 1 to m, is it possible 
to carry over information gathered from previous computations pertaining to the 
prediction order m - 1?
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The answer to this question is an emphatic yes, and it is embodied in a modular 
filtering structure known as the least-squares lattice (LSL) predictor.

To derive this important filtering structure and its algorithmic design, we propose 
to proceed as follows: In this section, we use the principle of orthogonality to derive the 
basic equations that characterize the LSL predictor. Then, under the unifying umbrella 
of Kalman filter theory, we derive various algorithms for the design of the LSL predictor 
in subsequent sections of the chapter.

To begin with, consider the situation depicted in Fig. 16.4, involving a pair of for-
ward and backward prediction-error filters of order m - 1. Both filters are fed by the 
same input vector um(i). The forward prediction-error filter, characterized by the tap-
weight vector am - 1(n), produces fm - 1(i) at its output. The backward prediction-error 
filter, characterized by the tap-weight vector cm - 1(n), produces bm - 1(i) at its output. 
The input data u(i) occupy the observation interval 1 … i … n. The next issue we wish to 
address may be stated as follows:

Given the forward prediction error fm - 1(i) and the backward prediction error 
bm - 1(i), determine their order-updated values fm(i) and bm(i), respectively, in a 
computationally efficient manner.

By “computationally efficient,” we mean the following: The input vector in the figure 
is enlarged by adding the past sample u(i - m), and the prediction order is thereby 
increased by one, yet the computations involved in evaluating fm - 1(i) and bm - 1(i) 
remain completely intact.

Forward linear prediction

The forward prediction error fm - 1(i) is determined by the tap inputs u(i), u(i - 1), c, 
u(i - m + 1). The order-updated forward prediction error fm(i) requires knowledge of the 
additional tap input (i.e., past sample) u(i - m). The backward prediction error bm - 1(i) 
is determined by the same tap inputs as those involved in fm - 1(i). If, therefore, we were 
to delay bm - 1(i) by one adaptation cycle, the additional past sample u(i - m) needed for 
computing fm(i) would be found in the composition of the delayed backward prediction 

FiguRe 16.4 Setting the stage for formulating the LSL predictor.
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error bm - 1(i - 1). Thus, treating bm - 1(i - 1) as the input to a one-tap least-squares filter, 
fm - 1(i) as the desired response, and fm(i) as the residual resulting from the least-squares 
estimation, we may write (see Fig. 16.5(a))

 fm 1i2 = fm - 1 1i2 + k*
f, m 1n2bm - 1 1i - 12,    i = 1, 2, c, n, (16.30)

where kf, m(n) is the filter’s scalar coefficient. Note that, in accordance with the method 
of least squares, the coefficient kf, m(n) is maintained constant throughout the observa-
tion interval extending from i = 1 to i = n. The format of Eq. (16.30) is similar to that of 
the corresponding order update derived in Chapter 3 for a lattice predictor operating on 
stationary inputs. However, the formula for kf, m(n) is different. For the determination of 
that coefficient, we turn to the principle of orthogonality summarized in Table 16.2 for 
the three basic forms of linear least-squares estimation. According to this principle, the 
estimation error (i.e., the residual) produced by a linear least-squares filter in response 
to a set of inputs is orthogonal to each of those inputs (in a time-averaged sense) over 
the entire observation interval of interest. Thus, adapting the second entry in Table 16.2 
to the forward prediction framework depicted in Fig. 16.5(a) with bm - 1(i - 1) as the 
input and fm(i) viewed as the residual, we may write

 a
n

i = 1
ln - ibm - 1 1i - 12f *m 1i2 = 0. (16.31)

Substituting Eq. (16.30) into Eq. (16.31) and then solving for kf, m(n), we obtain

 kf, m 1n2 = -  
a
n

i = 1
ln - ibm - 1 1i - 12f *m - 1 1i2

a
n

i = 1
ln - i ∙ bm - 1 1i - 12 ∙2

. (16.32)

The denominator of this formula is the sum of weighted backward prediction-error 
squares for order m - 1; that is,

  bm - 1 1n - 12 = a
n - 1

i = 1
ln - 1 - i ∙ bm - 1 1i2 ∙2 

  = a
n

i = 1
ln - i ∙ bm - 1 1i - 12 ∙2, (16.33)

where, in the last line, we have used the fact that

bm - 1102 = 0      for all  m Ú 1

by virtue of prewindowing the input data. For the numerator of Eq. (16.32), we intro-
duce the definition of an exponentially weighted cross-correlation between forward and 
backward prediction errors:

 ∆m - 1 1n2 = a
n

i = 1
ln - ibm - 11i - 12 f *m - 1 1i2. (16.34)

M16_HAYK4083_05_SE_C16.indd   638 21/06/13   8:54 AM



Section 16.5 Least-Squares Lattice (LSL) Predictor   639

FiguRe 16.5 Single-coefficient linear combiners for (a) forward prediction, (b) backward 
prediction, and (c) joint-process estimation.
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Using the definitions of Eqs. (16.33) and (16.34) in Eq. (16.32), we see that the formula 
for the scalar coefficient kf, m(n) takes on the compact form

 kf, m 1n2 = -  
∆m - 1 1n2

bm - 1 1n - 12. (16.35)

linear Backward prediction

Consider next the issue of computing the order-updated backward prediction error 
bm(i). As before, we may work with the forward prediction error fm - 1(i) and delayed 
backward prediction error bm - 1(i - 1), except for the fact that their filtering roles are 
now interchanged. Specifically, we have a one-tap least-squares filter with fm - 1(i) acting 
as the input, bm - 1(i - 1) as the desired response, and bm(i) as the residual of the filtering 
process, as depicted in Fig. 16.5(b); hence, we may write

 bm 1i2 = bm - 1 1i - 12 + k*b, m 1n2fm - 1 1i2,    i = 1, 2, c, n, (16.36)

where kb, m(n) is the filter’s scalar coefficient. Here again, in accordance with the method 
of least squares, the coefficient kb, m(n) is maintained constant throughout the observa-
tion interval extending from i = 1 to i = n. The format of Eq. (16.36) is also similar to 
the corresponding order update derived in Chapter 3 for a lattice predictor operat-
ing on stationary inputs. However, the formula for kb, m(n) is different. In particular, 
we determine kb, m(n) by applying the principle of orthogonality to the input fm - 1(i) 
and residual bm(i) in the backward prediction problem postulated in Eq. (16.36). Thus, 
adapting the third entry in Table 16.2 to the backward prediction framework depicted in  
Fig. 16.5(b), we may write

 a
n

i = 1
ln - ifm - 1 1i2b*m 1i2 = 0. (16.37)

Substituting Eq. (16.36) into Eq. (16.37) and then solving for kb, m(n), we get

 kb, m 1n2 = -
a
n

i = 1
ln - ifm - 1 1i2b*m - 1 1i - 12

a
n

i = 1
ln - i ∙ fm - 1 1i2 ∙2

. (16.38)

The numerator of this formula is the complex conjugate of the quantity Δm - 1(n) defined 
in Eq. (16.34). The denominator is recognized as the sum of weighted forward prediction-
error squares for order m - 1:

 fm - 1 1n2 = a
n

i = 1
ln - i ∙ fm - 1 1i2 ∙2. (16.39)

Accordingly, we may recast Eq. (16.38) into the compact form

 kb, m 1n2 = -
∆*m - 1 1n2
fm - 1 1n2 . (16.40)
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projection theory

The results described in Eqs. (16.30) and (16.36) are basic to the LSL predictor. For their 
physical interpretation, we define the n-by-1 prediction-error vectors

 fm 1n2 = 3fm 112, fm 122, c, fm 1n24T,

   bm 1n2 = 3bm 112, bm 122, c, bm 1n24T,

and

bm 1n - 12 = 30, bm 112, c, bm 1n - 124T,

where the prediction order m = 0, 1, 2, c, M. Then, on the basis of Eqs. (16.30) and 
(16.36) we may make the following two statements in the terminology of projection 
theory:

 1. The result of projecting the vector bm - 1(n - 1) onto fm - 1(n) is represented by the 
residual vector fm(n); the forward reflection coefficient kf, m(n) is the parameter 
needed to do this projection.

 2. The result of projecting the vector fm - 1(n) onto bm - 1(n - 1) is represented by the 
residual vector bm(n); the backward reflection coefficient kb, m(n) is the parameter 
needed to do this second projection.

To put a finishing touch on this part of the discussion, we now expand Eqs. (16.30) 
and (16.36) for the end of the observation interval i = n. We thus have the pair of inter-
related order-update recursions, first for forward linear prediction,

 fm 1n2 = fm - 1 1n2 + k*f, m 1n2bm - 1 1n - 12 (16.41)

and, second for backward linear prediction,

 bm 1n2 = bm - 1 1n - 12 + k*b, m 1n2fm - 1 1n2, (16.42)

where m = 1, 2, c, M, and M is the final prediction order. When m = 0, no prediction is 
being performed on the input data; this corresponds to the initial conditions described by

 f0 1n2 = b0 1n2 = u1n2, (16.43)

where u(n) is the input datum at adaptation cycle n. Thus, as we vary the prediction order m 
from zero all the way up to the final value M, we get the M-stage LSL predictor of Fig. 16.6. 
An important feature of the LSL predictor described herein is its modular structure, which 
implies that the computational complexity scales linearly with the prediction order.

lsl version of the levinson–durbin recursion

The forward prediction error fm(n) and backward prediction error bm(n) are defined by 
Eqs. (16.7) and (16.18), reproduced here for i = n as

fm 1n2 = aH
m 1n2um + 1 1n2
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and
bm 1n2 = cH

m 1n2um + 1 1n2,

respectively, where am(n) and cm(n) are the tap-weight vectors of the corresponding 
forward and backward prediction-error filters, respectively. The forward prediction error 
fm - 1(n) and delayed backward prediction error bm - 1(n - 1), pertaining to a lower pre-
diction order, are defined as follows:

  fm - 1 1n2 = aH
m - 1 1n2um 1n2  

  = cam - 1 1n2
0

d
H 

c um 1n2
u1n - m2 d  

  = cam - 1 1n2
0

d
H

um + 1 1n2;  

  bm - 1 1n - 12 = cH
m - 1 1n - 12um 1n - 12  

  = c 0
cm - 1 1n - 12 d

H 

c u1n2
um 1n - 12 d  

  = c 0
cm - 1 1n - 12 d

H

um + 1 1n2.  

The two prediction errors just defined share a common input vector, namely, um + 1 (n). 
Therefore, substituting their defining equations into Eqs. (16.41) and (16.42) and then 
comparing terms on the two sides of the resultants, we deduce the pair of order updates

  am 1n2 = cam - 1 1n2
0

d + kf, m 1n2c 0
cm - 1 1n - 12 d  (16.44)

FiguRe 16.6 M-stage lattice predictor.
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and

  cm 1n2 = c 0
cm - 1 1n2 d + kb, m 1n2cam - 1 1n2

0
d , (16.45)

where m = 1, 2, c, M. Equations (16.44) and (16.45) may be viewed as the least-squares 
version of the Levinson–Durbin recursion discussed in Chapter 3 for stationary inputs. 
Recognizing that, by definition, the last element of cm - 1(n - 1) and the first element of 
am - 1(n) equal unity, we readily find from Eqs. (16.44) and (16.45) that

  kf, m 1n2 = am, m 1n2 (16.46)

and
  kb, m 1n2 = cm, 0 1n2, (16.47)

where am,m(n) is the last element of the vector am(n) and cm,0(n) is the first element 
of the vector cm(n). Thus, unlike the situation described in Chapter 3 for a stationary 
environment, we generally find that in an LSL predictor,

kf, m 1n2 ≠ k*b, m 1n2.

In any event, the order updates of Eqs. (16.44) and (16.45) reveal a remarkable property 
of an LSL predictor of final order M: 

In an implicit sense, such a predictor embodies a chain of forward prediction-error 
filters of order 1, 2, c, M and a chain of backward prediction-error filters of order 
1, 2, c, M, all in one modular structure, as shown in Fig. 16.6.

time-update recursion for Δm - 1(n)

From Eqs. (16.35) and (16.40), we see that the reflection coefficients kf, m(n) and kb, m(n) 
of the LSL predictor are uniquely determined by three quantities: Δm - 1(n), fm - 11n2, 
and bm - 11n - 12. Equations (16.11) and (16.22) provide the means to time-update 
the last of these two quantities. We need the corresponding time update for computing  
Δm - 1(n) for recursive computation of the two reflection coefficients.

To proceed with the derivation of this remaining recursion, we recall the follow-
ing two equations from Section 16.2 on forward linear prediction, with m - 1 written in 
place of m:

fm - 1 1i2 = u1i2 - wn H
f, m - 1 1n2um - 1 1i - 12,    i = 1, 2, c, n,

and

wn f, m - 1 1n2 = wn f, m - 1 1n - 12 + km - 1 1n - 12h*m - 1 1n2.

Substituting these two equations into Eq. (16.34), we get (after rearranging terms)

 ∆m - 1 1n2 = a
n

i = 1
ln - i3u1i2 - wn H

f, m - 1 1n - 12um - 1 1i - 124*bm - 1 1i - 12

 -  hm - 1 1n2kT
m - 1 1n - 12a

n

i = 1
ln - iu*m - 1 1i - 12bm - 1 1i - 12.
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This equation simplifies as follows:

	 •	 The second term on the right-hand side of the equation is zero by virtue of the 
principle of orthogonalization for backward linear prediction, which states that

a
n

i = 1
ln - ium - 1 1i - 12b*m - 1 1i - 12 = 0.

  [See Eq. (16.20) and the third entry in Table 16.2.]
	 •	 The expression inside the square brackets of the first term on the right-hand side 

of the equation is, by definition, the a priori forward prediction error:

hm - 1 1i2 = u1i2 - wn H
f, m - 1 1n - 12um - 1 1i - 12,    i = 1, 2, c, n.

  [See Eq. (16.2).]

Accordingly, we may redefine ∆m - 1 1n2 simply as

 ∆m - 1 1n2 = a
n

i = 1
ln - ih*m - 1 1i2bm - 1 1i - 12. (16.48)

Next, we isolate from the summation the term h*m - 1 1n2bm - 1 1n - 12 correspond-
ing to i = n, and thus write

  ∆m - 1 1n2 = a
n - 1

i = 1
ln - ih*m - 1 1i2bm - 1 1i - 12 + h*m - 1 1n2bm - 1 1n - 12 

  = la
n - 1

i = 1
ln - 1 - ih*m - 1 1i2bm - 1 1i - 12 + h*m - 1 1n2bm - 1 1n - 12. 

The summation term on the right-hand side of this equation is recognized to be simply 
the past value ∆m - 1 1n - 12. Hence, we may finally write

 ∆m - 1 1n2 = l∆m - 1 1n - 12 + h*m - 1 1n2bm - 1 1n - 12, (16.49)

which is the desired recursion. Note that Eq. (16.49) is similar to Eq. (16.11) for fm 1n2 
and, likewise, Eq. (16.22) for bm 1n2 in that in each of these three updates, the correction 
term involves the product of a posteriori and a priori prediction errors.

exact decoupling property of the lsl predictor

Another important property of an LSL predictor consisting of m stages is that the 
backward prediction errors b0(n), b1(n), c, bm(n) produced at the various stages of 
the predictor are uncorrelated with (orthogonal to) each other in a time-averaged sense 
at all adaptation cycles. In other words, the LSL predictor transforms a correlated input 
data sequence {u(n), u(n - 1), c, u(n - m)} into the new sequence of uncorrelated 
backward prediction errors (i.e., innovations):

 5u1n2, u1n - 12, g, u1n - m26 ∆ 5b01n2, b11n2, g, bm1n26. (16.50)
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The transformation shown here is reciprocal, which means that the LSL predictor pre-
serves the full information content of the input data.

Now, consider a backward prediction-error filter of order m. Let the (m + 1)-by-1 
tap-weight vector of the filter, optimized in the least-squares sense over adaptation 
cycles 1 … i … n, be denoted by cm(n). In expanded form,

 cm 1n2 = 3cm, m 1n2, cm, m - 1 1n2, c, 14T
 . 

Let bm(i) denote the backward a posteriori prediction error produced at the output 
of the filter in response to the (m + 1)-by-1 input vector um + 1(i), which, in expanded 
form, is

 um + 1 1i2 = 3u1i2, u1i - 12, c, u1i - m24T
 ,    i 7 m. 

We may thus express the error bm(i) as

  bm 1i2 = cH
m 1n2um + 1 1i2 

  = a
m

k = 0
c*m, k 1n2u1i - m + k2,    

m 6 i … n
 m = 0, 1, 2, c . (16.51)

Let

 bm + 1 1i2 = 3b0 1i2, b1 1i2, c, bm 1i24T
 ,    

m 6 i … n
 m = 0, 1, 2, c  

be an (m + 1)-by-1 backward a posteriori prediction-error vector. Substituting Eq. (16.51) 
into the vector bm + 1(i), we may express the transformation of the input data into the 
corresponding set of backward a posteriori prediction errors as

 bm + 1 1i2 = Lm 1n2um + 1 1i2, (16.52)

where the (m + 1)-by-(m + 1) transformation matrix

  Lm1n2 = ≥
1 0 g 0

c* 1, 1 1n2 1 g 0
f f f f

c*m, m 1n2 c*m, m - 1 g 1

¥  (16.53)

is a lower triangular matrix. Note that the subscript m in the symbol Lm(n) refers to the 
highest order of backward prediction-error filter involved in the matrix constitution. 
Note also the following points:

	 •	 The nonzero elements of row l of matrix Lm(n) are defined by the tap weights of 
a backward prediction-error filter of order (l - 1).

	 •	 The diagonal elements of matrix Lm(n) equal unity; this follows from the fact that 
the last tap weight of every backward prediction-error filter equals unity.

	 •	 The determinant of matrix Lm(n) equals unity for all m; hence, the inverse matrix 
L-1

m  1n2 exists, and the reciprocal nature of the transformation in Eq. (16.50) is 
confirmed.
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By definition, the correlation between the backward prediction errors pertaining 
to different orders—k and m, say—is given by the exponentially weighted time average

  fkm 1n2 = a
n

i = 1
ln - ibk 1i2b*m 1i2  

  = a
n

i = 1
ln - icH

k  1n2uk 1i2b*m 1i2  (16.54)

  = cH
k  1n2a

n

i = 1
ln - iuk 1i2b*m 1i2, 

where ck(n) is the tap-weight vector of the backward prediction-error filter of order 
k that is responsible for generating the error bk(n). Without loss of generality, we may 
assume that m 7 k. Then, recognizing that the elements of the input vector uk(n) are 
involved in generating the backward prediction represented by the error bm(n), opti-
mized in the least-squares sense, we readily deduce from the principle of orthogonality 
that the correlation fkm(n) is zero for m 7 k. In other words, for m Z k, the backward 
prediction errors bk(n) and bm(n) are uncorrelated with each other in a time-averaged 
sense.

This remarkable property makes the LSL predictor an ideal device for exact least-
squares joint-process estimation. Specifically, we may exploit the sequence of backward 
prediction errors produced by the lattice structure of Fig. 16.6 to perform the least-
squares estimation of a desired response in the order-recursive manner depicted in  
Fig. 16.7. In particular, for order (stage) m, we may write

 em 1n2 = em - 1 1n2 - h*m - 1 1n2bm - 1 1n2,    m = 1, 2, c, M + 1. (16.55)

For the initial condition of joint-process estimation, we have

 e01n2 = d1n2. (16.56)

The parameters hm - 1(n), m = 1, 2, c, M + 1 are called joint-process estimation or 
regression coefficients. Thus, the least-squares estimation of the desired response d(n) 
may proceed on a stage-by-stage basis, jointly with the linear prediction process.

Equation (16.55) represents a single-order linear combiner, as depicted in  
Fig. 16.5(c), where we have purposely used the adaptation cycle i in place of n for the 
estimation variables in order to be consistent with the notations used in parts (a) and (b) 
of the figure. The point to note here is that bm - 1(i) may be viewed as the input and em - 1(i) 
as the desired response for 1 … i … n.

16.6 angle-nOrmalized estimatiOn errOrs

The formulation of the LSL predictor presented in the previous section was based on 
the forward a posteriori prediction error fm(n) and the backward a posteriori predic-
tion error bm(n). The resulting order-recursive relations of Eqs. (16.41) and (16.42) are 
defined in terms of the current value of the forward reflection coefficient kf, m(n) and 
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the current value of the backward reflection coefficient kb, m(n). We may equally well 
formulate the LSL predictor in terms of the forward a priori prediction error hm(n) 
and the backward a priori prediction error bm(n). In the latter case, the order-recursive 
relations are defined in terms of the past value of the forward reflection coeffcient 
kf, m(n - 1) and the past value of the backward reflection coefficient kb, m(n - 1), as 
shown here:

 hm 1n2 = hm - 1 1n2 + k*f, m 1n - 12bm - 1 1n - 12; (16.57)

 bm 1n2 = bm - 1 1n - 12 + k*b, m 1n - 12hm - 1 1n2. (16.58)

From a developmental point of view, it would be highly desirable to formulate 
the LSL prediction problem in a way that is invariant to the choice of a posteriori or a 
priori prediction errors. This objective is attained by introducing the notion of angle-
normalized estimation errors. In this regard, with three different forms of estimation in 
mind, we introduce the following set of angle-normalized estimation errors for a LSL 
predictor of order m:

	 •	 The angle-normalized forward prediction error, defined by

   ef, m 1n2 = g1 >  2
m  1n - 12hm 1n2 =

fm 1n2
g1 >  2

m  1n - 12, (16.59)

  where gm(n - 1) is the past value of the conversion factor.
	 •	 The angle-normalized backward prediction error, defined by

    eb, m 1n2 = g1 >  2
m  1n2bm 1n2 =

bm 1n2
g1 >  2

m  1n2, (16.60)

  where gm(n) is the current value of the conversion factor.
	 •	 The angle-normalized joint-process estimation error, defined by

    em 1n2 = g1 >  2
m  1n2jm 1n2 =

em 1n2
g1 >  2

m  1n2, (16.61)

where em(n) and jm(n) are respectively the a posteriori and a priori values of the 
joint-process estimation error.

Accordingly, we may reformulate the three single-coefficient linear combiners of 
Fig. 16.5 for forward prediction, backward prediction, and joint-process estimation in 
terms of angle-normalized variables, as shown in Fig. 16.8.

The term “angle” used in the definitions presented herein refers to an interpre-
tation of the conversion factor as the cosine of an angle. (See Section 16.4 for more 
details.) In any event, the important point to note here is that in basing the algorithmic 
development of LSL filtering on angle-normalized estimation errors, we no longer have 
to distinguish between the a posteriori and a priori versions of the different estimation 
errors, hence the generality of the approach.
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FiguRe 16.8 Angle-normalized versions of single-coefficient linear combiners for  
(a) forward prediction, (b) backward prediction, and (c) joint-process estimation.
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16.7 First-Order state-spaCe mOdels FOr lattiCe Filtering

With the background material presented in Sections 16.2 through 16.6 at our disposal, 
we are now ready to embark on the derivation of algorithms for the design of order-
recursive adaptive filters based on least-squares estimation. The approach used here 
builds on the one-to-one correspondences between RLS variables and Kalman variables. 
To carry out the derivation, we clearly need to formulate state-space representations 
for least-squares prediction using a lattice structure and its extension for joint-process 
estimation. For reasons explained in the previous section, we wish to formulate the 
state-space models in terms of angle-normalized estimation errors.

Consider, then, the following three n-by-1 vectors of angle-normalized prediction 
errors of order m - 1:

 Ef, m - 1 1n2 = ≥
ef, m - 1 112
ef, m - 1 122

f
ef, m - 1 1n2

¥ ; 

 Eb, m - 1 1n - 12 = ≥
0

eb, m - 1 112
f

eb, m - 1 1n - 12
¥ ; (16.62)

 Em - 1 1n2 = ≥
em - 1 112
em - 1 122

f
em - 1 1n2

¥ . 

To initialize the LSL predictor, we typically set

fm - 1102 = bm - 1 1-12 = d

and

∆m - 1 102 = 0.

The regularization parameter d is usually small enough to have a negligible effect on 
fm - 11n2 and bm - 11n - 12 for increasing n, so it may be ignored. Accordingly, we may 
draw the following conclusions from Eqs. (16.10), (16.21), and (16.34), respectively:

 1. The sum of weighted forward prediction-error squares, fm - 11n2, is equal to the 
exponentially weighted squared norm of the corresponding angle-normalized vec-
tor Ef, m - 1 1n2; that is,

 fm - 1 1n2 = EH
f, m - 1 1n2𝚲1n2Ef, m - 1 1n2, (16.63)

  where

𝚲1n2 = diag3ln - 1, ln - 2, c, 14
  is the n-by-n exponential weighting matrix.

(1
+
+
+
+
+
+
+
+
)

+
+
+
+
+
+
+

1+
*
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 2. The sum of weighted backward prediction-error squares, bm - 11n - 12, is equal to 
the exponentially weighted squared norm of the corresponding angle-normalized 
vector Eb, m - 1 1n - 12; that is,

 bm - 1 1n - 12 = EH
b, m - 11n - 12𝚲1n - 12Eb, m - 1 1n - 12. (16.64)

 3. The parameter ∆*m - 1 1n2, representing a form of exponentially weighted cross-
correlation, is equal to the exponentially weighted inner product of the angle-
normalized vectors Eb, m - 1 1n - 12 and Ef, m - 1 1n2; that is,

 ∆*m - 1 1n2 = EH
b, m - 1 1n - 12𝚲1n2Ef, m - 1 1n2. (16.65)

These new definitions mean that the complex-conjugated forward reflection coefficient

k*f, m 1n2 = -  
∆*m - 1 1n2

bm - 1 1n - 12
is also given by

 k*f, m 1n2 = -  
EH

b, m - 1 1n - 12𝚲1n2Ef, m - 1 1n2
EH

b, m 1n - 12𝚲1n - 12Eb, m - 1 1n - 12. (16.66)

In other words, the scalar k*f, m 1n2 can be interpreted as the coefficient that we need 
in order to project Eb, m - 1 1n - 12 onto Ef, m - 1 1n2. This suggests that we may replace 
the problem of projecting the a posteriori prediction vector bm - 1(n - 1) onto the a 
posteriori prediction vector fm - 1(n) by the equivalent problem of projecting the angle-
normalized prediction vector Eb, m -  1 1n - 12 onto the angle-normalized prediction vec-
tor Ef, m -  1 1n2. A similar conclusion follows for the problem of projecting fm - 1(n) onto 
bm - 1(n - 1) and also for the joint-process estimation problem.

Accordingly, referring to the three signal-flow graphs of Fig. 16.8, we may formu-
late a combination of three first-order state-space models for stage m of the least-squares 
lattice filtering problem, based on the following three projections:

 1. For forward linear prediction, Eb, m - 1 1n - 12 is projected onto Ef, m - 1 1n2.
 2. For backward linear prediction, Ef, m - 1 1n2 is projected onto Eb, m - 1 1n - 12.
 3. For joint-process linear estimation, Eb, m - 1 1n2 is projected onto Em - 1 1n2.

Thus, bearing in mind the one-to-one correspondences between the Kalman vari-
ables and RLS variables that were established in Chapter 14, we may break up the 
state-space characterization of stage m of the LSL filtering problem into three parts:

 1. Forward prediction: Here,

 x1 1n + 12 = l-1 >  2x1 1n2 (16.67)

  and

 y1 1n2 = e*b, m - 1 1n - 12x11n2 + n11n2, (16.68)

where x1(n) is the state variable and the reference signal (observation) is

 y1 1n2 = l-n >  2e*f, m - 1 1n2. (16.69)
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The scalar measurement noise n1(n) is a random variable with zero mean and unit 
variance.

 2. Backward prediction: Here,

 x2 1n + 12 = l-1 >  2x2 1n2 (16.70)

and
 y2 1n2 = e*f, m - 1 1n2x21n2 + n21n2, (16.71)

where x2(n) is the second state variable and the second reference signal (observation) is

 y2 1n2 = l-n >  2e*b, m - 1 1n2. (16.72)

As with n1(n), the scalar measurement noise n2(n) is a random variable with zero 
mean and unit variance.

 3. Joint-process estimation: Here,

 x3 1n + 12 = l-1 >  2x3 1n2 (16.73)

and

 y3 1n2 = e*b, m - 1 1n2x31n2 + n3 1n2, (16.74)

where x3(n) is the third and final state variable and the corresponding reference 
signal (observation) is

 y31n2 = l-n >  2e*m - 1 1n2. (16.75)

As before, the scalar measurement noise n3(n) is a random variable with zero mean 
and unit variance.

The noise variables n1(n), n2(n), and n3(n) are all independent of each other.
On the basis of the state-space models just described, we may formulate the list 

of one-to-one correspondences, shown in Table 16.3, between Kalman variables and 
three sets of LSL variables, assuming a prediction order of m - 1. The three sets of LSL 
variables separately refer to forward prediction, backward prediction, and joint-process 
estimation. The first three lines of the table follow readily from the state-space models of  
Eqs. (16.67) through (16.75), together with Table 14.3 of Chapter 14 listing the one-
to-one correspondences between Kalman variables and RLS variables. To verify the 
remaining three lines of correspondences, we may proceed as follows for the case of 
forward linear prediction:

 1. From Table 14.3 of Chapter 14, we recall the following correspondence between 
the filtered state-error correlation matrix in Kalman filter theory and the inverse 
of the correlation matrix of the input vector in RLS theory:

 K1n - 12 4 l-1P1n - 12 = l-1𝚽-11n - 12. 

(Hereafter, double-headed arrows signify one-to-one correspondences.) For the 
problem at hand, depicted in Fig. 16.8(a), we see that the input applied to the 
forward reflection coefficient is eb, m - 1 1i - 12, after the unit delay. For forward 
prediction of order m - 1, we may therefore write
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 K1n - 12 4 l-1aa
n - 2

i = 1
ln - i+ 2 ∙ eb, m - 1 1i - 22 ∙2b

-1

= l-1b-1
m - 1 1n - 22.  (16.76)

 2. From Table 14.3 of Chapter 14, we also recall the following correspondence between 
the gain vector in Kalman filter theory and the gain vector in RLS theory:

 g1n2 4 l-1 >  2k1n2. 

  Adapting the definition of the gain vector k(n) in Eq. (10.22) of Chapter 10 for 
the problem of forward prediction of order m - 1, we may write

 g1n2 4 l-1 >  2b-1
m - 1 1n - 12eb, m - 1 1n - 12. (16.77)

 3. Thus far, the derivations of the entries defined by Eqs. (16.76) and (16.77) have 
been relatively straightforward. However, the last entry in Table 16.3 requires 
more subtle considerations. From Section 14.8, we recall that the conversion factor  
r-1(n) in Kalman filter theory is equal to the ratio of a posteriori estimation error 
e(n) to the a priori estimation error a(n). In contrast, the angle-normalized single-
coefficient models of Fig. 16.8 do not distinguish between a priori and a posteriori 
estimation errors. To get around this difficulty, we proceed as follows: First, the a 
priori estimation error or innovation in Kalman filter theory is defined by

 a1n2 = y1n2 - uH
 1n2xn1n ∙yn - 12. (16.78)

  From the first three lines of Table 16.3, we have the following one-to-one corre-
spondences for forward prediction:

 y1n2 4 l-n >  2e*f, m 1n2; 

 uH
 1n2 4 e*b, m - 1 1n - 12; 

xn1n ∙yn - 12 4 -l-n >  2kf, m 1n - 12.

TAbLe 16.3 Summary of One-to-One Correspondences Between Kalman Variables  
and Angle-Normalized LSL Variables in Stage m of the Lattice Predictor

LSL variable/parameter

Kalman  
variable

Forward  
prediction

Backward  
prediction

Joint-process  
estimation

y(n) l-n >  2E*f, m - 1 1n2 l-n>2e*b, m - 1 1n - 12 l-n >  2e*m - 1 1n2
uH(n) e*b, m - 1 1n - 12 e*f, m - 1 1n2 e*b, m - 1 1n2

xn1n ∙yn - 12 -l-n >  2kf, m  1n - 12 -l-n >  2kb, m  1n - 12 l-n >  2km - 1 1n - 12
K(n - 1) l-1b-1

m - 1 1n - 22 l-1f-1
m - 1 1n - 12 l-1b-1

m - 1 1n - 12
g(n) l-1 >  2b-1

m - 11n - 12Eb, m - 1 1n - 12 l-1 >  2f-1
m - 11n2Ef, m - 1 1n2 l-1 >  2b-1

m - 1 1n2eb, m - 1 1n2
r(n) gm - 1 1n - 12

gm 1n - 12
gm - 1 1n - 12

gm 1n2
gm - 1 1n2
gm 1n2
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Therefore, substituting these correspondences into the right-hand side of Eq. (16.78), 
we get

 a1n2 4 l-n >  21e*f, m - 1 1n2 + kf, m 1n - 12e*b, m - 1 1n - 122. 

Next, using Eqs. (16.59) and (16.60), we may equivalently write

 a1n2 4 l-n >  2g1 >  2
m - 1 1n - 121h*m - 1 1n2 + kf, m 1n - 12b*m - 1 1n - 122. 

Thus, in light of Eq. (16.57), we conclude that, for forward prediction of order m - 1,

 a1n2 4 l-n >  2g1 >  2
m - 1 1n - 12h*m 1n2. (16.79)

Next, the filtered estimation error in Kalman filter theory is defined by

 e1n2 = y1n2 - uH
 1n2xn1n∙yn2, (16.80)

where the filtered state estimate is itself defined by

 xn1n ∙yn2 = F1n, n + 12xn1n + 1 ∙yn2. 

For the problem at hand, the transition matrix is [see Eq. (14.89)]

 F1n + 1, n2 = l-1 >  2, 

and from the inverse rule governing the transition matrix,

 F1n, n + 12 = l1 >  2. 

Thus, from the third row of Table 16.3,

 xn1n + 1 ∙yn2 4 -l-1n + 12 >  2kf, m 1n2. 

It follows, as expected, that

 xn1n ∙yn2 4 -l-n >  2kf, m 1n2. 

We may therefore use Eq. (16.80) to write, for forward linear prediction,

 e1n2 4 l-n >  21e*f, m - 11n2 + kf, m 1n2e*b, m - 1 1n - 122. 

Again, using the relations of Eqs. (16.79) and (16.60), we may equivalently write

 e1n2 4 l-n >  2g-1 >  2
m - 1 1n - 121f *m - 1 1n2 + kf, m 1n2b*m - 1 1n - 122. 

Thus, in light of Eq. (16.41), we conclude that, for forward prediction of order 
m - 1,

 e1n2 4 l-n >  2g-n >  2
m - 1 1n - 12f *m 1n2. (16.81)

Finally, we use Eqs. (16.79) and (16.81) to write the following one-to-one corre-
spondence for forward prediction of order m - 1:

 r1n2 4
gm - 1 1n - 12
gm 1n - 12 . (16.82)

Thus, Eqs. (16.76), (16.77), and (16.82) provide the basis for the last three lines of cor-
respondences between the Kalman and LSL variables for forward prediction listed in 
Table 16.3. By proceeding in a manner similar to that just described, we may fill in the 
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remaining correspondences pertaining to backward prediction and joint-process estima-
tion. (We leave this as an exercise for the reader; see Problem 11.)

16.8  qr-deCOmpOsitiOn–Based least-squares 
lattiCe (qrd-lsl) Filters

Equipped with the state-space models for LSL filtering described in Section 16.7 and 
square-root information filtering developed in Chapter 15, we are at long last positioned 
to get on with the derivation of our first and most important order-recursive adaptive filter-
ing algorithm. The writings of arrays for the algorithm and their expansions are presented 
in three parts, dealing with adaptive forward prediction, adaptive backward prediction, and 
adaptive joint-process estimation, in that order. The basic tool for the writings presented 
herein is the prearray-to-postarray transformation that defines the square-root information 
filtering algorithm of Eq. (15.38), which is reproduced here for convenience of presentation:

 £
l1 >  2K-H >  21n - 12 l1 >  2u1n2

xnH1n ∙yn - 12K-H >  2
 1n - 1) y*1n2

0T 1
§𝚯1n2 

(++++1++++)+++1+++++*
 Prearray 

 = £
K-H >  2

 1n2 0
xnH

 1n + 1 ∙yn2K-H >  2
 1n2 r -1 >  21n2a*1n2

l1 >  2uH
 1n2K1 >  2

 1n2 r -1 >  2
 1n2

§ , (16.83)

 (++++1+++++)+++1++++++* 
 Postarray 

where ∏(n) is a unitary rotation configured to annihilate the first block entry, l1/2u(n), 
in the second column of the prearray.

arrays for adaptive Forward prediction

Adapting Eq. (16.83) to suit the forward prediction model described by the state-space 
equations (16.67) through (16.69), with the aid of Table 16.3 listing the one-to-one cor-
respondences between the Kalman variables and LSL variables (for forward prediction), 
we may write the following arrays for stage m of the LSL forward predictor:

 £
l1 >  2b1>2

m - 1 1n - 22 eb, m - 1 1n - 12
l1 >  2p*f, m - 11n - 12 ef, m - 1 1n2

0 g1 >  2
m - 1 1n - 12

§𝚯b, m - 11n - 12 (16.84)

(1++++1+++)+++1++++1*
 Prearray 

 = £
b1 >  2

m - 1 1n - 12 0
p*f, m - 1 1n2 ef, m 1n2

b*m - 11n - 12b-1 >  2
m - 1 1n - 12 g1 >  2

m  1n - 12
§ . 

 (++++1+++++)+++1++++++* 
 Postarray 

Note, however, that in writing Eq. (16.84), we have done two things: First, the common 
factors l1/2 and l-n/2 have been cancelled from the pre- and postarrays in the first and 
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second rows, respectively. Second, we have multiplied the pre- and postarrays in the 
third row by g1 >  2

m - 1 1n - 12. The motivation for so doing is to simplify the products of 
the transformation.

The scalar quantities bm - 1 1n - 12 and pf, m - 1(n) appearing in the postarray are 
respectively defined as follows:

 1. The real-valued quantity

  bm - 1 1n - 12 = a
n - 1

i = 1
ln - 1 - ieb, m - 1 1i - 12e*b, m - 1 1i - 12 (16.85)

 = lbm - 1 1n - 22 + eb, m - 1 1n - 12e*b, m - 1 1n - 12
is the autocorrelation of the delayed, angle-normalized backward prediction error 
eb, m - 1 1n - 12 for a lag of zero. The quantity bm - 1 1n - 12 may also be interpreted 
as the minimum value of the sum of weighted backward a posteriori prediction-error 
squares, which is defined in accordance with RLS theory as follows [see Eq. (16.22)]:

 bm - 1 1n - 12 = l bm - 1 1n - 22 + bm - 1 1n - 12b*m - 1 1n - 12.

Note that the product term bm - 1 1n - 12b*m - 1 1n - 12 is always real; that is,

bm - 1 1n - 12b*m - 1 1n - 12 = b*m - 1 1n - 12bm - 1 1n - 12.

 2. Except for the factor b-1 >  2
m - 1 1n - 12, the complex-valued quantity

 pf, m - 1 1n2 =
∆m - 1 1n2

b1 >  2
m - 1 1n - 12, (16.86)

where

∆m - 1 1n2 = a
n

i = 1
ln - ieb, m - 1 1i - 12e*f, m - 1 1i2  (16.87)

 = l∆m - 1 1n - 12 + eb, m - 11n - 12e*f, m - 1 1n2,

is the cross-correlation between the angle-normalized forward and backward pre-
diction errors. Indeed, pf, m - 1(n) is related to the forward reflection coefficient 
kf, m(n) for prediction order m by the formula (Haykin, 1991)

 kf, m 1n2 = -
∆m - 11n2

bm - 1 1n - 12 (16.88)

 = -
pf, m - 1 1n2

b1 >  2
m - 1 1n - 12.

The 2-by-2 matrix ∏b, m - 1(n - 1) in Eq. (16.84) is a unitary rotation that reduces the 
(1, 2) entry in the postarray to zero; that is, the matrix annihilates the entry eb, m - 1(n - 1) 
in the prearray. This requirement is readily satisfied by using the Givens rotation

 𝚯b, m - 1 1n - 12 = c cb, m - 1 1n - 12 -sb, m - 1 1n - 12
s*b, m - 1 1n - 12 cb, m - 1 1n - 12 d , (16.89)
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where the cosine and sine parameters are themselves defined by

 cb, m - 1 1n - 12 =
l1 >  2b1 >  2

m - 1 1n - 22
b1 >  2

m - 1 1n - 12  (16.90)

and

 sb, m - 1 1n - 12 =
Eb, m - 1 1n - 12
 b1 >  2

m - 1 1n - 12 , (16.91)

respectively. Thus, using Eq. (16.89) in Eq. (16.84), we get the following update relations 
in addition to that of Eq. (16.85):

p*f, m - 1 1n2 = cb, m - 1 1n - 12l1 >  2p*f, m - 1 1n - 12 + s*b, m - 1 1n - 12ef, m - 1 1n2; (16.92)

ef, m 1n2 = cb, m - 1 1n - 12ef, m - 1 1n2 - sb, m - 1 1n - 12l1 >  2p*f, m - 1 1n - 12; (16.93)

 g1 >  2
m  1n - 12 = cb, m - 1 1n - 12g1 >  2

m - 1 1n - 12. (16.94)

Equations (16.85) and (16.90) through (16.94) constitute the set of relations for a 
square-root information-filtering solution to the adaptive forward linear problem in 
order-recursive LSL filtering theory.

arrays for adaptive Backward prediction

Consider next the adaptive backward prediction model described by the state-space 
equations (16.70) through (16.72). With the aid of the one-to-one correspondences 
between the Kalman variables and LSL variables (for backward prediction) listed in 
Table 16.3, we may use Eq. (16.83) to write the following array for stage m of the least-
squares lattice predictor:

£
l1 >  2f1 >  2

m - 1  1n - 12 ef, m - 1 1n2
l1 >  2p*b, m - 1 1n - 12 eb, m - 1 1n - 12

0 g1 >  2
m - 1 1n - 12

§𝚯f, m - 1 1n2 = £
f1 >  2

m - 1 1n2 0
p*b, m - 1 1n2 eb, m 1n2

f *m - 1 (n)f-1 >  2
m - 1 1n2 g1 >  2

m  1n2
§ . (16.95)

(++++1+++)+++1++++*       (++++1+)+++1++*
 Prearray Postarray

Here, again, in writing Eq. (16.95), we have done the following things: First, the common 
factors l1/2 and l-n/2 have been cancelled from the pre- and postarrays in the first and 
second rows, respectively. Second, we have multiplied the pre- and postarrays in the 
third row by g1 >  2

m - 1 1n - 12.
The two new scalar quantities fm - 1 1n2 and pb, m - 1(n) appearing in the postarray 

of Eq. (16.95) are respectively defined as follows:

 1. The real-valued quantity fm - 1 1n2 is the autocorrelation of the angle-normalized 
forward prediction error ef, m - 1(n) for a lag of zero; that is,

 fm - 1 1n2 = an
i = 1

ln - ief, m - 1 1i2e*f, m - 1 1i2 (16.96)

= lfm - 1 1n - 12 + ef, m - 1 1n2e*f, m - 1 1n2.
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fm - 1 1n2 may also be interpreted as the minimum value of the sum of forward 
prediction-error squares, which is defined, in accordance with RLS theory, as [see 
Eq. (16.11)]

 fm - 1 1n2 = lfm - 1 1n - 12 + hm - 1 1n2f *m - 1 1n2. (16.97)

In a manner similar to adaptive forward prediction, the product hm - 1 1n2f *m - 1 1n2 
is always real valued.

 2. Except for the factor f-1 >  2
m - 1 1n2, the complex-valued quantity

 pb, m - 1 1n2 =
∆*m - 1 1n2
f1 >  2

m - 1 1n2 (16.98)

is the complex conjugate of the cross-correlation between the angle-normalized 
forward and backward prediction errors. [The said cross-correlation is defined 
in Eq. (16.87).] The quantity pb, m - 1(n) is also related to the backward reflection 
coefficient for prediction order m by the formula (Haykin, 1991)

  kb, m 1n2 = -
∆*m - 1 1n2
fm - 1 1n2 (16.99)

 = -
pb, m - 1 1n2
f1 >  2

m - 1 1n2 .

The 2-by-2 transformation matrix ∏f, m - 1(n) is a unitary rotation that reduces the 
(1, 2) entry of the postarray in Eq. (16.95) to zero; that is, the matrix annihilates the entry 
ef, m - 1(n) in the prearray of this same equation. This requirement may be satisfied by 
using the Givens rotation

 𝚯f, m - 1 1n2 = c cf, m - 1 1n2 -sf, m - 1 1n2
s*f, m - 1 1n2 cf, m - 1 1n2 d , (16.100)

where the cosine and sine parameters are themselves defined by

 cf, m - 1 1n2 =
l1 >  2f1 >  2

m - 1 1n - 12
f1 >  2

m - 1 1n2  (16.101)

and

 sf, m - 1 1n2 =
ef, m - 1 1n2
f 1 >  2

m - 1 1n2 , (16.102)

respectively. Thus, substituting Eq. (16.100) into Eq. (16.95), we readily deduce the fol-
lowing recursions:

p*b, m - 1 1n2 = cf, m - 1 1n2l1 >  2p*b, m - 1 1n - 12 + s*f, m - 1 1n2eb, m - 1 1n - 12; (16.103)

eb, m 1n2 = cf, m - 1 1n2eb, m - 1 1n - 12 - sf, m - 1 1n2l1 >  2p*b, m - 1 1n - 12; (16.104)

g1 >  2
m  1n2 = cf, m - 1 1n2g1 >  2

m - 1 1n - 12. (16.105)
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Equations (16.96) and (16.101) through (16.105) constitute the set of recursions for a 
square-root information-filtering solution to the adaptive backward problem in order-
recursive LSL filtering theory.

array for Joint-process estimation

Finally, consider the joint-process estimation problem described by the state-space equa-
tions (16.73) through (16.75), pertaining to stage m of the LSL filtering process. With the 
aid of the one-to-one correspondences between the Kalman variables and LSL variables 
(for joint-process estimation) listed in Table 16.3, we may use Eq. (16.83) to write

£
l1 >  2b1 >  2

m - 1 1n - 12 eb, m - 11n2
l1 >  2p*m - 11n - 12 em - 1 1n2

0 g1 >  2
m - 1 1n2

§𝚯b, m - 1 1n2 = £
b1 >  2

m - 1 1n2 0
p*m - 1 1n2 em 1n2

b*m - 1 1n2b-1 >  2
m - 1 1n2 g1 >  2

m  1n2
§ . (16.106)

(1++++1+)+++1++1*       (++++1+)+++1++*
 Prearray Postarray

In writing Eq. (16.106), we have done certain things to the pre- and postarrays, which 
are the same as those done for the corresponding equations pertaining to the adaptive 
forward prediction and adaptive backward prediction.

In Eq. (16.106), there is only one new quantity that we have to define, namely, 
pm - 1(n), for the postarray. Except for the factor b-1 >  2

m - 11n2, this new quantity is the 
cross-correlation between the angle-normalized backward prediction error and angle-
normalized joint-estimation error; that is,

 pm - 1 1n2 =
1

b1 >  2
m - 1 1n2 an

i = 1
ln - ieb, m - 11i2e*m - 1 1i2. (16.107)

The joint-estimation (regression) parameter hm - 1(n) for prediction order m - 1 is cor-
respondingly defined by (Haykin, 1991)

 hm - 11n2 =
pm - 1 1n2
b1 >  2

m - 1 1n2. (16.108)

The 2-by-2 transformation matrix 𝚯b, m - 1 1n2 is a unitary rotation designed to 
annihilate the entry Eb, m - 1(n) in the prearray of Eq. (16.106). To do this, we may use the 
same Givens rotation as that in Eq. (16.109), except for a shift in time by one adaptation 
cycle. That is,

 𝚯b, m - 1 1n2 = c cb, m - 1 1n2 -sb, m - 1 1n2
s*b, m - 1 1n2 cb, m - 1 1n2 d , (16.109)

where

 cb, m - 11n2 =
l1 >  2b1 >  2

m - 1 1n - 12
b1 >  2

m - 1 1n2  (16.110)

and

 sb, m - 1 1n2 =
eb, m - 1 1n2
b1 >  2

m - 1 1n2 . (16.111)
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Substituting Eq. (16.109) into Eq. (16.106), we get the desired pair of recursions:

 p*m - 1 1n2 = cb, m - 1 1n2l1 >  2p*m - 1 1n - 12 + s*b, m - 1 1n2em - 1 1n2; (16.112)

 em 1n2 = cb, m - 1 1n2em - 1 1n2 - sb, m - 1 1n2l1 >  2p*m - 1 1n - 12. (16.113)

Equations (16.85), (16.90), and (16.91) with adaptation cycle n - 1 replaced by n, together 
with Eqs. (16.112) and (16.113), constitute the set of recursions for a square-root 
 information- filtering solution to the joint-process estimation problem in order-recursive 
LSL filtering theory.

summary of the qrd-lsl algorithm using a posteriori  
and a priori estimation errors

Table 16.4 presents a summary of the angle-normalized QRD-LSL algorithm,2 based 
on the arrays of Eqs. (16.84), (16.95), and (16.106). Note that the forward and backward 
predictions are performed for m = 1, 2, c, M, whereas those for the joint-process estima-
tion are performed for m = 1, 2, c, M + 1, where M is the final prediction order. That 
is, the joint-process estimation involves one final set of computations pertaining to m = 
M + 1. Note also that in the second and third arrays of the table, we have omitted the 
particular rows that involve updating the conversion factor. This requirement is taken 
care of by the first array.

Table 16.4 includes the initialization procedure, which is of a soft-constraint form. 
This form of initialization is consistent with that adopted for the conventional RLS 

2The use of arrays for deriving the QRD-LSL algorithm was first described in the paper by Sayed and 
Kailath (1994).

The idea of a fast QR-decomposition–based algorithm for RLS estimation was first presented by Cioffi 
(1988). A detailed derivation of the algorithm is described in Cioffi (1990). In the latter paper, Cioffi presents a 
geometric approach to the derivation that is reminiscent of his earlier work on fast FIR filters. The algorithm 
derived by Cioffi is of a Kalman, or matrix-oriented, type. Several other authors have presented seemingly 
simple algebraic derivations and other versions of the QRD-fast RLS algorithm (Bellanger, 1988a, b; Proudler 
et al., 1988, 1989; Regalia & Bellanger, 1991). The paper by Proudler et al. (1989) is of particular interest in 
that it develops a novel implementation of the QRD-RLS algorithm by using a lattice structure. A similar fast 
algorithm was derived independently by Ling (1989), using the modified Gram–Schmidt orthogonalization 
procedure. The connection between the modified Gram–Schmidt orthogonalization and QR-decomposition 
is discussed in Shepherd and McWhirter (1993).

Haykin (1991) presented a development of the QRD-LSL algorithm that is based on a hybridiza-
tion of ideas due to Proudler et al. (1989) and Regalia and Bellanger (1991). Specifically, the develop-
ment followed Proudler et al. in deriving QR-decomposition-based solutions to forward and backward 
linear prediction problems and followed Regalia and Bellanger in solving the joint-process estimation 
problem. In such an approach, the complications in the Proudler et al. procedure, which uses forward 
linear prediction errors for joint-process estimation, are avoided. The structure of the QRD-LSL algo-
rithm derived by Haykin follows a philosophy directly analogous to that described for conventional 
LSL algorithms.

Rontogiannis and Theodoridis (1998a, b) proposed a unified approach for deriving QRD-fast algo-
rithms. The starting point of the derivation is the inverse Cholesky factor of the time-average correlation 
matrix of the input data; the inverse Cholesky factor is derived using a QR-decomposition. Rontogiannis and 
Theodoridis actually propose two algorithms: One is a fixed-order QR-decomposition-based scheme, and the 
other is an order-recursive, latticelike algorithm based on Givens rotations.
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TAbLe 16.4 Summary of the QRD-LSL Algorithm

1. Unitary (Givens) rotations:

 𝚯b, m1n2 = c cb, m1n2 -sb, m1n2
s*b, m1n2 cb, m1n2 d

where

 cb, m  1n2 =
l1 >  2b1 >  2

m  1n - 12
b1 >  2

m  1n2
and

 sb, m  1n2 =
Eb, m  1n2
b1 >  2

m  1n2.

 𝚯f, m  1n2 = c cf, m  1n2 -sf, m  1n2
s*f, m  1n2 cf, m  1n2 d

where

 cf, m  1n2 =
l1 >  2f1 >  2

m  1n - 12
f1 >  2

m  1n2
and

 sf, m  1n2 =
Ef, m  1n2
f1 >  2

m  1n2.

2. Computations:
(a)  Predictions: For each adaptation cycle n = 1, 2, c, perform the following computations and repeat 

for each prediction order m = 1, 2, c, M, where M is the final prediction order:

£
l1 >  2b1 >  2

m - 11n - 22 eb, m - 11n - 12
l1 >  2p*f, m - 11n - 12 ef, m - 1 1n2

0 g1 >  2
m - 11n - 12

§  𝚯b, m - 11n - 12 = £
b1 >  2

m - 11n - 12 0
p*f, m - 11n2 Ef, m  1n2

b*m - 11n - 12b-1 >  2
m - 11n - 12 g1 >  2

m 1n - 12
§

c l
1 >  2f1 >  2

m - 11n - 12 ef, m - 11n2
l1 >  2p*b, m - 11n - 12 eb, m - 11n - 12 d  𝚯f, m - 11n2 = c f

1 >  2
m - 1 1n2 0

p*b, m - 1 1n2 Eb, m  1n2 d

(b)  Filtering: For each adaptation cycle n = 1, 2, c, perform the following computations and repeat for 
each prediction order m = 1, 2, c, M + 1, where M is the final prediction order:

cl
1 >  2b1 >  2

m - 11n - 12 eb, m - 11n2
l1 >  2p*m - 11n - 12 em - 11n2 d  𝚯b, m - 1 1n2 = cb

1 >  2
m - 11n2 0

p*m - 1 1n2 em 1n2 d

3. Initialization:
 (a) Auxiliary parameter initialization: For order m = 1, 2, c, M, set

 pf, m - 1 102 = pb, m - 1 102 = 0

     and for order m = 1, 2, c, M + 1, set

 pm - 1 102 = 0

(b) Soft-constraint initialization: For order m = 0, 1, c, M, set

 bm 1- 12 = bm 102 = d

 fm 102 = d

    where d is a small positive constant.

(c) Data initialization: For n = 1, 2, c, compute

 ef, 0 1n2 = eb, 0 1n2 = u1n2
 e0 1n2 = d1n2
 g0 1n2 = 1

 where u(n) is the input and d(n) is the desired response at adaptation cycle n.
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algorithm, as described in Chapter 10. The algorithm proceeds with a set of initial values 
determined by the input datum u(n) and desired response d(n), namely,

ef, 0 1n2 = eb, 0 1n2 = u1n2
and

e0 1n2 = d1n2.

The initial value for the conversion factor is chosen to be

g01n2 = 1.

16.9 Fundamental prOperties OF the qrd-lsl Filter

The QRD-LSL algorithm summarized in Table 16.4 is so called in recognition of 
three facts. First, the unitary transformations in Eqs. (16.84), (16.95), and (16.106), in 
which the (1, 2) entry of each postarray is reduced to zero, are all examples of the 
QR-decomposition. Second, the algorithm is rooted in recursive least-squares (RLS) 
estimation, supported by Kalman filter theory. Third, the computations performed by 
the algorithm proceed on a stage- by-stage fashion, with each stage having the form of a 
lattice. By virtue of these facts, the QRD-LSL algorithm is endowed with a highly desir-
able set of operational and  implementational characteristics:

	 •	 Good numerical properties, which are inherited from the QR-decomposition part 
of the algorithm.

	 •	 Good convergence properties (i.e., a fast rate of convergence and insensitivity to 
variations in the eigenvalue spread of the underlying correlation matrix of the 
input data), which are due to the RLS nature of the algorithm.

	 •	 A high level of computational efficiency, which results from the modular, lattice-
like structure of the prediction process.

The unique combination of these characteristics makes the QRD-LSL algorithm a power-
ful adaptive filtering algorithm.

The latticelike structure of the QRD-LSL algorithm, using a sequence of Givens 
rotations, is clearly illustrated by the multistage signal-flow graph of Fig. 16.9. In par-
ticular, stage m of the predictor section of the algorithm involves the computations of 
the angle-normalized prediction errors ef, m(n) and eb, m(n), where the prediction order 
m = 0, 1, 2, c, M. By the same token, the filtering section of the algorithm involves 
the computation of the angle-normalized joint-process estimation error em(n), where  
m = 0, 1, 2, c, M + 1. The details of these computations are depicted in the signal-
flow graphs shown separately in Fig. 16.10, which further emphasize the inherent lattice 
nature of the QRD-LSL algorithm.

The boxes labeled z-1I in Fig. 16.9 signify storage, which is needed to accommodate 
the fact that the Givens rotations involved in computing the backward prediction errors 
are delayed by one adaptation cycle with respect to those involved in the joint-process 
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estimation process. Note, however, that the joint-process estimation process involves 
one last Givens rotation, all by itself.

From the signal-flow graph of Fig. 16.9, we clearly see that the total number of 
Givens rotations needed for the computation of eM + 1(n) is 2M + 1, which increases 
linearly with the final prediction order M. However, the price paid for the high 
level of computational efficiency of the fast algorithm described herein, compared 
with the conventional RLS algorithm described in Chapter 10, is that of having to 
write a more elaborate set of algorithmic instructions, which could limit its practical 
applications.

Examining the signal-flow graphs of Figs. 16.9 and 16.10, we may identify two 
 different sets of recursions in the formulation of the QRD-LSL algorithm:

 1. Order updates (recursions). At each stage of the algorithm, order updates are 
performed on the angle-normalized estimation errors. Specifically, a series of M 
order updates applied to the initial values ef, o(n) and eb, o(n) yields the final values  
ef, M(n) and eb, M(n), respectively, where M is the final prediction order. To compute 
the final value of the angle-normalized joint-process estimation error eM + 1(n), 
another series of M + 1 order updates is applied to the initial value e0(n). This lat-
ter set of updates includes the use of the sequence of angle-normalized backward 
prediction errors eb, 0(n), eb, 1(n), c, eb, M(n). The final order update pertains to the 
computation of the square root of the conversion factor g1 >  2

M + 1 1n2, which involves 
the application of M + 1 order updates to the initial value g1 >  2

0  1n2. The availability 
of the final values eM + 1(n) makes it possible to compute the final value eM + 1(n) of 
the joint-process estimation error.

 2. Time updates (recursions). The computations of ef, m(n) and eb, m(n) as outputs 
of predictor stage m of the algorithm involve the use of the auxiliary parameters  
pf, m - 1(n) and pb, m - 1(n), respectively, for m = 1, 2, c, M. Similarly, the computa-
tion of em(n) involves the auxiliary parameter pm - 1(n) for m = 1, 2, c, M + 1. The 
computations of these three auxiliary parameters themselves have the following 
common features:

	 •	 They are all governed by first-order difference equations.

	 •	 The coefficients of the equation are time varying. For exponential weighting 
(i.e., l … 1), the coefficients are bounded in absolute value by unity. Hence, the 
solution of the equation converges.

	 •	 The term playing the role of excitation is represented by some form of an esti-
mation error.

	 •	 In the prewindowing method, all three auxiliary parameters are set equal to 
zero for n … 0.

  Consequently, the auxiliary parameters pf, m - 1(n) and pb, m - 1(n) for m = 1, 2, c, M,  
and pm(n) for m = 0, 1, c, M, may be computed recursively in time.

Finally, and perhaps most importantly, the angle-normalized QRD-LSL  algorithm 
summarized in Table 16.4 plays a central role in the derivation of the whole family of 
recursive LSL algorithms. We say this because all other existing recursive LSL  algorithms 
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using a posteriori estimation errors or a priori estimation errors (or  combinations 
thereof) may be viewed as rewritings of the QRD-LSL algorithm. The validity of this 
statement will be demonstrated in Sections 16.11 and 16.12 dealing with two  different 
recursive LSL algorithms.

16.10 COmputer experiment On adaptive equalizatiOn

In this computer experiment, we study the use of the QRD-LSL algorithm for the adap-
tive equalization of a linear channel that produces unknown distortion. The parameters 
of the channel are the same as those used to study the RLS algorithm in Section 10.9 
for a similar application. The results of the experiment should therefore help us to make 
an assessment of the performance of this order-recursive algorithm, compared with the 
traditional RLS algorithm.

The parameters of the QRD-LSL algorithm studied here are identical to those 
used for the RLS algorithm in Section 10.9:

Exponential weighting factor: l = 1
Prediction order: M = 10
Number of equalizer taps: M + 1 = 11
Regularization parameter: d = 0.004

The computer simulations were run for four different values of the channel para-
meter W defined in Eq. (6.112), namely, W = 2.9, 3.1, 3.3, and 3.5. These values of W 
correspond to the following eigenvalue spreads of the underlying correlation matrix 
R of the channel output (equalizer input): x(R) = 6.78, 11.124, 21.713, and 46.822, 
respectively. The signal-to-noise ratio measured at the channel output was 30 dB. 
(For more details of the experimental setup, the reader is referred to Sections 6.8 
and 10.9.)

learning Curves

Figure 16.11 presents the superposition of learning curves of the QRD-LSL algorithm 
for the four said values of the channel parameter W = 2.9, 3.1, 3.3, and 3.5. Each learn-
ing curve was obtained by ensemble-averaging the squared value of the final a priori 
estimation error (i.e., the innovation) jM + 1(n) over 200 independent Monte Carlo runs 
of the experiment for a final prediction order M = 10. To compute jM + 1(n), we use  
Eq. (16.61) for m = M + 1 and thus write

jM + 1 1n2 =
eM + 11n2
g1 >  2

M + 1 1n2,

where eM + 1(n) is the final value of the angle-normalized joint-process estimation error 
and gM + 1 is the associated conversion factor.

For each eigenvalue spread, the learning curve of the QRD-LSL algorithm fol-
lows a path practically identical to that of the RLS algorithm once the initialization is 
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completed. This relationship is readily confirmed by comparing the plots of Fig. 16.11 
with those of Fig. 10.6. (In both cases, double-precision arithmetic was used so that finite-
precision effects are negligible.)

Note also that in computing the plots of Fig. 16.11, the transients inherent to the 
evolution of the conversion factor gM + 1(n) were removed from the computation of the 
innovation jM + 1(n) during the initialization period.

Conversion Factor

In Fig. 16.12, we show the superposition of four ensemble-averaged plots of the 
 conversion factor gM + 1(n) (for the final stage) versus the number of adaptation cycles, 
n,  corresponding to the four different values of the eigenvalue spread x(R) specified 
on the previous page. The curves plotted in the figure were obtained by ensemble-
averaging gM + 1(n) over 200 independent Monte Carlo runs of the experiment. It is 
noteworthy that after the initial transients have died out, the time variation of this 

FiguRe 16.11 Learning curves of the QRD-LSL algorithm for the adaptive equalization experiment.
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ensemble-average conversion factor 𝔼[gm(n)] follows an inverse law, as evidenced by 
the approximation

𝔼3gm 1n24 ≈ 1 -
m
n
   for  m =  1, 2, . . . , M +  1 and  n Ú m.

This equation provides a good fit to the experimentally computed curve shown in 
Fig. 16.12, particularly for n large compared with the predictor order m = M + 1. The 
reader is invited to check the validity of this fit. Note also that the experimental plots 
of the conversion factor gM + 1(n) are insensitive to variations in the eigenvalue spread 
of the correlation matrix of the equalizer input for n Ú 10.

impulse response

In Fig. 16.13, we have plotted the ensemble-average impulse response of the adaptive 
equalizer after n = 500 adaptation cycles for each of the four eigenvalue spreads. As before, 
the ensemble averaging was performed over 200 independent Monte Carlo runs of the 
experiment. The results for the QRD-LSL algorithm are, for all practical purposes, indis-
tinguishable from the corresponding theoretic values of the channel’s impulse response.

FiguRe 16.12 Ensemble-average conversion factor gM + 1(n) for varying eigenvalue spread.
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FiguRe 16.13 Ensemble-average impulse response of the adaptive equalizer for varying 
eigenvalue spread: (a) W = 2.9, x(R) = 6.0782; (b) W = 3.1, x(R) = 11.1238, (c) W = 3.3, 
x(R) = 21.7132; (d) W = 3.5, x(R) = 46.8216. Parts (c) and (d) of the figure are presented 
on the next page.
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FiguRe 16.13 (continued )
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16.11 reCursive (lsl) Filters using a pOsteriOri estimatiOn errOrs

In a generic sense, the family of recursive LSL algorithms may be divided into two sub-
groups: those that involve the use of unitary rotations and those that do not. A well-known 
algorithm that belongs to the latter subgroup is the traditional recursive LSL algorithm using 
a posteriori estimation errors (Morf, 1974; Morf & Lee, 1978; Lee et al., 1981). The estimation 
errors used in this algorithm are represented by the a posteriori forward prediction error 
fm(n), the a posteriori backward prediction error bm(n), and the a posteriori joint-process  
estimation error em(n), where m = 0, 1, 2, c, M, as shown in the signal-flow graphs of  
Figs. 16.9 and 16.10.

We may derive the recursive LSL algorithm using a posteriori estimation errors 
(and for that matter, other recursive LSL algorithms) from the QRD-LSL algorithm of 
Table 16.4 by using a simple two-step procedure:

	 •	 The three arrays of the QRD-LSL algorithm, dealing with adaptive forward pre-
diction, adaptive backward prediction, and adaptive joint-process estimation, are 
squared; the effects of unitary rotations are thereby completely removed from the 
algorithm.

	 •	 Certain terms (depending on the algorithm of interest) on both sides of the resul-
tant arrays are retained and then compared.

Examples of this procedure were presented in Chapter 15, on square-root adaptive 
filters.

Applying the foregoing procedure to the three arrays of Table 16.4 that 
describe the angle-normalized QRD-LSL algorithm, and expressing the results 
in terms of the a posteriori estimation errors, we get the following three sets of 
recursions:

 1. Adaptive forward prediction:

  bm - 1 1n - 12 = lbm - 1 1n - 22 +
∙ bm - 1 1n - 12 ∙2

gm - 1 1n - 12 ;  (16.114)

  ∆m - 11n2 = l∆m - 11n - 12 +
bm - 11n - 12f *m - 11n2

gm - 11n - 12 ; (16.115)

  kf, m = -  
∆m - 1 1n2

bm - 11n - 12;  (16.116)

  fm 1n2 = fm - 1 1n2 + k*f, m 1n2bm - 1 1n - 12;  (16.117)

  gm 1n - 12 = gm - 1 1n - 12 -
∙ bm - 11n - 12 ∙2

bm - 1 1n - 12 .  (16.118)
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  Note that in the second line we have made use of the relation between Δm-1(n) 
and pf, m - 1(n) given in Eq. (16.86), and in the third line we have made use of the 
definition of the forward reflection coefficient kf, m(n) given in Eq. (16.88).

 2. Adaptive backward prediction:

  fm - 1 1n2 = lfm - 1 1n - 12 +
∙ fm - 1 1n2 ∙2

gm - 11n - 12;  (16.119)

  kb, m 1n2 = -  
∆*m - 1 1n2
fm - 1 1n2;  (16.120)

  bm 1n2 = bm - 1 1n - 12 + k*b, m 1n2fm - 1 1n2. (16.121)

  Here, in the second line we have made use of the relation between Δm - 1(n) and 
pb, m - 1(n) given in Eq. (16.98) and also the definition of the backward reflection 
coefficient kb, m(n) given in Eq. (16.99).

 3. Adaptive joint-process estimation:

  pm - 1 1n2 = lpm - 1 1n - 12 +
bm - 1 1n2e*m - 1 1n2

gm - 11n2 ; (16.122)

  hm - 1 1n2 =
pm - 1 1n2
bm - 1 1n2; (16.123)

  em 1n2 = em - 1 1n2 - h*m - 1 1n2bm - 1 1n2.  (16.124)

  Here, πm-1(n) is defined in terms of pm - 1(n) by

 pm - 1 1n2 = b1 >  2
m - 1 1n2pm - 1 1n2 (16.125)

and the joint-process regression coefficient hm - 1(n) is defined in terms of  pm - 1(n) by

 hm - 1 1n2 =
pm - 11n2
b1 >  2

m - 1 1n2. (16.126)

summary of the recursive lsl algorithm using a posteriori estimation errors

The complete list of order- and time-update recursions constituting the recursive LSL 
algorithm (based on a posteriori estimation errors) is presented in Table 16.5. Since 
the LSL algorithm summarized in the table involves division by updated parameters 
at some of the steps, care must be taken to ensure that these values are not allowed to 
become too small. Unless a high-precision computer is used, selection of the regulariza-
tion parameter d [determining the initial values f0102 and b0102] may have a severe 
effect on the initial transient performance of the LSL algorithm. Friedlander (1982) 
suggests using some form of thresholding wherein, if the divisor (in any computation of 
an LSL algorithm) is less than a preassigned threshold, the corresponding term involv-
ing that divisor is set to zero. This remark also applies to other versions of the recursive 
LSL algorithm (e.g., those summarized later in Table 16.6).
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TAbLe 16.5 Summary of the Recursive LSL Algorithm Using A Posteriori Estimation Errors

Predictions:
For n = 1, 2, 3, c, compute the various order updates in the sequence m = 1, 2, c, M, where M is the final 
order of the LSL predictor:

 ∆m - 1 1n2 = l∆m - 1 1n - 12 +
bm - 1 1n - 12f *m - 1 1n2

gm - 1 1n - 12

 bm - 1 1n - 12 = lbm - 1 1n - 22 +
∙ bm - 1 1n - 12 ∙2

gm - 1 1n - 12

 fm - 1 1n2 = lfm - 1 1n - 12 +
∙ fm - 1 1n2 ∙2

gm - 1 1n - 12

 kf, m  1n2 = -  
∆m - 1 1n2

bm - 1 1n - 12

 kb, m  1n2 = -  
∆*m - 1 1n2
fm - 1 1n2

 fm 1n2 = fm - 1 1n2 + k*f, m  1n2bm - 1 1n - 12
 bm 1n2 = bm - 1 1n - 12 + k*b, m  1n2fm - 1 1n2

 gm 1n - 12 = gm - 1 1n - 12 -
∙ bm - 1 1n - 12 ∙2

bm - 1 1n - 12

Filtering:
For n = 1, 2, 3, c, compute the various order updates in the sequence m = 1, 2, c, M + 1:

 pm - 1 1n2 = lpm - 1 1n - 12 +
bm - 1 1n2e*m - 1 1n2

gm - 1 1n2

 hm - 1 1n2 =
pm - 1 1n2
bm - 1 1n2

 em 1n2 = em - 1 1n2 - h*m - 1 1n2bm - 1 1n2
Initialization:
1. To initialize the algorithm, at adaptation cycle n = 0, set

∆m - 1102 = 0
fm - 1102 = d   d = small positive constant

bm - 11- 12 = d

g0102 = 1

2. At each instant n Ú 1, generate the various zeroth-order variables as follows:

 f01n2 = b01n2 = u1n2
 f01n2 = b01n2 = lf01n - 12 + ∙u1n2 ∙2

 g01n - 12 = 1

3. For joint-process estimation, at adaptation cycle n = 0, initialize the algorithm by setting

pm - 1102 = 0

 At each adaptation cycle n Ú 1, generate the zeroth-order variable

e01n2 = d1n2

Note: For prewindowed data, the input u(n) and the desired response d(n) are both zero for n … 0.
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initialization of the recursive lsl algorithm

To initialize the recursive LSL algorithm using a posteriori estimation errors, we start 
with the elementary case of zero prediction order, for which [see Eq. (16.43)]

f01n2 = b01n2 = u1n2,

where u(n) is the lattice predictor input at adaptation cycle n.
The remaining initial values pertain to the sums of weighted a posteriori  

prediction-error squares for zero prediction order. Specifically, setting m = 0 in  
Eq. (16.11) yields

  f0 1n2 = l f0 1n - 12 + ∙ u1n2 ∙2. (16.127)

Similarly, setting m = 0 in Eq. (16.22) yields

 b0 1n2 = lb0 1n - 12 + ∙ u1n2 ∙2. (16.128)

With the conversion factor gm(n - 1) bounded by zero and unity, a logical choice for the 
zeroth-order value of that parameter is

 g01n - 12 = 1. (16.129)

We complete the initialization of the algorithm for forward and backward predic-
tion by applying the conditions

 ∆m - 1102 = 0 (16.130)

and
 fm - 1102 = bm - 11-12 = d (16.131)

at adaptation cycle n = 0. The small regularization parameter d is used to ensure non-
singularity of the correlation matrix 𝚽m(n).

Turning finally to the initialization of the joint-estimation process, we see (for 
zero-prediction order) that

e01n2 = d1n2,

where d(n) is the desired response. Thus, to initiate this part of the computation, we 
generate e0(n) for each adaptation cycle n. To complete the initialization of the recursive 
LSL algorithm for joint-process estimation, at adaptation cycle n = 0 we set

pm - 1102 = 0 for m = 1, 2, . . . , M + 1.

Table 16.5 includes the initialization of the recursive LSL algorithm as just 
described.

16.12  reCursive lsl Filters using a priOri estimatiOn errOrs 
with errOr FeedBaCk

In this section, we derive another recursive LSL algorithm, which differs from that of 
Section 16.11 in two respects. First, it is based on a priori estimation errors; second, the 
reflection and joint-process estimation coefficients are all derived directly. The latter 
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 difference has significant practical implications when the use of finite-precision arith-
metic is the preferred method of implementation.

The algorithm is called the recursive LSL algorithm using a priori estimation errors 
with error feedback (Ling & Proakis, 1984a; Ling et al., 1985). This algorithm can be 
derived in several ways, the two most common of which are:

 1. Apply the squaring procedure to an extended form of the QRD-LSL algorithm.
 2. Apply Kalman filter theory in conjunction with Table 14.4 on correspondences 

between Kalman variables and angle-normalized LSL variables.

We will follow Procedure 2, as it is insightful and fairly straightforward. Discussion of 
Procedure 1 is presented in Haykin (1996).

To proceed with the derivation of the algorithm, we first recall the state-update 
equation for the Kalman filter, which is reproduced here:

 xn1n + 1 ∙yn2 = l-1 >  2xn1n ∙yn - 12 + g1n2a1n2. (16.132)

(See the third line, under computation, in Table 14.4.) Next, we note the following cor-
respondeces between Kalman filter and LSL filter variables for the case of forward 
prediction of order m - 1:

 xn1n ∙yn - 12 4 -l-n >  2kf, m 1n - 12;

 g1n2 4 l-1 >  2b-1
m - 11n - 12eb, m - 1 1n - 12;

 a1n2 4 l-n >  2g1 >  2
m - 1 1n - 12h*m 1n2.

[See line 3 of Table 16.3 and Eqs. (16.77) and (16.79).] Substituting these correspondeces 
into Eq. (16.132), using Eq. (16.60), and cancelling common terms, we get

 kf, m 1n2 = kf, m 1n - 12 - agm - 1 1n - 12bm - 11n - 12
bm - 1 1n - 12 bh*m 1n2,  m = 1, 2, . . . , M,   

(16.133)

which now permits the recursive computation of the forward reflection coefficient 
directly in terms of the order-updated forward a priori prediction error hm(n) and the 
delayed a priori backward prediction error bm-1(n - 1). From Eq. (16.57), we find that 
hm(n) depends on kf, m(n - 1). We see therefore that the second term on the right-hand 
side of Eq. (16.133) applies error feedback to the computation of kf, m(n).

Proceeding in a similar manner, we may show that the corresponding recursion for 
computing the backward reflection coefficient for prediction order m - 1 is as follows:

kb, m 1n2 = kb, m 1n - 12 - agm - 1 1n - 12hm - 11 n2
fm - 1 1n2 bb*m 1n2,  m = 1, 2, . . . , M. (16.134)

Likewise, we may show that the recursion for computing the corresponding joint-process 
estimation coefficient is as follows:

hm - 1 1n2 = hm - 1 1n - 12 + agm - 1 1n2bm - 1 1n2
bm - 1 1n2 bj*m 1n2,  m = 1, 2, . . . , M + 1. (16.135)
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The quantities inside the outer parentheses pertaining to the second terms on the right-
hand sides of Eqs. (16.133) through (16.135) act as gain factors for the recursions for 
forward prediction, backward prediction, and joint-process estimation, respectively. [The 
derivations of Eqs. (16.134) and (16.135) are presented as Problem 17.]

summary of the recursive lsl algorithm using a priori estimation 
errors with error Feedback

Table 16.6 summarizes the computations involved in the forward and backward predic-
tion parts of the recursive LSL algorithm using estimation errors with error feedback. 
The table also includes the computations involved in the joint-process estimation part 
of the algorithm. The basis for the entries summarized therein is as follows:

 1. Predictions:
	 •	 Lines 1 and 2 follow from the combined use of Eqs. (16.11), (16.22), (16.28), and 

(16.29).
	 •	 Lines 3 and 4 are repeats of Eqs. (16.57) and (16.58), respectively.
	 •	 Lines 5 and 6 are repeats of Eqs. (16.133) and (16.134), respectively.
	 •	 Finally, line 7 follows from the combined use of Eqs. (16.29) and (16.118).

 2. Filtering:
	 •	 Line 1 follows from the combined use of Eqs. (16.27), (16.29), and (16.55).
	 •	 Line 2 is a repeat of Eq. (16.135).

 3. Initialization: The initializing conditions are essentially the same as those in 
Table 16.5.

Comparison of the First and second recursive lsl algorithms

Figure 16.14 presents a signal-flow graph of the second recursive LSL algorithm, empha-
sizing that order updating of the variables of interest (i.e., a priori forward prediction, 
backward prediction, and joint-process estimation errors) at adaptation cycle n requires 
knowledge of the forward reflection coefficients, backward reflection coefficients, and 
regression coefficients at the previous adaptation cycle n - 1.

An important difference between the two recursive LSL algorithms summarized in 
Tables 16.5 and 16.6 is the way in which the reflection coefficients and regression coef-
ficients are updated. In the case of Table 16.5, the updating is  performed indirectly. First, 
we compute the cross-correlation between forward and delayed backward prediction 
errors and the cross-correlation between backward prediction errors and joint-process 
estimation errors. Next, we compute the sum of weighted forward prediction-error 
squares and the sum of weighted backward-error squares. Finally, we compute the reflec-
tion and regression coefficients by dividing a cross-correlation by a sum of weighted 
prediction-error squares. By contrast, in Table 16.6, the updating of the reflection and 
regression coefficients is performed directly. The differences between indirect and direct 
forms of updating, as described herein, have an important bearing on the numerical 
behavior of these recursive LSL algorithms; this issue is discussed in Section 16.14.
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TAbLe 16.6 Summary of the Recursive LSL Algorithm Using A Priori Estimation  
Errors with Error Feedback

Predictions:
For n = 1, 2, 3, c, compute the various order updates in the sequence m = 1, 2, c, M, where M is the final 
order of the least-squares predictor:

 fm - 1 1n2 = lfm - 1 1n - 12 + gm - 1 1n - 12 ∙hm - 1 1n2 ∙2

 bm - 1 1n - 12 = lbm - 1 1n - 22 + gm - 1 1n - 12 ∙bm - 1 1n - 12 ∙2

 hm 1n2 = hm - 1 1n2 + k*f, m  1n - 12bm - 1 1n - 12
 bm 1n2 = bm - 1 1n - 12 + k*b, m  1n - 12hm - 1 1n2

 kf, m  1n2 = kf, m  1n - 12 -
gm - 1 1n - 12bm - 1 1n - 12

bm - 1 1n - 12  h*m 1n2

 kb, m  1n2 = kb, m  1n - 12 -
gm - 11n - 12hm - 1 1n2

fm - 1 1n2  b*m 1n2

 gm 1n - 12 = gm - 1 1n - 12 -
g2

m - 1 1n - 12 ∙bm - 1 1n - 12 ∙2

bm - 1 1n - 12
Filtering:
For n = 1, 2, 3, c, compute the various order updates in the sequence m = 1, 2, c, M + 1:

 jm 1n2 = jm - 1 1n2 - h*m - 1 1n - 12bm - 1 1n2

 hm - 1 1n2 = hm - 1 1n - 12 +
gm - 1 1n2bm - 1 1n2

bm - 1 1n2  j*m 1n2
Initialization:
1. To initialize the algorithm, at adaptation cycle n = 0, set

fm - 1102 =  d,   d = small positive constant
bm - 11-12 = d

kf, m102 = kb, m102 = 0
g0102 = 1

2. For each adaptation cycle n Ú 1, generate the zeroth-order variables:

 h01n2 = b01n2 = u1n2
 f0 1n2 = b0 1n2 = lf01n - 12 + ∙ u1n2 ∙2

 g01n - 12 = 1

3. For joint-process estimation, at adaptation cycle n = 0, set

hm - 1102 = 0

 At each adaptation cycle n Ú 1, generate the zeroth-order variable

j01n2 = d1n2

relationship Between the recursive lsl algorithm with 
error Feedback and the gal algorithm

One last comment is in order—the GAL algorithm of Table 5.2 may be viewed as a 
simplified form of the recursive LSL algorithm of Table 16.6 under the following special 
set of conditions (see Problem 19):
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 1. For all m and n, the backward reflection coefficient kb, m(n) is set equal to the 
complex conjugate of the forward reflection coefficient kf, m(n).

 2. For all m and n, the conversion factor gm(n) is set equal to unity.

 3. At adaptation cycle n, the adjustment to the reflection coefficient km in the GAL 
algorithm is related in a special way to the corresponding adjustments in kf, m(n) 
and kb, m(n).

16.13 relatiOn Between reCursive lsl and rls algOrithms

In solving the joint-process estimation problem with an order-recursive adaptive 
filter, we have shown how the least-squares predictor can be expanded to include 
the estimation of a desired response. The solution to this problem encompasses the 
computation of a set of regression coefficients {h0(n), h1(n), c, hM(n)} that is fed 
with a corresponding set of inputs represented by the backward prediction errors 
{b0(n), b1, c, bM(n)}. [See Fig. 16.7.] Recognizing that there is a one-to-one corre-
spondence between this set of backward prediction errors and the set of tap inputs 
{u(n), u(n - 1), c, (n - M)}, as shown in Eq. (16.50), we expect to find a correspond-
ing relationship between the sequence of LSL regression coefficients and the set 
of least-squares tap weights 5wn 0 1n2, wn 1 1n2, . . . , wn M 1n26 in the RLS algorithm. The 
purpose of this section is to derive this relationship formally.

Toward that end, consider the conventional tapped-delay-line or FIR-filter struc-
ture shown in Fig. 16.15. For order m, the tap inputs u(n), u(n - 1), c, u(n - m) 
are derived directly from the input u(n) and the tap weights wn 0 1n2, wn 1 1n2, . . . , wn m 1n2 
are used to form respective scalar inner products. From Chapter 9, we recall that the 

FiguRe 16.15 Conventional FIR fiter for estimating the desired response using the RLS algorithm.

M16_HAYK4083_05_SE_C16.indd   680 21/06/13   8:54 AM



Section 16.13 Relation between Recursive LSL and RLS Algorithms   681

least-squares solution for the (m + 1)-by-1 tap vector wn m 1n2 consisting of the elements 
wn 0 1n2, wn 1 1n2, . . . , wn m 1n2 is defined by

 𝚽m + 1 1n2wn m 1n2 = zm + 1 1n2, (16.136)

where 𝚽m + 1(n) is the (m + 1)-by-(m + 1) correlation matrix of the tap inputs and  
zm + 1(n) is the corresponding (m + 1)-by-1 cross-correlation vector between the tap 
inputs and the desired response. We modify Eq. (16.136) in two steps:

 1. We premultiply both sides of the equation by a (m + 1)-by-(m + 1) lower triangular 
transformation matrix Lm(n).

 2. We interject the (m + 1)-by-(m + 1) identity matrix I = LH
m 1n2L-H

m  1n2 between 
the matrix 𝚽m + 1(n) and the vector wn m 1n2 on the left-hand side of the equation.

The matrix Lm(n) is defined in terms of the tap weights of backward prediction-error fil-
ters of orders 0, 1, 2, c, m, as in Eq. (16.53). The symbol L-H

m  1n2 denotes the Hermitian 
transpose of the inverse matrix L-1

m  1n2. We may thus write

 Lm 1n2𝚽m + 1 1n2LH
m 1n2L-H

m  1n2wn m 1n2 = Lm 1n2zm + 1 1n2. (16.137)

Now, let

 Dm + 1 1n2 = Lm 1n2𝚽m + 1 1n2LH
m 1n2 (16.138)

in Eq. (16.137). Then, using the formula for the augmented normal equations for back-
ward linear prediction, we may show that the product 𝚽m + 1 1n2LH

m 1n2 consists of a 
lower triangular matrix whose diagonal elements equal the various sums of weighted 
backward a posteriori prediction-error squares—that is, b0 1n2, b1 1n2, . . . , bm 1n2. (See 
Problem 13.) The matrix Lm(n) is, by definition, a lower triangular matrix whose dia-
gonal elements are all equal to unity. Hence, the product of Lm(n) and 𝚽m + 11n2LH

m 1n2 
is a lower triangular matrix. We also know that LH

m 1n2 is an upper triangular matrix, 
and so is the matrix product Lm(n)𝚽m + 1(n). Hence, the product of Lm(n)𝚽m + 1(n) and 
L  H

m  1n2 is an upper triangular matrix. In other words, the matrix Dm + 1(n) is both upper 
and lower triangular, which can only be satisfied if Dm + 1(n) is diagonal. Accordingly, 
we may write

  Dm + 1 1n2 = Lm 1n2𝚽m + 1 1n2L  H
m  1n2  

  = diag[b0 1n2, b1 1n2, . . . , bm 1n2]. 
(16.139)

Equation (16.139) is further proof that the backward a posteriori prediction errors 
b0(n), b1(n), c, bm(n) produced by the various stages of the LSL predictor are uncor-
related (in a time-average sense) at all adaptation cycles.

The product Lm(n)zm + 1(n) on the right-hand side of Eq. (16.137) equals the cross-
correlation vector between the backward prediction errors and the desired response; let 
this cross-correlation vector be defined by

 tm - 1 1n2 = a
n

i = 1
ln - ibm + 11i2d*1i2 (16.140)
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where d(i) is the desired response. Substituting Eq. (16.52) into Eq. (16.140), we thus get

  tm + 1 1n2 = a
n

i = 1
ln - iLm 1n2um + 1 1i2d*1i2 

  = Lm 1n2a
n

i = 1
ln - ium + 1 1i2d*1i2 (16.141)

  = Lm 1n2zm + 1 1n2,  

which is the result we have been seeking. Accordingly, the combined use of Eqs. (16.138) 
and (16.141) in Eq. (16.137) yields the transformed RLS solution

 Dm + 1 1n2L-H
m  1n2wn m 1n2 = tm + 1 1n2. (16.142)

Thus far, we have considered how the application of the lower triangular matrix 
Lm(n) transforms the RLS solution for the tap-weight vector of the conventional FIR 
structure shown in Fig. 16.15. We next consider the linear combiner of Fig. 16.7 involving 
the regression coefficient vector

 hm 1n2 = 3h0 1n2, h1 1n2, . . . , hm 1n24T
 . (16.143)

The vector hm(n) may be viewed as the solution that minimizes the cost function

a
n

i = 1
ln - i ∙ d1i2 - bT

m + 11i2h*m 1n2 ∙2,

where hm(n) is held constant for 1 … i … n. The solution to the RLS problem is

 Dm + 1 1n2hm 1n2 = tm + 1 1n2, (16.144)

where Dm + 1(n) is the (m + 1)-by-(m + 1) correlation matrix of the backward a pos-
teriori prediction errors used as inputs to the regression coefficients and tm + 1(n) 
is the (m + 1)-by-1 cross-correlation vector between these inputs and the desired 
response.

By comparing the transformed RLS solution of Eq. (16.142) with the RLS solution 
of Eq. (16.144), we immediately see that the connecting link between these two solutions 
is provided by the lower triangular matrix Lm(n) of Eq. (16.53), as shown by

 hm 1n2 = L-H
m  1n2wn m 1n2 (16.145)

or, equivalently,

 wn m 1n2 = L  H
m1n2hm 1n2. (16.146)

On the basis of these two equations, we conclude the discussion of least-squares estima-
tion by stating that linear adaptive filtering problems such as system identification and 
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channel equalization can be solved by using one of two equivalent structures, each with 
its own advantages:

	 •	 A least-squares FIR estimator, which offers structural simplicity as shown in 
Fig. 16.15.

	 •	 A least-squares joint-process estimator, which offers structural modularity. 
Specifically, it consists of the multistage lattice predictor of Fig. 16.6 that feeds the 
linear combiner of Fig. 16.7.

16.14 Finite‐preCisiOn eFFeCts

In this section, we continue our discussion concerning the impact of finite‐precision 
effects on adaptive filtering algorithms that began in Chapter 12, where attention 
was focused on the least-mean‐square (LMS) and RLS algorithms, and continued in 
Section 15.6, which examined the case of square‐root adaptive filtering algorithms. 
Here, we complete the study of finite‐precision effects by discussing their impact 
on order‐recursive adaptive filtering algorithms. In such algorithms (and, for that 
matter, in all fast RLS algorithms known to date), the particular section responsible 
for joint‐process estimation is subordinate to the section responsible for performing 
the forward and backward linear predictions. Accordingly, the numerical stability of 
order-recursive LSL adaptive filtering algorithms is critically dependent on how the 
prediction section performs its computations.

qrd‐lsl algorithm

In the QR‐decomposition–based least‐squares lattice (QRD‐LSL) algorithm summa-
rized in Table 16.4, the prediction section consists of M lattice stages, where M is 
the final prediction order. Each stage of the prediction section uses QR‐decompo-
sition in the form of Givens rotations to perform its computations. The net result 
is that the sequence of input data u(n), u(n -  1), c, u(n -  M) is transformed 
into a corresponding sequence of angle‐normalized backward prediction errors 
eb, 0(n), eb, 1(n), c, eb, M(n). Given this latter sequence, the joint‐process estimation 
section also uses QR‐decomposition, on a stage‐by‐stage basis, to perform its own 
computations; the final product is a least‐squares estimate of some desired response 
d(n). In other words, all the computations throughout the algorithm are performed 
using QR‐decomposition.

From a numerical point of view, the QRD-LSL algorithm has some desirable 
numerical properties:

 1. The sines and cosines involved in applying the Givens rotations are all numerically 
well behaved.

 2. The algorithm is numerically consistent in that, from one adaptation cycle to the 
next, each section of the algorithm propagates the minimum possible number of 
parameters needed for satisfactory operation; that is, the propagation of related 
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parameters is avoided. Table 16.4 shows that the parameters propagated by the 
three sections of the algorithm are as follows:

Section Parameters propagated

Forward  
prediction

b1>2
m -  1(n -  2),  pf, m -  11n -  12, g1>2

m -  11n -  12

Backward 
prediction

f1>2
m -  1 1n -  12,  pb, m -  11n -  12

Joint‐process 
estimation

pm -  11n -  12

 3. The auxiliary parameters pf, m - 11n - 12, pb, m - 11n - 12, and pm - 11n - 12, which 
are involved in the order updating of the angle‐normalized estimation errors 
ef, m - 11n2, eb, m - 11n2, and em 1n2, respectively, are all computed directly. That is, 
local error feedback is involved in the time‐update recursions used to compute 
each of these auxiliary parameters. This form of feedback is another factor in 
assuring numerical stability of the algorithm.

Among the various pieces of experimental evidence for numerical stability of 
the QRD‐LSL algorithm are computer simulation studies reported by Ling (1989), 
Yang and Böhme (1992), McWhirter and Proudler (1993), and Levin and Cowan 
(1994), all of which have demonstrated the numerical robustness of variants of the 
QRD‐LSL algorithm. Of particular interest is the paper by Levin and Cowan (1994), 
in which the performance of eight different adaptive filtering algorithms of the  
RLS family was evaluated in a finite‐precision environment. The results presented 
therein demonstrate the superior performance of algorithms belonging to the 
square‐root information-filtering domain (exemplified by the QRD‐LSL algorithm) 
over those belonging to the covariance-filtering domain, the latter being exemplified 
by the traditional RLS algorithm. Moreover, of the eight algorithms considered in 
the study, the QRD‐LSL algorithm appeared to be the least affected by numerical 
imprecision.

Further evidence for the numerical robustness of the QRD‐LSL is presented by 
Capman et al. (1995), who describe an acoustic echo canceller that combines a multirate 
scheme with a variant of the QRD‐LSL algorithm. Simulation results presented therein 
demonstrate the numerical robustness of this solution to the echo cancellation problem.

recursive lsl algorithms

Turning next to recursive least‐squares lattice (LSL) algorithms, recall that these algo-
rithms are special cases of the QRD‐LSL algorithm. Indeed, they are derived by squaring 
the arrays of the QRD‐LSL algorithm and then comparing terms. Recognizing that, in the 
context of the numerical behavior of an algorithm, squaring has an effect opposite to that 
of taking the square root, we may therefore state that the performance of recursive LSL 
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algorithms in a finite‐precision environment is always inferior to that of the QRD‐LSL 
algorithm from which they are derived.

A recursive LSL algorithm provides a “fast” solution to the recursive least‐
squares estimation problem by employing a multistage lattice predictor for trans-
forming the input data into a corresponding sequence of backward prediction errors. 
This transformation may be viewed as a form of the classical Gram–Schmidt orthogo-
nalization procedure, which is known to be numerically inaccurate (Stewart, 1973). 
Correspondingly, a conventional form of the recursive LSL algorithm (be it based 
on a posteriori or a priori prediction errors) has poor numerical behavior. The key 
to a practical method of overcoming the numerical accuracy problem in a recursive 
LSL algorithm is to update the forward and backward reflection coefficients directly, 
rather than first computing the individual sums of weighted forward and backward 
prediction errors and their cross‐correlations and then taking ratios of the appropri-
ate quantities (as in a conventional LSL algorithm). This is precisely what is done in a 
recursive LSL algorithm with error feedback (Ling & Proakis, 1984a), exemplified by 
the algorithm summarized in Table 16.6. For a prescribed fixed‐point representation, 
a recursive LSL algorithm with error feedback works with much more accurate values 
of the forward and backward reflection coefficients, which are the key parameters in 
any recursive LSL algorithm. The direct computation of the forward and backward 
reflection coefficients therefore has the overall effect of preserving the positive defi-
niteness of the underlying inverse correlation matrix of the input data, despite the 
presence of quantization errors due to finite‐precision effects. Therefore, insofar as 
numerical performance is concerned, recursive LSL algorithms with error feedback 
are preferred to their conventional forms.3

16.15 summary and disCussiOn

In this chapter, we further consolidated the close relationship between Kalman filter 
theory and the family of adaptive linear filters that is rooted in least-squares estimation. 
In particular, we demonstrated how the square-root information filtering algorithm, 
which is a variant of the Kalman filter, can be used to derive the QR-decomposition-
based least-squares lattice (QRD-LSL) algorithm. Simply put, the QRD-LSL algorithm 
represents the most fundamental form of an order-recursive adaptive filtering algo-
rithm. Other order-recursive adaptive filtering algorithms, such as the recursive LSL 
algorithm using a posteriori estimation errors and the recursive LSL algorithm using 
a priori estimation errors with error feedback, are in fact rewritings of the QRD-LSL 
algorithm in one form or another.

3North et al. (1993) present computer simulations (using floating-point arithmetic) that compare the 
numerical behavior of a 32-bit directly updated recursive LSL algorithm (i.e., an algorithm with error feed-
back) with a 32-bit indirectly updated recursive LSL algorithm. Their study involved adaptive interference 
cancellation. In the recursive LSL algorithm with indirect updating, it was found that after about 105 adapta-
tion cycles the accumulation of numerical errors resulted in a degradation of approximately 20 dB in interfer-
ence cancellation, compared with the directly updated recursive LSL algorithm.
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The QRD-LSL algorithm combines highly desirable features of RLS estimation, 
QR-decomposition, and a lattice structure. Accordingly, it offers a unique set of compu-
tational and implementational advantages:

	 •	 The QRD-LSL algorithm has a fast rate of convergence, which is inherent in RLS 
estimation.

	 •	 The QRD-LSL algorithm can be implemented using a sequence of Givens rota-
tions, which represent a form of QR-decomposition. Moreover, the good numeri-
cal properties of the QR-decomposition mean that the QRD-LSL algorithm is 
numerically stable.

	 •	 The QRD-LSL algorithm offers a high level of computational efficiency, in that 
its complexity is on the order of M, where M is the final prediction order (i.e., the 
number of available degrees of freedom).

	 •	 The lattice structure of the QRD-LSL algorithm is modular in nature, which means 
that the prediction order can be increased without having to recalculate all previ-
ous values. This property is particularly useful when there is no prior knowledge 
as to what the final value of the prediction order should be.

	 •	 Another implication of the modular structure of the QRD-LSL algorithm is that 
it lends itself to the use of very large-scale integration (VLSI) technology for its 
hardware implementation. Of course, the use of this sophisticated technology can 
be justified only if the application of interest calls for the use of VLSI chips in large 
numbers.

	 •	 The QRD-LSL algorithm includes an integral set of desired variables and parameters  
that are useful to have in signal-processing applications. Specifically, the algorithm 
offers the following three sets of useful by-products:

	 •	 Angle-normalized	forward	and	backward	prediction	errors.
	 •	 Auxiliary	parameters	that	can	be	used	for	the	indirect computation of the for-

ward and backward reflection coefficients and the regression coefficients (i.e., 
tap weights).

The recursive LSL algorithms enjoy many of the properties of the QRD-LSL algo-
rithm, namely, fast convergence, modularity, and an integral set of useful  parameters and 
variables for signal-processing applications. However, the numerical properties of recur-
sive LSL algorithms depend on whether error feedback is included in their  composition; 
this issue was discussed in Chapter 12.

The order-recursive adaptive filters considered in this chapter have a computa-
tional advantage over the square-root adaptive filters examined in the previous chap-
ter: With the order-recursive filters, the computational cost increases linearly with the 
number of adjustable parameters, whereas with the square-root filters, the cost of com-
putation increases as the square of the number of adjustable parameters. However, the 
use of order-recursive adaptive filters is limited to temporal signal-processing applica-
tions that permit the exploitation of the time-shifting property of the input data. In 
contrast, square-root adaptive filters can be used for both temporal and spatial signal-
processing applications.
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prOBlems

 1. Derive the estimation error gm(n) that represents the output of an FIR filter whose tap-weight 
vector equals the gain vector km(n), and is excited by the tap-input vector um(n) as depicted 
in Fig. 16.3. [Hint: Since the filter output has the structure of a Hermitian form, it follows that 
the estimation error gm(n) is a real-valued scalar. Moreover, gm(n) is bounded by zero and 
unity.]

 2. Let 𝚽m(n) denote the time-average correlation matrix of the tap-input vector um(n) at adapta-
tion cycle n, and likewise for 𝚽m(n - 1). Show that the conversion factor

gm 1n2 = l 
det3𝚽m 1n - 124

det3𝚽m 1n24 ,

 where l is the exponential weighting factor. [Hint: Use the identity

 det1I1 + AB2 =  det1I2 + BA2,

 where I1 and I2 are identity matrices of appropriate dimensions and A and B are matrices of 
compatible dimensions.]

 3. (a) Show that the inverse of the correlation matrix 𝚽m - 1(n) may be expressed as

𝚽-1
m + 1 1n2 = c 0 0T

m

0m 𝚽-1
m  1n - 12 d +

1
fm 1n2 am 1n2aH

m 1n2,

 where 0m is the M-by-1 null vector, 0T
m is its transpose, fm1n2 is the minimum sum of 

weighted forward prediction-error squares, and am(n) is the tap-weight vector of a for-
ward prediction-error filter. Both am(n) and fm1n2 refer to prediction order m.

 (b) Show that the inverse of 𝚽m + 1(n) may also be expressed as

𝚽-1
m + 1 1n2 = c 𝚽-1

m  1n2 0m

0T
m 0

d +
1

bm 1n2 cm 1n2cH
m 1n2,

 where bm 1n2 is the minimum sum of weighted backward a posteriori prediction-error 
squares and cm(n) is the tap-weight vector of the backward prediction-error filter. Both 
bm1n2 and cm(n) refer to prediction order m.

 4. Derive the following update formulas for the conversion factor:

 gm + 1 1n2 = gm1n - 12 -
∙ fm 1n2 ∙2

fm 1n2 ;

 gm + 1 1n2 = gm 1n2 -
∙ bm 1n2 ∙2

bm 1n2 ;

 gm + 1 1n2 = l 
fm 1n - 12
fm 1n2  gm 1n - 12;

 gm + 1 1n2 = l 
bm 1n - 12
bm 1n2  gm1n2.

 5. (a) Starting with Eq. (16.10) and using the orthogonality condition of Eq. (16.9), derive the 
time-update equation (16.11) for computing the forward prediction-error energy.
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 (b) Starting with Eq. (16.21) and using the orthogonality condition of Eq. (16.20), derive 
the time-update equation (16.22) for computing the backward prediction-error 
energy.

 6. Referring back to the three kinds of estimation error discussed in Section 16.4 on the conver-
sion factor, justify the following equations:

 (a) Eq. (16.27) for RLS estimation.
 (b) Eq. (16.28) for adaptive forward linear prediction.
 (c) Eq. (16.29) for adaptive backward linear prediction.

 7. Equation (16.49) presents one way of updating the exponentially weighted cross-correlation 
Δm - 1(n). Equivalently, we may use the update equation

∆m - 1 1n2 = l∆m - 1 1n - 12 + f *m - 1 1n2bm - 1 1n - 12.

Hence, we may deduce the equivalence

f *m - 1 1n2bm - 1 1n - 12 = h*m - 1 1n2bm - 1 1n2.

 (a) Starting with the definition of Eq. (16.34) and following a procedure similar to that used 
in Section 16.5, derive the second recursion presented in this problem for Δm - 1(n).

 (b) Justify the given equivalence involving the a priori and a posteriori forms of forward and 
backward prediction errors using the interpretations of the conversion factor presented 
in Section 16.4.

 8. In this problem, we explore another (albeit much more complicated) procedure for deriving 
the time-update equation (16.49) for computing Δm - 1(n).

 (a) Starting with the augmented normal equations

𝚽m + 1 1n2am 1n2 = cfm 1n2
0m

d

for forward linear prediction and using the expansion

𝚽m + 11n2 = C 𝚽m 1n2 F2 1n2

FH
2  1n2 u2 1n2

S ,

show that

𝚽m + 11n2c am - 1 1n2
0

d = £
 fm - 1 1n2

0m - 1

∆m - 11n2
§ ,

where

∆m - 1 1n2 = FH
 2  1n2am - 1 1n2.

 (b) Show that this new definition of Δm - 1(n) is equivalent to that of Eq. (16.34).
 (c) The augmented normal equations may be written in the equivalent form

𝚽m + 1 1n2cm 1n2 = c 0m

 bm1n2 d ,
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where 𝚽m + 1(n) is now expanded as

𝚽m + 1 1n2 = Cu1 1n2 FH
1  1n2

F1 1n2 𝚽m 1n - 12
S .

On this second basis, show that we may also write

𝚽m + 1 1n2c 0
cm - 1 1n - 12 d = £

∆′m - 1 1n2
0m - 1

 bm - 1 1n - 12
§ .

 (d) Next, using the results of parts (a) and (c), show that the parameters Δm - 1(n) and 
∆′m - 1 1n2 are the complex conjugate of one another; that is,

∆′m - 1 1n2 = ∆*m - 1 1n2.

 (e) Recognizing that the leading element of the vector am - 1(n - 1) equals unity, we may 
express Δm - 1(n) as

∆m - 1 1n2 = 3∆m - 1 1n2, 0T
 ,  bm - 1 1n - 124c am - 1 1n - 12

0
d .

  Hence, using the recursion

𝚽m + 1 1n2 = l𝚽m + 1 1n - 12 + um + 1 1n2uH
m + 1 1n2,

show that

∆m - 1 1n2 = l30, cH
m - 1 1n - 12𝚽m + 1 1n - 124c am - 1 1n - 12

0
d

+ 30, cH
m - 1 1n - 12um + 1 1n2 uH

m + 1 1n24 c am - 1 1n - 12
0

d .

 (f) Finally, using the definitions for the forward a priori prediction error hm - 1(n) and the 
backward a posteriori prediction error bm - 1(n - 1), derive the desired recursion

∆m - 1 1n2 = l∆m - 1 1n - 12 + h*m - 1 1n2bm - 1 1n - 12.

 9. Using the results obtained in parts (a) and (c) of Problem 7, derive the following order-
update recursions involving the sums of forward and backward prediction-error squares, 
respectively:

fm 1n2 = fm - 1 1n2 -
∙ ∆m - 1 1n2 ∙2

bm - 1 1n - 12;

bm 1n2 = bm - 1 1n - 12 -
∙ ∆m - 1 1n2 ∙2

fm - 1 1n2 .
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 10. In this problem, we show how the various quantities of the fast prediction equations relate to 
each other, and we demonstrate the parametric redundancy that they contain.4

 (a) By combining parts (a) and (b) from Problem 3, show that

c 𝚽-1
m  1n2 0m

0T
m 0

d - c 0 0T
m

0m 𝚽-1
m  1n - 12 d =

am 1n2aH
m 1n2

fm 1n2 -
cm 1n2cH

m 1n2
bm 1n2 .

 (b) Using the recursive Eqs. (10.16) and (10.18) in Chapter 10, plus Eq. (16.26) in this chapter, 
show that the time update for 𝚽-1

m  may be expressed as follows:

𝚽-1
m  1n2 = l-1𝚽-1

m  1n - 12 -
km 1n2kH

m 1n2
gm 1n2 ,

  where km(n) is the gain vector and gm(n) is the conversion factor.
 (c) By eliminating 𝚽-1

m  1n - 12 from the preceding two expressions, show that all the vari-
ables may be reconciled as

£ 𝚽-1
m  1n2 0m

0T
m 0

§ - l£ 0 0T
m

0m 𝚽-1
m  1n2 § =

am 1n2aH
m 1n2

fm 1n2 + l£ 0
km 1n2 §  

30, kH
m 1n24

gm 1n2 -
cm 1n2cH

m 1n2
bm 1n2 ,

  in which all the variables have a common adaptation cycle n and a common order index m.  
The left-hand side of this equation is called a displacement residue of 𝚽-1

m  1n2, and the 
right-hand side, being the sum and difference of three vector dyads, has rank not exceed-
ing three. In matrix theory, 𝚽-1

m  1n2 is said to have a displacement rank three as a result of 
the relevant structure of the data matrix pertaining to the prewindowing method, that is 
the third numbered item in Section 9.2. Note that this structure holds irrespective of the 
sequence u(n) that builds the data matrix.

 (d) Suppose we multiply the result of part (c) from the left by the row  vector 31, z1l, c,
1z>1l2m4 and from the right by the column vector 31, w1l, c, 1w>1l2m4H, where z 
and w are two complex variables. Show that the result of part (c) is equivalent to the two-
variable polynomial equation

11 - zw*2P1z, w*2 = A1z2A*1w2 + K1z2K*1w2 - C1z2C*1w2  for all z, w,

  provided that we make the correspondences

 P1z, w*2 = 31, z >  1l, c, 1z >  1l2m - 14𝚽-1
m  1n2 D 1

w*>1l

f
1w*>1l2M - 1

T ,

 A1z2 = 31, z >  2l, . . . , (z >  2l)m4 am 1n22fm 1n2
,

 K1z2 = 31, z >  2l, . . . , (z >  2l)m4A l

gm 1n2 c
0

km 1n2 d ,

and

 C1z2 = 31, z >  2l, . . . , (z >  2l)m4 cm1n22bm 1n2
.

Similarly, A*(w) = [A(w)]*, and so on.
4This problem was originally formulated by P. Regalia, private communication, 1995.
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 (e) Set z = w = ejv in the result of part (d) to show that

∙ A(ejv)∙2 + ∙ K(ejv)∙2 = ∙ C(ejv)∙2  for all v;

  that is, the three polynomials A(z), K(z), and C(z) are power complementary along the 
unit circle |z| = 1.

 (f) Show that, because 𝚽-1
m  1n2 is positive definite, the following system of inequalities neces-

sarily results:

∙ A1z2 ∙2 + ∙ K1z2 ∙2 - ∙ C1z2 ∙2 = •
6 0, ∙ z ∙ 7 1
= 0 ∙ z ∙ = 1
Ú 0, ∙ z ∙ 6 1

.

  [Hint: Set w* = z* in part (d), and note that if 𝚽-1
m  1n2 is positive definite, the inequality

P1z, z*2 7 0  for all z

 must result. Note also that the center equality is equivalent to the result of part (e).]
 (g) Finally, deduce from the first inequality of part (f) that C(z) must be devoid of zeros in 

|z| 7 1 and, hence, that given A(z) and K(z), the polynomial C(z) is uniquely determined 
from part (e) via spectral factorization. This shows that, once the forward prediction and 
gain quantities are known, the backward prediction variables contribute nothing further 
to the solution and so are theoretically redundant.

 11. In the text, we derived the entries under forward prediction in Table 16.3 summarizing the 
one-to-one correspondences between Kalman variables and angle-normalized LSL variables 
in stage m of a lattice predictor. Complete the table by deriving the entries listed therein under 
both backward prediction and joint-process estimation.

 12. Justify the following relationships:
 (a) Joint-process estimation errors:

 ∙ em 1n2 ∙ = 2 ∙ em 1n2 ∙ #  ∙jm 1n2 ∙ ;

ang[em1n2] = ang3em1n24 + ang3jm 1n24.
 (b) Backward prediction errors:

 ∙ eb, m 1n2 ∙ = 2 ∙ bm 1n2 ∙ #  ∙bm1n2 ∙ ;

 ang3eb, m 1n24 = ang3bm 1n24 + ang3bm1n24.
 (c) Forward prediction errors:

 ∙ ef, m 1n2 ∙ = 2 ∙ fm 1n2 ∙ #  ∙hm 1n2 ∙ ;

 ang3ef, m 1n24 = ang3 fm1n24 + ang3hm1n24.
 13. The correlation matrix 𝚽m + 1(n) is postmultiplied by the Hermitian transpose of the lower tri-

angular matrix Lm(n) defined by Eq. (16.53). Show that the product 𝚽m + 1 1n2L  H
m  1n2 consists 

of a lower triangular matrix whose diagonal elements equal the various sums of weighted 
backward prediction-error squares b0 1n2, b1 1n2, . . . , bm 1n2. Hence, show that the product 
Lm 1n2𝚽m - 1 1n2L  H

m  1n2 is a diagonal matrix, given by

Dm + 1 1n2 = diag3b0 1n2, b1 1n2, . . . , bm 1n24.
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 14. Consider the case where the input samples u(n), u(n - 1), c, u(n - M) have a joint 
Gaussian distribution with zero mean. Assume that, within a scaling factor, the ensemble-
average correlation matrix RM + 1 of the input signal is equal to its time-average correlation 
matrix 𝚽M + 1(n) for adaptation cycle n Ú M. Show that the log-likelihood function for this 
input includes a term equal to the parameter gM(n) associated with the recursive LSL 
algorithm. [For this reason, the parameter gM(n) is sometimes referred to as a likelihood 
variable.]

 15. Let dn1n ∙un - m + 12 denote the least-squares estimate of the desired response d(n), given 
the inputs u(n - m + 1), c, u(n) that span the space un - m + 1 . Similarly, let dn1n ∙un - m2 denote 
the least-squares estimate of the desired response, given the inputs u(n - m), u(n - m + 1), c,  
u(n) that span the space un - m. In effect, the latter estimate exploits an additional piece of 
information represented by the input u(n - m). Show that this new information is represented 
by the corresponding backward prediction error bm(n). Show also that the two estimates are 
related by the recursion

dn1n ∙un - m2 = dn1n ∙un - m + 12 + h*m 1n2bm 1n2,

where hm(n) denotes the pertinent regression coefficient in the joint-process estimator. Compare 
this result with that of Section 14.1 dealing with the concept of innovations.

 16. In QRD-LSL filters, list the set of relations for a square-root information-filtering solution 
to the adaptive forward linear problem in an LSL sense.

 17. Starting from the Kalman filter equation (16.132) and using Table 16.3 and Eqs. (16.77) and 
(16.79), derive the update equations (16.134) and (16.135) for the backward reflection coeffi-
cient knb, m 1n2 and joint-process estimation coefficient hnm - 1 1n2, which pertain to the recursive 
LSL algorithm with error feedback.

 18. In this problem, we explore the derivation of the GAL as a special form of the recursive LSL 
algorithm using a priori estimation with error feedback.

Starting with the algorithm summarized in Table 16.6, do the following:

 (i) For all m and n, put

kb, m 1n2 = k*f, m 1n2
 and

gm1n2 = 1.

 (ii) Under this special set of conditions, explore the ways in which the recursive LSL algo-
rithm of Table 16.6 reduces to the GAL algorithm of Table 5.2.

 19. In Section 16.12, we discussed a modification of the a priori error LSL algorithm by using a 
form of error feedback. In this problem, we consider the corresponding modified version of 
the a posteriori LSL algorithm. Show that

kf, m 1n2 =
gm 1n - 12
gm - 1 1n - 12 £kf, m 1n - 12 -

1
l
 

bm - 1 1n - 12 f *m - 1 1n2
bm - 1 1n - 22gm - 11n - 12 §

and

kb, m =
gm1n2

gm - 1 1n - 12 £kb, m 1n - 12 -
1
l
 

fm - 1 1n2b*m - 1 1n - 12
fm - 11n - 12gm - 11n - 12 § .
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 20. The following table is a summary of the normalized LSL algorithm:

 ∆m - 1 (n) = ∆m - 1(n - 1)[1 - ∙f m - 1(n) ∙2]1 >  2[1 - ∙ bm - 1(n - 1) ∙2]1 >  2 + bm - 1(n - 1)f *m - 1 (n)

 bm 1n2 =
bm - 11n - 12 - ∆m - 1 1n2f m - 1 1n2

31 - ∙ ∆m - 1 1n2 ∙241 >  231 - ∙ fm - 1 1n2 ∙241 >  2

 f m 1n2 =
f m - 11n2 - ∆*m - 11n2bm - 1 1n - 12

31 - ∙ ∆m - 1 1n2 ∙241 >  231 - ∙ bm - 1 1n - 12 ∙241 >  2

The normalized parameters are defined by

f m 1n2 =
fm 1n2

f1 >  2
m  1n2g1 >  2

m  1n - 12,

bm 1n2 =
bm 1n2

b1 >  2
m  1n2g1 >  2

m  1n2,

and

∆m 1n2 =
∆m 1n2

f1 >  2
m  1n2b1 >  2

m  1n - 12.

Derive the recursions defining the normalized LSL algorithm.

Problems   693
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Deconvolution is a signal-processing operation that, ideally, unravels the effects of con-
volution performed by a linear time-invariant system operating on an input signal. More 
specifically, in ordinary deconvolution, the output signal and the system are both known, 
and the requirement is to reconstruct what the input signal must have been. In blind 
deconvolution, or in more precise terms, unsupervised deconvolution, only the output 
signal is known (i.e., both the system and the input signal are unknown), and the require-
ment is to find the input signal, hence the system itself. Clearly, blind deconvolution is 
a more difficult signal-processing task than ordinary deconvolution. In return, blind 
deconvolution fills a void in signal-processing applications, where the need for blind 
adaptation is a desirable requirement.

To pave the way for a study of the blind deconvolution problem, we begin by 
discussing the theoretic implications and practical importance of blind deconvolution.

17.1 Overview Of Blind decOnvOlutiOn

Consider an unknown linear time-invariant system l with input x(n), as depicted in 
Fig. 17.1. The input data (information-bearing) sequence x(n) is assumed to consist of 
independently and identically distributed (i.i.d.) symbols; the only thing known about the 
input is its probability distribution. The problem is:

Restore x(n), or equivalently, identify the inverse l-1 of the system l, given the 
observed sequence u(n) at the system output.

If the system l is minimum phase (i.e., the transfer function of the system has all of 
its poles and zeros confined to the interior of the unit circle in the z-plane), then not only 
is l stable, so is the inverse system l-1. In that case, we may view the input sequence 
x(n) as the “innovation” of the system output u(n), and the inverse system l-1 is just a 

c h a p t e r  1 7

Blind deconvolution

Figure 17.1 Setting the stage 
for blind deconvolution.
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whitening filter. With them the blind deconvolution problem is solved. These observa-
tions follow from the study of linear prediction presented in Chapter 3.

In many practical situations, however, the system l may not be minimum phase. A 
system is said to be non-minimum-phase if its transfer function has any of its zeros located 
outside the unit circle in the z-plane; exponential stability of the system dictates that the 
poles must be located inside the unit circle. Two practical examples of a non- minimum-
phase system are a telephone channel and a fading radio channel. In such situations, the 
restoration of the input sequence x(n), given the channel output, is a difficult problem.

Typically, adaptive equalizers used in digital communications require an initial 
training period, during which a known data sequence is transmitted. A replica of this 
sequence is made available at the receiver in proper synchronism with the transmitter, 
thereby making it possible for adjustments to be made to the equalizer coefficients 
in accordance with the adaptive filtering algorithm employed in the equalizer design. 
When the training is completed, the equalizer is switched to its decision-directed mode, 
and normal data transmission may then commence. These modes of operation of an 
adaptive equalizer were discussed in Chapter 6 on the LMS algorithm.

However, in some practical situations, it would be highly desirable for a receiver to 
be able to achieve complete adaptation without access to a desired response. For example, 
in a multipoint data network involving a control unit connected to several pieces of data 
terminal equipment (DTE), we have a “master–slave” type of situation, in that a DTE is 
permitted to transmit only when its modem is polled by the modem of the control unit. 
A problem peculiar to these networks is that of retraining the receiver of a DTE that is 
unable to recognize data and polling messages, either due to severe variations in channel 
characteristics or simply because that particular receiver was not powered on during the 
initial synchronization of the network. Clearly, in a large or heavily loaded multipoint 
network, data throughput is increased and the burden of monitoring the network is eased 
if some form of blind equalization is built into the receiver design (Godard, 1980).

In wireless communications, the use of blind equalization offers the following 
advantages over traditional (i.e., supervised) adaptative equalization techniques:

	 •	 Unsupervised (self-organized) learning does away with the need for an externally 
supplied desired response at the receiver.

	 •	 Spectral efficiency is improved by avoiding the waste of time in transmission over 
the channel, thus preserving channel bandwidth.

In reflection seismology, the traditional method of removing the source waveform 
from a seismogram is to use linear-predictive deconvolution (which was discussed in 
Chapter 6). The method of predictive deconvolution is derived from four fundamental 
assumptions (Gray, 1979):

 1. The reflectivity series is white. This assumption is, however, often violated by reflec-
tion seismograms, as the reflectivities result from a differential process applied to 
acoustic impedances. In many sedimentary basins, there are thin beds that cause 
the reflectivity series to be correlated in sign.

 2. The source signal is minimum phase, in that its z-transform has all of its zeros confined 
to the interior of the unit circle in the z-plane; here, it is presumed that the source 
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696   Chapter 17  Blind Deconvolution

1For books on the many facets of blind deconvolution, the reader is referred to the following list:

1. Haykin (1994): This is the first edited book on blind convolution.
2. Haykin (2000): This edited book covers two volumes, the first dealing with source separation 

and the second dealing with blind deconvolution; these two signal-processing operations are 
related.

signal is in discrete-time form. This assumption is valid for several explosive sources 
(e.g., dynamite), but it is only approximate for more complicated sources, such as 
those used in marine exploration.

 3. The reflectivity series and noise are statistically independent and stationary in time. 
The stationarity assumption, however, is violated because of spherical divergence and 
attenuation of seismic waves. To cope with nonstationarity of the data, we may use 
adaptive deconvolution, but such a method often destroys primary events of interest.

 4. The minimum mean-square-error criterion is used to solve the linear prediction 
problem. This criterion is appropriate only when the prediction errors (the reflec-
tivity series and noise) have a Gaussian distribution. Statistical tests performed 
on reflectivity series, however, show that their kurtosis is much higher than that 
expected from a Gaussian distribution. The skewness and kurtosis of a distribution 
function are respectively defined as

 g1 =
m3

s3 (17.1)

  and

 g2 =
m4

s4 - 3, (17.2)

  where s2 is the variance of the distribution and m3 and m4 are its third- and fourth-
order central moments, respectively. For a real-valued Gaussian distribution with 
zero mean, both g1 and g2 are zero.

The main point to note here is that valuable phase information contained in a reflec-
tion seismogram is ignored by the method of predictive deconvolution. This limitation 
is overcome by using blind deconvolution (Godfrey & Rocca, 1981).

Blind equalization in digital communications and blind deconvolution in reflection 
seismology are examples of a special kind of adaptive inverse filtering that operates 
in an unsupervised manner. Only the received signal and some additional information 
in the form of a probabilistic source model are provided. In the case of equalization 
for digital communications, the model describes the statistics of the transmitted data 
sequence. In the case of seismic deconvolution, the model describes the statistics of the 
earth’s reflection coefficients.

approaches to Blind deconvolution

Expanding on the brief discussion on blind deconvolution just presented, the literature on 
blind deconvolution algorithms and their practical applications has grown steadily during the 
past three to four decades, so much so that several books have been written on the subject.1

(continued)
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With the limited space we have in this single chapter of the book, however, the 
study of blind deconvolution will be confined to the following special, yet important, 
class of systems:

Non-minimum-phase, linear time-invariant systems of a single-input, single-output 
(SISO) kind, for which the received signal (i.e., measurements) is non-Gaussian.

To be more precise, we focus on two types of blind deconvolution algorithms, one linear 
and the other nonlinear.

 1. Linear blind deconvolution. Here, the received signal is purposely oversampled at 
an integer multiple of the symbol rate. Thereby, the received signal is converted 
into a multichannel signal. Given this new representation of the received signal, 
the task confronting us is how to extract second-order information about the sys-
tem (i.e., channel) being considered so as to make up for the unavailability of the 
system input, or desired response. One interesting way of accomplishing this dif-
ficult task is to look to cyclostationarity, an inherent characteristic of modulated 
signals in communications, as the source of the desired second-order information.

The remarkable point to note here is the fact that it is, indeed,  possible to 
exploit the cyclostationarity property of the received signal for the purpose of 
blind system (i.e., closed) identification, despite the fact that we have no access 
to the system input (i.e., source signal). The solution is based on a block-oriented, 
subspace decomposition procedure (Tong et al., 1995); the price to be paid for this 
remarkable achievement is a computationally intensive identification procedure.2

2Other ways of implementing linear blind deconvolution are summarized here:

• Minimal noise subspace (Hua et al., 1997): This paper introduces the notion of a minimal noise 
subspace, which is computed from a set of channel pairs that form a tree. The tree exploits, with 
minimum redundancy, the diversity among the subchannels. It is claimed that this new procedure 
is computationally more efficient than the subspace method attributed to Moulines et al. (1995).

• Linear prediction theory (Slock, 1994; Slock and Papadias, 1995; Mannerkoski & Taylor, 1999; Pa-
padias & Slock, 1999): Unlike the subspace-decomposition procedure described in Section 17.3 on 
blind identification, the motivation for the prediction approach is blind equalization. The approach 
 described in Mannerkoski and Taylor (1999) is based on the use of least-square lattice prediction 
(i.e., order-recursive adaptive filtering), the theory of which was discussed in Chapter 16.

• Mutually referenced filters (Gesbert et al., 1997): In this approach, several filters are consid-
ered, the outputs of which act as training signals for each other during the adaptive procedure. 

3. Ding and Li (2001): This book tries to clarify the capabilities and limitations of blind equaliza-
tion algorithms and addresses algorithms for single-input, multiple-output (SIMO) systems.

4. Tugnait (2003): This chapter of a book presents a tutorial exposition of various approaches to 
blind channel equalization of the single-input, single-output (SISO) type; it addresses multiple 
and limited channel bandwidth as two practical issues of interest as well as practical applica-
tions of blind equalization.

5. Campisi and Egiazarian (2007): This edited book explores various image deconvolution al-
gorithms in different areas—namely, image restoration, microscopy, medical imaging, remote 
sensing, geophysical prospecting, and many other applications.

6. Pinchas (2012): This book describes mathematical aspects of a novel approach to blind chan-
nel equalization by exploiting the maximum entropy principle and comparing it to traditional 
 approaches.
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 2. Nonlinear blind deconvolution. Linear filters are associated with second-order sta-
tistics (SOS), whereas nonlinear filters are associated with higher-order statistics 
(HOS). The HOS of the received signal are exploited in one of two ways:

	 •	 Explicit sense, which is exemplified by the use of higher-order cumulants or 
their discrete Fourier transforms known as polyspectra. (See Chapter 1.) The 
property that polyspectra have of preserving phase information makes explicit 
HOS-based algorithms well suited for blind deconvolution (Pan & Nikias, 1988; 
Hatzinakos & Nikias, 1989, 1991).

	 •	 Implicit sense, in which case the HOS of the received signal are exploited indi-
rectly; the implicit HOS-based algorithms include Bussgang algorithms, so 
called because the deconvolved signal exhibits Bussgang statistics when the 
algorithm converges in the mean value (Bellini, 1986, 1988, 1994).

  Implicit HOS-based blind deconvolution algorithms are relatively simple to imple-
ment and are generally capable of delivering a good performance, as is evidenced 
by their actual use in digital communication systems. However, they suffer from 
two basic limitations: a potential for converging to a local minimum and sensitivity 
to timing jitter. In contrast, explicit HOS-based blind deconvolution algorithms 
overcome the local minimum problem by avoiding the need for minimizing a cost 
function; unfortunately, they are computationally much more complex. Perhaps 
the most serious limitation of both kinds of algorithm is their slow rate of conver-
gence. To appreciate the reason for this poor behavior, we have to recognize that 
the time-average estimation of HOS requires a much larger sample size than is 
the case for SOS. According to Brillinger (1975), the sample size needed to esti-
mate the nth-order statistics of a stochastic process, subject to prescribed values 
of estimation bias and variance, increases almost exponentially with order n. It is 
therefore not surprising that HOS-based blind deconvolution algorithms exhibit 
a slow rate of convergence compared with conventional adaptive filtering algo-
rithms that rely on a training sequence for their operation. Thus, whereas a tradi-
tional adaptive filtering algorithm may require a few hundred adaptation cycles to 
converge, an HOS-based blind deconvolution algorithm may require several thou-
sand adaptation cycles to converge. This slow rate of convergence is of no serious 
concern in some applications, such as seismic deconvolution. However, in a highly 
nonstationary environment, such as mobile digital communications, the algorithm 
may simply not have enough time to reach a steady state and may therefore be 
unable to track the statistical variations of the environment. Accordingly, these 

 Correspondingly, a constrained cost function in the form of a multidimensional mean-square 
error is devised, the minimization of which appears to provide a necessary and sufficient condi-
tion for equalization. The underlying theory of the procedure is linked to linear prediction.

• Linear neural network (Fang & Chow, 1999): This approach uses a network (following an over-
sampler) that consists of two linear layers connected in cascade. The first layer whitens the 
multichannel output of the sampler. The second (output) layer is designed to optimize the 
estimate of the transmitted data symbol. The stochastic learning algorithms used to compute 
the adjustable weights of the two layers are applied separately.

All of the foregoing procedures share a common feature: They involve oversampling, as indicated in the 
oversampled channel model of Fig. 17.2.
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blind deconvolution algorithms cannot be used in applications in which rapid 
acquisition is a system requirement.

Organization of the chapter

The linear type of deconvolution algorithms will occupy Sections 17.2 and 17.3 of this 
chapter. The material presented therein is aimed at the identification of a communica-
tion channel by exploiting the SOS attributed to cyclostationarity of the channel output.

When we come to the nonlinear type of blind deconvolution algorithms, the mate-
rial is organized as follows:

	 •	 Sections 17.4 through 17.6 are devoted to the family of Bussgang algorithms for 
blind channel equalization; this particular family has a long history that goes 
back to the classic article by Sato (1975a). Bussgang algorithms have been exten-
sively applied to communication systems, in which the channel may change slowly 
over time.

	 •	 In Section 17.7 we study fractional equalizers, in which SOS-based and Bussgang 
algorithms are tied together; in a loose sense, we may view these blind deconvolu-
tion algorithms to be complementary.

	 •	 Section 17.8 is devoted to a novel approach for nonlinear blind deconvolution  
that is based on the maximum entropy principle (Pinchas & Bobrovsky, 2006; 
Pinchas 2012). Derivation of this algorithm for channel equalization is highly 
demanding in mathematical terms.

It is important to recognize that when we speak of nonlinear blind deconvolution algo-
rithms, some form of nonlinearity is built into their structure so as to facilitate the self-
organized computation of a desired response.

17.2 channel identifiaBility using cyclOstatiOnary statistics

In HOS-based deconvolution algorithms, information about the unknown phase 
response of a non-minimum-phase channel is extracted by using the HOS of the chan-
nel output, which is sampled at the baud rate (i.e., the symbol rate). Alternatively, we 
may extract this phase information by exploiting another inherent characteristic of the 
channel output, namely, cyclostationarity. To explain this latter characteristic, we first 
write the received signal in a digital communications system in its most general base-
band form as

 u1t2 = a
∞

k = -∞
xkh1t - kT2 + n1t2, (17.3)

where a symbol xk is transmitted every T seconds (i.e., 1/T is the baud rate) and t denotes 
continuous time; h(t) is the overall impulse response of the channel (including transmit 
and receive filters), and n(t) is the channel noise. (The channel noise n used here should 
not be confused with the convolutional noise n to be used later in the discussion of the 
Bussgang algorithm.) All the quantities described in Eq. (17.3) are complex valued. 
Under the assumption that the transmitted sequence xk and the channel noise v(t) are 
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both wide-sense stationary with zero mean, we may readily show that the received signal 
u(t) also has zero mean and its autocorrelation function is periodic in the symbol dura-
tion T (see Problem 1):

  ru 1t1, t22 = 𝔼3u1t12u*1t224  (17.4)

  = ru1t1 + T, t2 + T2. 

That is, the received signal u(t) is cyclostationary in the wide sense. The asterisk denotes 
complex conjugation.

What makes the use of cyclostationarity particularly attractive as the basis of 
an approach to blind deconvolution is the fact that it uses only second-order statistics, 
thereby overcoming the “slow-to-converge” limitation of HOS-based algorithms.

Apparently, Gardner (1991) was the first to recognize that cyclostationary char-
acteristics of modulated signals permit the recovery of a communication channel’s 
amplitude and phase responses using SOS only. However, the idea of blind channel 
identification and equalization using cyclostationary statistics is attributed to Tong et al. 
(1995). Indeed, the ability to solve the difficult problem of blind deconvolution on the 
sole basis of SOS deserves to be viewed as a clever algorithmic achievement. The origi-
nal idea proposed by Tong et al. relies on the use of temporal diversity (i.e., oversampling 
the received signal). Ordinarily, this operation is performed in a digital communications 
system for the specific purpose of timing and phase recovery. However, in the context of 
our present discussion, the use of oversampling leads to a fractionally spaced equalizer 
(FSE), which is so called because the equalization taps are spaced more closely than the 
reciprocal of the incoming symbol rate.

Among the many fractionally spaced blind channel identification or equalization 
techniques that have been proposed to date, we have picked a subspace decomposition 
method that bears a close relationship to the multiple signal classification (MUSIC) 
algorithm originally proposed by Schmidt (1979) for estimating the angle of arrival of 
the signal. Thus, the material presented in the next section points to the fact that much 
can be gained from the extensive literature on statistical array signal processing in solv-
ing the blind deconvolution problem.

17.3  suBspace decOmpOsitiOn fOr fractiOnally  
spaced Blind identificatiOn

As previously mentioned, the subspace decomposition method begins by oversampling 
the received signal. Suppose, then, that the received signal u(t) is oversampled by setting

 t =
iT
L

, (17.5)

where T is the symbol period and L is a positive integer. Then, Eq. (17.3) takes on the 
discrete form

 u a iT
L
b = a

∞

k = -∞
xkha iT

L
- kTb + n a iT

L
b . (17.6)
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Let

 i = nL + l,  l = 0, 1, c, L - 1. (17.7)

Accordingly, we may rewrite Eq. (17.6) as

 u anT +
lT
L
b = a

∞

k = -∞
xkh a1n - k2T +

lT
L
b + n anT +

lT
L
b . (17.8)

For convenience of presentation, let

  h1l2
n = h anT +

lT
L
b , 

  u1l2
n = u anT +

lT
L
b , 

and

 n1l2
n = n anT +

lT
L
b . 

Correspondingly, we may define the oversampled channel output of Eq. (17.8) in the 
simplified form

 u1l2
n = a

∞

k = -∞
xkh1l2

n - k + n1l2
n ,  l = 0, 1, c, L - 1. (17.9)

To proceed further, we make two assumptions:

 1. The channel is causal with a finite time support; that is,

 h1l2
k = 0  for k 6 0 or k 7 M and for all l, (17.10)

  where M is the true channel order.
 2. At time n, the receiver processes the channel output due to a transmitted signal 

vector that consists of (M + N) symbols; that is,

 xn = 3xn, xn - 1, c, xn - M - N + 14T. (17.11)

Thus, at the receiving end, we find that each data block consists of NL samples. 
Depending on how these samples are grouped together, we may distinguish two equiva-
lent matrix representations for the oversampled channel:

 1. A single-input, multiple-output (SIMO) model, which consists of L virtual chan-
nels (subchannels) fed from a common input, as depicted in Fig. 17.2. Each virtual 
channel has a similar time support and a noise contribution of its own. Let the lth 
virtual channel be characterized with the following:

	 •	 An (M + 1)-by-1 tap-weight (coefficient) vector

h1l2 = 3h1l2
0 , h1l2

1 , c, h1l2
M 4T.
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	 •	 An N-by-1 received signal vector

u1l2
n = 3u1l2

n , u1l2
n - 1, c, u1l2

n - N + 14T.

	 •	 An N-by-1 noise vector

N1l2
n = 3n1l2

n , n1l2
n - 1, c, n1l2

n - N + 14T.

  We may then represent Eq. (17.9), written for N successive received samples, in 
the compact form

 u1l2
n = H1l2xn + N1l2

n ,  l = 0, 1, c, L - 1, (17.12)

where the transmitted signal vector xn is defined in Eq. (17.11). The N-by-(M + N) 
matrix H(l), termed the filtering matrix, has a Toeplitz structure, as shown by

 H1l2 = Eh1l2
0 h1l2

1 g h1l2
M 0 g 0

0 h1l2
0 g h1l2

M - 1 h1l2
M g 0

f f f f f f f

0 0 g h1l2
0 h1l2

1 g h1l2
M

U . (17.13)

Figure 17.2 Representation of an oversampled channel as a single-input, multiple-output 
(SIMO) model.
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Finally, combining the set of L equations (17.12) into a single relation, we may write

 u n = Hxn + v n, (17.14)

where

 u n = ≥
u102

n

u112
n
f

u1L - 12
n

¥  

is the LN-by-1 multichannel received signal vector,

 v n = ≥
N102

n

N112
n
f

N1L - 12
n

¥  

is the LN-by-1 multichannel noise vector, and

 H = ≥
H102

H112
f

H1L - 12

¥  (17.15)

is the LN-by-(M + N) channel convolutional matrix, in which the individual matrix 
entries are defined in Eq. (17.13).

 2. Sylvester matrix representation, wherein the L virtual channel coefficients having 
the same delay index are all grouped together. Specifically, we write

 h=
k = 3h102

k , h112
k , c, h1L - 12

k 4T,  k = 0, 1, c, M, 

and, correspondingly, we define an L-by-1 received signal vector

 u=
n = 3u102

n , u112
n , c, u1L - 12

n 4T 

and an L-by-1 noise vector

 N=
n = 3n102

n , n112
n , c, n1L - 12

n 4T. 

Then, on this basis, we may use Eq. (17.9) to group the NL received samples as

  u =
n = ≥

u=
n

u=
n - 1

f
u=

n - N + 1

¥  
(17.16)

  = H′xn + v =
n, 

where the transmitted signal vector xn is as previously defined in Eq. (17.11). The 
LN-by-1 noise vector v =

n is defined by
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 v =
n = ≥

N=
n

N=
n - 1

f
N=

n - N + 1

¥ , 

and the LN-by-(M + N) matrix H′ is defined by

 H′ = ≥
h=

0 h=
1 g h=

M 0 g 0

0 h=
0 g h=

M - 1 h=
M g 0

f f f f f f f
0 0 g h=

0 h=
1 g h=

M

¥ . (17.17)

The block-Toeplitz matrix H′ is called a Sylvester resultant matrix (Rosenbrock, 
1970; Tong et al., 1993)—hence the terminology used to refer to this second matrix 
representation of an oversampled channel.

It is of interest to note that a SIMO channel, as described herein, can also be 
obtained by using an array of L sensors or antennas.

filtering-matrix rank theorem

The matrices H and H′, defined in Eqs. (17.15) and (17.17), respectively, differ primarily 
in the way in which their individual rows are arranged; they contain the same informa-
tion about the channel but display it differently. Most importantly, the spaces spanned 
by the columns of H and H′ are canonically equivalent. Therefore, from here on, we 
restrict the discussion to the SIMO model of Fig. 17.2.

The multichannel filtering matrix H plays a central role in the blind identification 
problem. In particular, the problem is solvable if and only if H is of full column rank. 
This requirement is covered by an important theorem attributed to Tong et al. (1993), 
which may be stated as follows:

The LN-by-(M + N) channel convolutional matrix H is of full column rank [i.e., 
rank 1H2 = M + N], provided that the following three conditions are satisfied:

  1. The polynomials

 H1l21z2 = a
M

m = 0
h1l2

m z-m   for l = 0, 1, c, L - 1 

   have no common zeros.
  2.  At least one of the polynomials H(l)(z), l = 0, 1, c, L − 1, has the maximum 

possible degree M; this condition is commonly called the channel disparity 
condition.

  3.  The size N of the received signal vector u1l2
n  for each virtual channel is greater 

than M.

Equipped with this theorem, hereafter referred to as the filtering-matrix rank theo-
rem, we are ready to describe the subspace decomposition-based procedure for blind 
identification.
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Blind identification

The basic equation (17.14) provides a matrix description of an oversampled channel. 
A block diagram representation of this equation is shown in Fig. 17.3, which may be 
viewed as a condensed version of the SIMO model of Fig. 17.2. To proceed with a sta-
tistical characterization of the channel, we make the following assumptions:

	 •	 The transmitted signal vector xn and the multichannel noise vector vn originate 
from wide-sense stationary sources that are statistically independent.

	 •	 The transmitted signal vector xn has zero mean and correlation matrix

 Rx = 𝔼3xnxH
n 4, 

  where the superscript H denotes Hermitian transposition (i.e., transposition com-
bined with complex conjugation). The (M + N)-by-(M + N) matrix Rx has full 
column rank, but it is unknown.

	 •	 The additive channel noise is white, permitting us to characterize the noise vector 
Nn with zero mean and correlation matrix

  Rn = 𝔼3NnN
H
n 4 

  = s2I.  

  The noise variance s2 is known, and I is the N-by-N identity matrix.

Accordingly, the LN-by-1 received signal vector un has zero mean and a correlation 
matrix defined by

  R = 𝔼3u nuH
n 4  

  = 𝔼31Hxn + v n21Hxn + v n2H4 (17.18)

  = 𝔼3HxnxH
n H

H4 + 𝔼3v n vH
n 4  

  = HRxH
H + Rv,  

where

  Rv = 𝔼3v1n2vH1n24 (17.19)

  = s2ILN,  

in which ILN is the LN-by-LN identity matrix. It should be noted that the signal-induced 
term HRxH

H has rank M + N, which is less than the dimension LN of the correlation 

Figure 17.3 Matrix representation of an 
oversampled channel.
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matrix R. The singularity of the signal-induced part of R is indeed the key feature exploited 
in all subspace estimation algorithms.

To gain some insight into the blind identification problem, we cast it in a geometric 
framework originally proposed by Schmidt (1979, 1981). First, we invoke the spectral 
theorem of Appendix E to describe the LN-by-LN correlation matrix

 R = a
LN - 1

k = 0
lkqkqH

k  (17.20)

in terms of its eigenvalues and associated eigenvectors, where the eigenvalues are 
arranged in decreasing order,

 l0 Ú l1 Ú gÚ lLN - 1. 

Next, we invoke the filtering-matrix rank theorem to divide these eigenvalues into two 
groups:

 1. lk 7 s2,   k = 0, 1, c, M + N - 1.
 2. lk = s2,   k = M + N, M + N + 1, c, LN - 1.

Correspondingly, the space spanned by the eigenvectors of matrix R is divided into two 
subspaces:

 1. Signal subspace s, spanned by the eigenvectors associated with the eigenvalues 
l0, l1, c, lM + N - 1; these eigenvectors are written as

 sk = qk,  k = 0, 1, c, M + N - 1. 

 2. Noise subspace n, spanned by the eigenvectors associated with the remaining 
eigenvalues, as shown by

 gk = qk,  k = 0, 1, c, M + N - 1. 

  The noise subspace is the orthogonal complement of the signal subspace. By 
definition,

 Rgk = s2gk,  k = 0, 1, c, LN - M - N - 1. (17.21)

Substituting Eq. (17.18) with Rn = s2I into Eq. (17.21) and then simplifying, we get

 HRxH
Hgk = 0,  k = 0, 1, c, LN - M - N - 1. 

Since both matrices H and Rx are of full column rank, it follows that

 HHgk = 0,  k = 0, 1, c, LN - M - N - 1. (17.22)

Equation (17.22) provides the theoretic framework of the subspace decomposition 
procedure for blind identification described in Moulines et al. (1995). The procedure 
builds on two items:

 1. Knowledge of the eigenvectors associated with the LN - M - N smallest eigen-
values of the correlation matrix R of the received signal vector u n.

 2. Orthogonality of the columns of the unknown multichannel filtering matrix H to 
the noise subspace n.
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In other words, the cyclostationary statistics of the received signal u n, exemplified by 
the correlation matrix R, are indeed sufficient for blind identification of the channel, to 
within a multiplicative constant.

alternative formulation of the Orthogonality condition

From a computational point of view, we find it more convenient to work with an alterna-
tive formulation of the orthogonality condition described in Eq. (17.22). To begin with, 
we rewrite this condition in the equivalent scalar form

 7HHgk 7 2 = gH
k H HHgk = 0,  k = 0, 1, c, LN - M - N - 1. (17.23)

Recognizing the partitioned structure of the channel convolutional matrix H displayed 
in Eq. (17.15), in a corresponding way we may partition the LN-by-1 eigenvector gk as

 gk = ≥
g102

k

g112
k
f

g1L - 12
k

¥ , (17.24)

where g1l2
k , l = 0, 1, c, L - 1, is an N-by-1 vector. Next, guided by the composition of 

matrix H(l) given in Eq. (17.13), we formulate the (M + 1)-by-(M + N) matrix

 G1l2
k = ≥

g1l2
k, 0 g1l2

k, 1 g g1l2
k, N - 1 0 g 0

0 g1l2
k, 0 g g1l2

k, N - 2 g1l2
k, N - 1 g 0

f f f f f f f
0 0 g g1l2

k, 0 g1l2
k, 1 g g1l2

k, N - 1

¥ . (17.25)

Finally, in light of Eq. (17.15) describing the channel convolutional matrix H, we use 
the matrices defined in Eq. (17.25) for l = 0, 1, c, L − 1 to set up the L(M + 1)-by- 
(M + N) matrix

 Gk = ≥
G102

k

G112
k
f

G1L - 12
k

¥ ,  k = 0, 1, c, LN - M - N - 1. (17.26)

Given the Gk just defined, we may show that (see Problem 3)

 gH
k HHHgk = hHGkG

H
k h, (17.27)

where

 h = ≥
h102

h112
f

h1L - 12

¥  

is an L(M + 1)-by-1 vector defined in terms of the multichannel coefficients. Accordingly, 
we may reformulate the orthogonality condition of Eq. (17.23) in the equivalent form

 hHGkG
H
k h = 0,  k = 0, 1, c, LN - M - N - 1, (17.28)
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which is the desired relation. In Eq. (17.28), the unknown multichannel coefficients 
feature in the simple form of vector h, whereas in Eq. (17.23), they feature in the highly 
elaborate structure of matrix H.

estimation of the channel coefficients

In practice, we have to work with estimates of the eigenvectors gk. Let these estimates 
be denoted by gnk, k = 0, 1, c, LN - M - N - 1. To derive a corresponding esti-
mate of the multichannel coefficient vector h, we use the orthogonality condition of  
Eq. (17.28) to define the cost function

 e1h2 = hHQh, (17.29)

where

 Q = a
LN - M - N - 1

k = 0
GnkGn

H
k  (17.30)

is an L(M + 1)-by-L(M + 1) matrix. The estimated matrix Gnk is itself defined by  
Eqs. (17.26) and (17.25) with gnk used in place of gk. In the ideal case of a true correla-
tion matrix R, the true multichannel coefficient vector h is uniquely defined (except for 
a multiplicative constant) by the condition e(h) = 0. Working with the matrix Q based 
on the estimate’s gnk, a least-squares estimate of the vector h is computed by minimizing 
the cost function e(h). However, this minimization would have to be performed subject 
to a properly chosen constraint, so as to avoid the trivial solution h = 0. Moulines et al. 
(1995) suggest two possible optimization criteria:

 1. Linear constraint. Minimize the cost function e(h) subject to cHh = 1, where c is 
some L(M + 1)-by-1 vector.

 2. Quadratic constraint. Minimize the cost function e(h) subject to ||h|| = 1.

The first criterion requires the prescription of an arbitrary vector c, whereas the second 
criterion appears to be more natural, but computationally more demanding.

practical considerations

The subspace decomposition theory embodied by Eqs. (17.5) through (17.30) is rather 
idealized, in that its successful use rests on three assumptions:

 1. The additive channel noise n(t) is white with known variance s2.
 2. The transfer functions of the virtual channels in the model of Fig. 17.2 have no 

common zeros.
 3. The channel order M is known.

Assumption 1 is reasonable. To test for the validity of Assumption 2, we require exact 
knowledge of the channel order M, which is the essence of Assumption 3. Unfortunately, 
such information is not available in practice. We are therefore compelled to estimate the 
channel order by working with an oversampled data matrix.
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The issue of determining the order of the model is complicated by another prac-
tical reality: Typically, the impulse response of a communication channel is long and 
decomposable into two parts:

 1. The significant part, which lies in the middle and constitutes the dominant part of 
the impulse response.

 2. The tails, which are made up of relatively small leading or trailing parts of the 
impulse response.

On this basis, we may define an effective channel order as the order that pertains to the 
significant part of the channel impulse response. The effective channel order is naturally 
smaller than the true channel order. In Liavas et al. (1999a), it is shown that, in a blind 
channel identification problem, only the significant part of the channel impulse response 
should be modeled. The reason for this restriction is that, in trying to model the tails 
of the channel impulse response as well, we may end up with an ill-conditioned over-
modeled situation, which, for computational reasons, should be avoided. The influence 
of ignoring the tails of the channel impulse response is to introduce a perturbation that 
may be viewed as a form of colored noise.

why classical information-theoretic criteria do not work well  
for determining the effective channel Order

To estimate the unknown effective channel order M, we could resort to the classical 
 information-theoretic criteria, namely, Akaike’s information-theoretic criterion (AIC) and 
Rissanen’s minimum-description-length (MDL) criterion. From the discussion presented 
in Chapter 1, we recall that the derivations of these criteria are based on two assumptions: 
The successive data vectors are i.i.d. zero-mean Gaussian random vectors, and the addi-
tive noise is white, Gaussian, and uncorrelated with the information-bearing signal at the 
channel output. Unfortunately, in certain respects, the validity of these two assumptions 
is questionable for the blind channel identification problem, for the following reasons:

	 •	 The correlation matrix R in Eq. (17.18) is constructed from data vectors that 
exhibit the time-shifting property, with the result that successive data vectors are 
not statistically independent, thereby invalidating the first assumption.

	 •	 The additive colored noise, accounting for the influence of the channel impulse 
response’s tails that are ignored in determining the effective channel order, invali-
dates the second assumption.

Indeed, using measured real-life microwave radio channel data, Liavas et al. (1999b) 
have shown that the model-order estimates based on the AIC and MDL criteria are 
sensitive to variations in the signal-to-noise ratio (SNR) and the number of data samples 
used in the estimation. Specifically, we may say the following:

	 •	 For high SNR (SNR 7 30 dB) and many data samples (N 7 300), these two 
information- theoretic criteria lead to overmodeling, which makes the resulting 
model-order estimates practically useless.

	 •	 For low SNR and few data samples, the AIC and MDL criteria provide use-
ful estimates leading to sufficiently good blind identification results. However, 
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the estimates are highly sensitive to statistical variations, rendering the results 
 unsatisfactory for practical use. Moreover, the sensitivity to statistical varia-
tions contributes to the creation of confusion concerning data classification into 
 undermodeled or overmodeled cases, which is clearly undesirable.

rank detection criterion

To overcome the limitations of the classical information-theoretic criteria, Liavas et al. 
(1999b) proposed a rank-detection criterion for determining the effective channel order 
M. This new criterion is rooted in numerical analysis, which is the natural course to take, 
recognizing that the SOS-based blind channel identification procedure described herein 
relies on subspace decomposition ideas.

Let

 Rn =
1
K

 a
K

n = 1
u n uH

n  (17.31)

denote the LN-by-LN estimate of the correlation matrix R, where u n is the oversampled 
version of the received signal vector and K is the number of blocks of LN-by-1 data 
vectors used in the estimation. Assume that Rn  is the sum of two components: an “ideal” 
matrix Rideal of rank p and a “perturbed” matrix E; that is,

 Rn = Rideal + E. (17.32)

The rank p is itself defined by

 p = N + M. (17.33)

The effective channel order M, and therefore the rank p, is to be determined. The “per-
turbation” matrix E is assumed to incorporate the combined influence of (1) the ignored 
tails of the channel impulse response; (2) the additive channel noise, be it white or 
colored; and (3) the numerical inaccuracies incurred in computing the estimate Rn . It is 
also assumed that E is small compared with Rideal.

The partitioning of the estimate Rn  into Rideal and E is motivated by physical con-
siderations, namely, the fact that the significant part of the channel impulse response 
determines the effective channel order M. In reality, however, we do not have access to 
the channel impulse response. Rather, we have only the estimate Rn  to decompose. Let 
the spectrally decomposed

 Rn = a
LN - 1

k = 0
lnkqn kqn H

k . (17.34)

Let sn  denote the “estimated” signal subspace spanned by the eigenvectors associa-
ted with the p largest eigenvalues ln0, ln1, c, lnp - 1. Let nn  denote the “estimated” noise 
subspace spanned by the eigenvectors associated with the remaining eigenvalues 
lnp, lnp + 1, c, lnLN - 1. The noise subspace nn  is orthogonal to the signal subspace sn .

What we are seeking is an approximation of the “ideal” subspace sideal, namely, 
the p-dimensional subspace spanned by the columns of the matrix Rideal. Specifically, 
we approximate sideal by sn , computed from Rn . Invoking the assumption that Rideal is 
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of rank p, we derive the following lower bound on the squared Euclidean norm of the 
perturbation matrix E:

 7E 7 2 Ú lnp. (17.35)

Here, ||E|| is the matrix norm of E. (See Appendix E for the definition of matrix norm.) 
In other words, the unknown “ideal” and the “estimated” signal subspaces are related 
through a perturbation whose size is equal to or greater than the eigenvalue lnp.

Since the perturbation matrix E is assumed to be small compared with the 
ideal matrix Rideal, we would like the estimated signal subspace sn  to be “close” to 
the ideal signal subspace sideal in some sense to be determined. To that end, we 
note that although Eq. (17.35) is insufficient to calculate the distance between these  
two signal subspaces, it points to a way of examining the sensitivity of the estimated 
signal subspace sn  with respect to a “small” perturbation. In what follows, this pertur-
bation is denoted by an LN-by-LN matrix whose size (i.e., squared Euclidean norm) 
is defined by

 7E 7 2 Ú lnp, (17.36)

which is the smallest size that the actual perturbation matrix E may have.
If, on the one hand, sn  is insensitive to the perturbation E, then one is justified in 

believing that the estimated signal subspace sn  is “close” to the ideal signal subspace 
sideal. If, on the other hand, sn  is sensitive to E, then there is reason to believe that these 
two signal subspaces are “far” from each other.

On the basis of these intuitively satisfying ideas, we now offer the following crite-
rion for rank estimation (Liavas et al., 1999b):

The estimate of the unknown rank of the ideal matrix Rideal is that positive integer 
p for which the matrix

 Sn = a
p - 1

i = 0
lni qn i qn

H
i  (17.37)

pertaining to the estimated signal subspace sn  is the least sensitive, with respect to 
all perturbations E of size 7E 7 2 Ú lnp, over all possible values of p.

Consider, then, a perturbation E applied to the estimate Rn , yielding the new matrix

 R∼ = Rn + E, (17.38)

whose spectral decomposition is

 R∼ = a
LN - 1

i = 0
l
∼

i q∼i q∼H
i . (17.39)

Correspondingly, we may define a “perturbed” signal subspace sn  described by the matrix

 S∼ = a
p - 1

i = 0
l
∼

i q∼i q∼H
i . (17.40)

To proceed further, we make use of a distance measure between two linear sub-
spaces of the same dimension, namely, the trigonometric sine of their canonical angles, 
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which is commonly used in numerical analysis. Specifically, we may state the following 
(Stewart & Sun, 1990):

Let X and Y be two linear subspaces of the same dimension. Let the columns of 
matrix X# form an orthonormal basis for the space X# (i.e., an orthogonal comple-
ment of the space X) and the columns of matrix Y form an orthonormal basis for 
the space Y. Then, the nonzero singular values of the matrix XH

#Y are the sines of 
the nonzero canonical angles between the subspaces X and Y.

On this basis, we may now introduce the sought-after distance measure

 t = 7 sin ∠1sn , s∼2 7 2, (17.41)

where ∠1sn , s∼2 is the angle subtended between the subspaces sn  and s∼. It turns out that 
this distance measure is determined by the size of the perturbation E and the separa-
tion between the eigenvalues associated with the perturbed signal subspace s∼ and the 
estimated noise subspace nn  (Wedin, 1972). Building on this result, Liavas et al. (1999b) 
go on to derive the following upper bound on the distance measure t:

 
t … r1p2 = c lnp

lnp - 1 - 2lnp

if  lnp …
lnp - 1

3
1 otherwise

. (17.42)

Equation (17.42) shows that the sensitivity of the estimated signal subspace sn , with 
respect to a perturbation E that satisfies Eq. (17.36), is governed essentially by the sepa-
ration between the smallest eigenvalue lnp - 1 of the estimated signal subspace sn  and the 
largest eigenvalue lnp of the estimated noise subspace nn .

If r(p) V 1 (i.e., lnp W lnp - 1), then the estimated signal subspace sn  is insensitive 
to a perturbation E of size lnp. Such a result would lend credence to the notion that the 
estimated signal subspace sn  was close to the ideal signal subspace sideal. If, by contrast, 
r(p) ≈ 1 (i.e., lnp - 1 ≈ lnp), then the estimated signal subspace sn  is sensitive to the pertur-
bation E, in which case it is doubtful that the two signal subspaces are close to each other.

We may thus formalize the rank-detection procedure by writing

 pn = arg min
p

 r1p2, (17.43)

where r(p) is defined in Eq. (17.42) and pn  is the estimate of the unknown rank of the 
ideal matrix Rideal.

summary of the sOs-Based subspace decomposition procedure

Table 17.1 summarizes the steps involved in applying the subspace decomposition pro-
cedure for blind channel identification. The table highlights the following distinguishing 
features of the procedure:

	 •	 Only SOS of the channel output are used in the computation.
	 •	 The procedure is batch (block) oriented.
	 •	 The procedure is computationally intensive.
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TaBle 17.1 Summary of the Subspace Decomposition Procedure for Blind Channel Identification

1. Oversample the channel output u(t) by setting

t = nT +
lT
L

,  l = 0, 1, c, L - 1,

where T is the transmitted symbol period and L is the number of virtual channels. Hence, define

 u1l2
n = u anT +

lT
L
b ,

 u1l2
n = 3u1l2

n , u1l2
n - 1, c, u1l2

n - N + 14T,

and

u n = ≥
u102

n

u112
n
f

u1L - 12
n

¥ .

2. Construct the W-by-K data matrix

AH = 3u 1, u 2, c, uK4,
where W = LN and K is the number of data blocks used in the blind channel identification. Typically, W 7 K, which 
means that the matrix A corresponds to an overdetermined system.

3. Compute the singular-value decomposition of the data matrix A, viz.,

UHAV = c 𝚺 0
0 0

d ,

where

𝚺 = diag1s0, s1, c, sW - 12
and U and V are unitary matrices whose columns are, respectively, the left and right singular vectors of the data 
matrix. The s’s, ordered as s0 Ú s1 Ú g sw − 1 7 0, are the singular values of the data matrix. The kth singular 
value sk is the square root of the kth eigenvalue of the estimate of the correlation matrix

Rn = AHA,

where we have ignored the scaling factor 1/K. The columns of matrix V are the eigenvectors of Rn .

4. Use the rank detection criterion

r1p2 = c s2
p

s2
p - 1 - 2s2

p

if  s2
p …

s2
p - 1

3
1 otherwise

to estimate the rank p of the ideal matrix Rideal:

pn = arg min
p

 r1p2.

5. Given the “effective rank” pn  determined in step 4, divide the data space into

(a)  the signal subspace sn , for which

snk = vk,  k = 0, 1, c, pn - 1,

(b)  and the noise subspace nn , for which

gnk = vpn + k,  k = 0, 1, c, W - pn - 1.

(Continues on next page)
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Now, formulate the matrices

 Gn 1l2
k = D gn 1l2

k, 0 gn 1l2
k, 1 g gn 1l2

k, N - 1 0 g 0
0 gn 1l2

k, 0 g gn 1l2
k, N - 2 gn 1l2

k, N - 1 g 0
f f f f f
0 0 g gn 1l2

k, 0 gn 1l2
k, 1 g gn 1l2

k, N - 1

T
and

 Gnk = ≥
Gn 102

k

Gn 112
k
f

Gn 1L - 12
k

¥ ,  k = 0, 1, c, W - pn - 1.

6. Finally, compute an estimate of the channel impulse response vector h by minimizing the cost function

e1h2 = hHQh,

subject to the constraint ||h|| = 1 and where the matrix

Q = a
W - pn - 1

k = 0
GnkGn

H
k .

In the summary presented in Table 17.1, we have used the singular-value decomposition  
(SVD; see Chapter 9) to compute the eigenvalues and eigenvectors of the estimate Rn  of 
the correlation matrix. The SVD procedure applied to the data matrix A is less prone to 
numerical errors than the direct eigenanalysis of the time-average correlation matrix Rn .

Under step 6 of Table 17.1, note that minimizing e(h) subject to ||h|| = 1 is equiva-
lent to finding an extremal eigenvector of the matrix Q. The remarks concerning the 
advantages of using the SVD of the data matrix A rather than the eigendecomposition 
of the matrix product AHA apply to step 6 as well. In so doing, we can compute an 
extremal left singular vector of the matrix

 3Gn 0, Gn 1, c, Gn W - pn - 14 
rather than an extremal eigenvector of Q.

17.4 Bussgang algOrithm fOr Blind equalizatiOn

Turning next to the second approach to blind deconvolution, consider the baseband 
model of a digital communications system, depicted in Fig. 17.4. The model consists of 
the cascade connection of a linear communication channel and a blind equalizer.

TaBle 17.1 (continued)

Figure 17.4 Noiseless cascade connection of an unknown channel and a blind equalizer.
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As before, the channel includes the combined effects of a transmitting filter, a 
transmission medium, and a receiving filter. The channel is characterized by an unknown 
impulse response hn that may be time varying, albeit slowly. The nature of hn (i.e., whether 
it is real or complex valued) is determined by the type of modulation employed. To sim-
plify the discussion, in this section we assume that the impulse response is real, which 
corresponds to the use of multilevel pulse-amplitude modulation (M-ary PAM). We may 
thus express the sampled input–output relation of the channel by the convolution sum

 u1n2 = a
∞

k = -∞
hkx1n - k2,  n = 0, {1, {2, c, (17.44)

where x(n) is the data (message) sequence applied to the channel input and u(n) is the 
resulting channel output. For this introductory treatment of blind deconvolution, the 
effect of receiver noise in Fig. 17.4 is ignored. We are justified in ignoring the noise 
because degradation in the performance of data transmission (over a voice-grade tele-
phone channel, say) is usually dominated by intersymbol interference due to channel 
dispersion. We further assume that

 a
 

k
h2

k = 1, 

which implies the use of automatic gain control (AGC) that keeps the variance of the 
channel output u(n) essentially constant. Also, in general, the channel is noncausal, 
which means that

 hn ≠ 0    for n 6 0. 

The problem we wish to solve is the following:

Given the received signal (i.e., channel output) u(n), reconstruct the original data 
sequence x(n) applied to the channel input.

Equivalently, we may restate the problem as follows:

Design a blind equalizer that is the inverse of the unknown channel, with the chan-
nel input being unobservable and with no desired response available.

To solve the blind equalization problem, we need to prescribe a probabilistic model 
for the data sequence x(n). For the problem at hand, we assume the following (Bellini, 
1986, 1994):

 1. The data sequence x(n) is white; that is, the data symbols are i.i.d. random variables 
with zero mean and unit variance, as shown by

 𝔼3x1n24 = 0    for all n (17.45)

  and

 𝔼3x1n2x1k24 = e1, k = n
0, k ≠ n

, (17.46)

  where 𝔼 is the statistical expectation operator.

M17_HAYK4083_05_SE_C17.indd   715 21/06/13   8:56 AM



716   Chapter 17  Blind Deconvolution

 2. The probability density function of the data symbol x(n) is symmetric and uniform; 
that is (see Fig. 17.5),

 fX1x2 = b1>213, - 13 … x 6 13
0, otherwise

. (17.47)

This distribution has the merit of being independent of the number M of ampli-
tude levels employed in the modulation process.

Note that Eq. (17.45) and the first line of Eq. (17.46) follow from Eq. (17.47).
With the distribution of x(n) assumed to be symmetric, as in Fig. 17.5, we find that 

the data sequence -x(n) has the same law as x(n). In other words, we cannot distinguish the 
desired inverse filter l-1 [corresponding to x(n)] from the opposite one, -l-1 [correspond-
ing to -x(n)]. We may overcome this sign ambiguity problem by initializing the deconvo-
lution algorithm such that there is a single nonzero tap weight with the desired algebraic 
sign. This can also be rendered innocuous by using differential coding of the source signal.

iterative deconvolution: the Objective

Let wi denote the impulse response of the ideal inverse filter, which is related to the 
impulse response hi of the channel via the formula

 a
 

i
wihl- i = dl, (17.48)

where dl is the Kronecker delta:

 dl = b1, l = 0
0, l ≠ 0

. (17.49)

An inverse filter defined in this way is “ideal” in the sense that it reconstructs the trans-
mitted data sequence x(n) correctly. To demonstrate this property, we first write

 a
 

i
wiu1n - i2 = a

 

i
 a

 

k
wihkx1n - i - k2. (17.50)

Figure 17.5 Uniform distribution.
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Making the change of index k = l − i in Eq. (17.50) and interchanging the order of sum-
mation, we get

 a
 

i
wiu1n - i2 = a

 

l
x1n - l2a

 

i
wihl- i. (17.51)

Using Eq. (17.48) in Eq. (17.51) and then applying the definition of Eq. (17.49), we obtain

  a
 

i
wiu1n - i2 = a

 

l
dlx1n - l2 (17.52)

  = x1n2,  

which is the desired result.
For the situation described herein, the impulse response hn is unknown. We can-

not therefore use Eq. (17.48) to determine the inverse filter. Instead, we use an iterative 
deconvolution procedure to compute an approximate inverse filter characterized by the 
impulse response wn i1n2, which denotes an estimate of w(n). The index i refers to the 
tap-weight number in the finite-duration impulse response (FIR) filter realization of 
the approximate inverse filter, which is depicted in Fig. 17.6. The index n refers to the 
adaptation cycle number; each adaptation cycle corresponds to the transmission of a data 
symbol. The computation is performed iteratively in such a way that the convolution 
of the impulse response wn 1n2 with the received signal u(n) results in the complete or 
partial removal of the intersymbol interference (Bellini, 1986). Thus, at the nth adapta-
tion cycle, we have the approximately deconvolved sequence or inverse filter output (two 
terms used interchangably)

 y1n2 = a
L

i = -L
wn i1n2u1n - i2, (17.53)

Figure 17.6 FIR filter realization of an approximate inverse filter; the use of real data is assumed.
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where 2L + 1 is the truncated length of the impulse response wn i1n2. (See Fig. 17.6.) We 
assume that the FIR filter (equalizer) is symmetric about the midpoint i = 0, but this 
assumption is not required yet.

The convolution sum on the left-hand side of Eq. (17.52), pertaining to the ideal 
inverse filter, is infinite in extent, in that the index i ranges from −∞ to ∞. In this case, we 
speak of a doubly infinite filter (equalizer). On the other hand, the convolution sum on the 
right-hand side of Eq. (17.53), pertaining to the approximate inverse filter, is finite in extent, 
in that i extends from −L to L. In the latter case, which is usually how it is in practice, we 
speak of a finitely parameterized filter (equalizer). Clearly, we may rewrite Eq. (17.53) as

 y1n2 = a
 

i
wn i1n2u1n - i2,  wn i1n2 = 0 for ∙ i ∙ 7 L, 

or, equivalently,

 y1n2 = a
 

i
wiu1n - i2 + a

 

i
3wn i1n2 - wi4u1n - i2. (17.54)

Let the mismatch between the actual and estimated impulse responses be defined by

 n1n2 = a
 

i
3wn i1n2 - wi4u1n - i2,  wn i = 0 for ∙ i ∙ 7 L. (17.55)

Then, using the ideal result of Eq. (17.52) and the definition of Eq. (17.55), we may 
simplify Eq. (17.54) as follows:

 y1n2 = x1n2 + n1n2. (17.56)

The term n(n) is called the convolutional noise, which represents the residual inter symbol 
interference that results from the use of an approximate inverse filter. [As pointed out 
in Section 17.2, the convolutional noise n in Eq. (17.56) should not be confused with the 
channel noise used in that section.]

The inverse filter output y(n) is next applied to a zero-memory nonlinear estimator, 
producing the estimate xn1n2 for the data symbol x(n). This operation is depicted in the 
block diagram of the blind equalizer of Fig. 17.7. We may thus write

 xn1n2 = g1y1n22, (17.57)

Figure 17.7 Block diagram of a blind equalizer.

M17_HAYK4083_05_SE_C17.indd   718 21/06/13   8:56 AM



Section 17.4 Bussgang algorithm for Blind equalization   719

where g( #) is some nonlinear function to be described. (Nonlinear estimation is discussed 
in the next subsection.)

Ordinarily, we find that the estimate xn1n2 at adaptation cycle n is not reliable 
enough. Nevertheless, we may use it in an adaptive scheme to obtain a “better” estimate 
at the next adaptation cycle, n + 1. Indeed, we have a variety of linear adaptive filtering 
algorithms (discussed in previous chapters) at our disposal that we can use to perform 
this adaptive parameter estimation. In particular, a simple yet effective scheme is pro-
vided by the least-mean-square (LMS) algorithm discussed in Chapter 6. To apply it to 
the problem at hand, we note the following:

 1. The ith tap input of the FIR filter at adaptation cycle (time) n is u(n − i).
 2. Viewing the nonlinear estimate xn1n2 as the desired response [since the transmitted 

data symbol x1n2 is unavailable to us], and recognizing that the corresponding FIR 
filter output is y(n), we may express the estimation error for the iterative deconvo-
lution procedure as

 e1n2 = xn1n2 - y1n2. (17.58)

 3. The ith tap weight wn i1n2 at adaptation cycle n represents the “old” parameter 
estimate.

Accordingly, the updated value of the ith tap weight at adaptation cycle n + 1 is com-
puted as

 wn i1n + 12 = wn i1n2 + mu1n - i2e1n2,  i = 0, {1, c, {L, (17.59)

where m is the step-size parameter. (Recall that for the situation being considered here, 
the data are all real valued.)

Equations (17.53), (17.57), (17.58), and (17.59) constitute the iterative deconvolu-
tion algorithm for the blind equalization of a real baseband channel (Bellini, 1986). As 
remarked earlier, each adaptation cycle of the algorithm corresponds to the transmis-
sion of a data symbol, the duration of which is assumed to be known at the receiver.

The idea of generating the estimation error e(n), as detailed in Eqs. (17.57) and 
(17.58), is similar in philosophy to the decision-directed mode of operating an adaptive 
equalizer discussed in Chapter 6. (More will be said on this issue later in the section.)

nonconvexity of the cost function

The ensemble-average cost function corresponding to the tap-weight update equa-
tion (17.59) is defined by

  J1n2 = 𝔼3e21n24  

  = 𝔼31xn1n2 - y1n2224  (17.60)

  = 𝔼31g1y1n22 - y1n2224, 
where y(n) is defined by Eq. (17.53). In the LMS algorithm, the instantaneous cost func-
tion is a  quadratic (convex) function of the tap weights: By contrast, the cost function 
J(n) of Eq. (17.60) is an ensemble average nonconvex function of the tap weights, which 
means that, in general, the error-performance surface of the iterative deconvolution 
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procedure described here may have local minima in addition to global minima. More 
than one global minimum may exist, corresponding to data sequences that are equiva-
lent under the chosen blind deconvolution criterion (e.g., ambiguity in the sign). The 
cost function J(n) may be nonconvex because the estimate xn1n2, performing the role of 
an internally generated “desired response,” is produced by passing the linear combiner 
output y(n) through a zero-memory nonlinearity and also because y(n) is itself a func-
tion of the tap weights.

It is noteworthy that practical experience indicates that most (if not all) blind 
deconvolution criteria are multimodal, thereby exhibiting multiple minima. This issue 
becomes a problem when the different minima yield different performance values. 
Which minimum is approached is strongly dependent on the initialization. In general, 
a procedure for finding an initialization that lies in the basin of attraction of the global 
minimum remains an open problem. However, some exceptions to the rule do occur, 
as explained later in Section 17.7. (The important issue of convergence is considered in 
greater detail later in the section.)

statistical properties of convolutional noise

The additive convolutional noise n(n) is defined in Eq. (17.55). To develop a more 
refined formula for n(n), we note that the tap input u(n − i) involved in the summation 
on the right-hand side of that equation is given by [see Eq. (17.44)]

 u1n - i2 = a
 

k
hkx1n - i - k2. (17.61)

We may therefore rewrite Eq. (17.55) as a double summation:

 n1n2 = a
 

i
a

 

k
hk3wn i1n2 - wi4x1n - i - k2. (17.62)

Now, let

 n - i - k = l. 

Then, we may rewrite Eq. (17.62) as

 n1n2 = a
 

i
x1l2∇1n - l2, (17.63)

where

 ∇1n2 = a
 

k
hk3wn n - k1n2 - wn - k4. (17.64)

The sequence ∇(n) is a sequence of small numbers, representing the residual impulse 
response of the channel due to imperfect equalization. We imagine ∇(n) as a long and 
oscillatory wave that is convolved with the transmitted data sequence x(n) to produce 
the convolutional noise sequence n(n), as indicated in Eq. (17.63).

The definition of Eq. (17.63) is basic to the statistical characterization of the con-
volutional noise n(n). The mean of n(n) is zero, as shown by
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  𝔼3n1n24 = 𝔼 c a
 

l
x1l2∇1n - l2 d  

  = a
 

l
 ∇1n - l2𝔼3x1l24  (17.65)

  = 0,  

where, in the last line, we have made use of Eq. (17.45). Next, the autocorrelation func-
tion of n(n) for a lag j is given by

  𝔼3n1n2n1n - j24 = 𝔼 c a
 

l
x1l2∇1n - l2a

 

m
x1m2∇1n - m - j2 d  

  = a
 

l
  a

 

m
∇1n - l2∇1n - m - j2𝔼3x1l2x1m24  (17.66)

  = a
 

l
∇1n - l2∇1n - l - j2,  

where, in the last line, this time we have made use of Eq. (17.46). Since ∇(n) is a long 
and oscillatory waveform, the sum on the right-hand side of Eq. (17.66) is nonzero only 
for j = 0, so that

 𝔼3n1n2n1n - j24 = es
21n2, j = 0

0, j ≠ 0
 (17.67)

where

 s21n2 = a
 

l
∇21n - l2. (17.68)

On the basis of Eqs. (17.65) and (17.67), we may thus describe the convolutional noise 
n(n) as a zero-mean time-varying white-noise process with variance equal to s2(n), 
defined by Eq. (17.68).

According to the model of Eq. (17.63), the convolutional noise n(n) is a weighted 
sum of i.i.d. variables representing different transmissions of data symbols. If, therefore, 
the residual impulse response ∇(n) is long enough, the central-limit theorem makes a 
Gaussian model for n(n) to be plausible.

Having characterized the convolutional noise n(n) by itself, all that remains for us 
to do is to evaluate the cross-correlation between n(n) and the data sample x(n). These 
two random variables are certainly correlated with each other, since n(n) is the result 
of convolving the residual impulse response ∇(n) with x(n), as shown in Eq. (17.63). 
However, the cross-correlation between n(n) and x(n) is negligible compared with the 
variance of n(n). To demonstrate this, we write

  𝔼3x1n2n1n - j24 = 𝔼 c x1n2a
 

l
x1l2∇1n - l - j2 d  

  = a
 

l
∇1n - l - j2𝔼3x1n2x1l24  (17.69)

  = ∇1- j2,  
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where, in the last line, we have made use of Eq. (17.46). Here again, using the assumption 
that ∇(n) is a long and oscillatory waveform, we infer that the variance of n(n) is large 
compared with the magnitude of the cross-correlation 𝔼[x(n)n(n − j)].

Since the data sequence x(n) is white by assumption and the convolutional noise 
sequence n(n) is approximately white by inference, and since these two sequences are 
essentially uncorrelated, it follows that their sum y(n) is approximately white, too. On 
this basis, we may view statistically x(n) and n(n) to be essentially independent. We may 
thus model the convolutional noise n(n) as an additive, zero-mean, white Gaussian noise 
that is statistically independent of the data sequence x(n).

Because of the approximations made in deriving the model described herein for 
the convolutional noise, its use in an iterative deconvolution process yields a suboptimal 
estimator for the data sequence. In particular, given that the iterative deconvolution 
process is convergent, the intersymbol interference (ISI) during the latter stages of the 
process may be small enough for the model to be applicable. In the early stages of the 
iterative deconvolution process, however, the ISI is typically large, with the result that 
the data sequence and the convolutional noise are strongly correlated and the convolu-
tional noise sequence is more uniform than Gaussian (Godfrey & Rocca, 1981).

zero-memory nonlinear estimation of the Original data sequence

We are now ready to consider the next important issue: estimating the data sequence 
x(n), given the deconvolved sequence y(n) at the FIR filter output. Specifically, we may 
formulate the estimation problem as follows:

We are given a deconvolved sequence y(n) that consists of the sum of two com-
ponents (see Fig. 17.8):

  1. A uniformly distributed data symbol x(n) with zero mean and unit variance.
  2.  A white Gaussian noise n(n) with zero mean and variance s2(n), which is sta-

tistically independent of x(n).

The requirement is to derive a Bayes estimate of x(n), optimized in a statistical sense.

Before proceeding with this classical estimation problem, two noteworthy 
 observations are in order. First, the estimate is naturally a conditional estimate that 
depends on the optimization criterion. Second, although the estimate (in theory) is opti-
mum in a mean-square-error sense, in the context of our present situation, it is suboptimal 

Figure 17.8 Estimation of the data symbol x(n), given the observation y(n).
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by virtue of the approximations made in the development of the model described for the 
convolutional noise n(n).

Putting aside this approximate form of the model, an optimization criterion of 
particular interest is that of minimizing the mean-square value of the error between the 
actual transmission x(n) and the estimation xn1n2. The choice of this optimization criterion 
yields a conditional mean estimator that is both sensible and robust in a Bayesian sense.

For convenience of presentation, we will supress the dependence of random vari-
ables on the adaptation cycle n. Let fX(x ∙ y) denote the conditional probability density 
function of the random variable X, given the observation sample, Y = y, at the decon-
volver output. Correspondingly, the conditional mean estimate, denoted by xn, of the 
unknown sample X = x at the deconvolver input is defined by the following conditional 
expectation:

  xn = 𝔼3X ∙Y4  

  = L
∞

-∞
xfX1x∙y2 dx. 

(17.70)

Now, according to Bayes’ rule in probability theory, we have

 fX1x ∙y2 =
fY1y ∙x2fX1x2

fY1y2 , (17.71)

where fY(y ∙x) is the conditional probability density function of y, given x, and fX(x) and 
fY(y) are the probability density functions of x and y, respectively. We may therefore 
rewrite Eq. (17.70) as

 xn =
1

fY1y2 L
∞

-∞
xfY1y∙x2fX1x2dx. (17.72)

Let the deconvolved output y be a scaled version of the original input x, except for an 
additive noise term v(n); that is,

 y = c0 x + n. (17.73)

The scaling factor c0 is slightly smaller than unity. This factor has been included in  
Eq. (17.73) so as to keep the mean-square value 𝔼[y2] equal to unity. In accordance with 
the statistical model for the convolutional noise n developed previously, x and n are sta-
tistically independent. With n modeled to have zero mean and variance s2, we readily 
see from Eq. (17.73) that the scaling factor is

 c0 = 21 - s2. (17.74)

Furthermore, from Eq. (17.73), we find that

 fY1y ∙x2 = fV1y - c0x2. (17.75)

Accordingly, the use of Eq. (17.75) in Eq. (17.72) yields

 xn =
1

fY1y2 L
∞

-∞
xfV1y - c0 x2fX1x2 dx. (17.76)
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The evaluation of xn is straightforward but tedious. To proceed with it, we note the 
following:

 1. The mathematical form of the estimate xn1n2 produced at the output of the Bayes 
(conditional mean) estimator depends on the probability density function of the orig-
inal data symbol x(n). For the analysis presented here, we assume that x is uniformly 
distributed with zero mean and unit variance, as depicted in Fig. 17.5; its probability 
density function is given in Eq. (17.47), which is reproduced here for convenience:

 fX1x2 = b1>223, - 23 … x 6 23
0 otherwise

. (17.77)

 2. The convolutional noise n is Gaussian distributed with zero mean and variance s2; 
its probability density function is therefore

 fV1n2 =
122p s

 exp a-  
n2

2s2 b . (17.78)

 3. The filtered observation y is the sum of c0x and n; its probability density function 
is therefore equal to the convolution of the probability density function of x with 
that of n:

 fY1y2 = L
∞

-∞
fX1x2fV1y - c0 x2 dx. (17.79)

Hence, using Eqs. (17.77) through (17.79) in Eq. (17.76), we get the desired result 
(Bellini, 1988)

 xn =
1

c0y
-

s

c0
 

Z1y12 - Z1y22
Q1y12 - Q1y22

, (17.80)

where the variables

 y1 =
1
s

 1y + 23 c02 

and

 y2 =
1
s

 1y - 23 c02. 

The function Z(y) is the normalized Gaussian probability density function:

 Z1y2 =
122p

 e-y2>2. (17.81)

The function Q(y) is the corresponding probability distribution function:

 Q1y2 =
122p

 L
∞

y
e-u2>2 du. (17.82)
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A small gain correction to the nonlinear estimator of Eq. (17.80) is needed in order 
to achieve perfect equalization3 when the iterative deconvolution algorithm [described 
by Eqs. (17.57) through (17.59)] converges eventually. Perfect equalization requires 
that y = x. Under the minimum mean-square-error condition, the estimation error is 
orthogonal to each of the tap inputs in the FIR filter realization of the approximate 
inverse filter. Putting all of these points together, we find that the following condition 
must hold (Bellini, 1986, 1988):

 𝔼3xng1xn24 = 1. (17.83)

In this equation, g1xn2 is the nonlinear estimator xn = g1y2 with y = xn for perfect equal-
ization. (See Problem 6.)

Figure 17.9 shows the nonlinear estimate xn = g1z2 plotted against the |z| for an 
eight-level PAM system (Bellini, 1986, 1988). The estimator is normalized in accordance 
with Eq. (17.83). In the figure, three widely different levels of convolutional noise are 

Figure 17.9 Nonlinear estimators of eight-level PAM data in Gaussian noise with 
xn = g1z2. The noise-to-(signal + noise) ratios are 0.01, 0.1, and 0.8. (From Bellini, 1986, with 
permission of the IEEE.)

3In general, for perfect equalization, we require that

y = 1x - D2eif,

where D is a constant delay and f is a constant phase shift. This condition corresponds to an equalizer whose 
transfer function has unity magnitude and a linear phase response. We note that the input data sequence xi 
is stationary and the channel is linear and time invariant. Hence, the observed sequence y(n) at the chan-
nel output is also stationary, and its probability density function is invariant to the constant delay D. The 
constant phase shift f is of no immediate consequence when the probability density function of the input 
sequence remains symmetric under rotation, which is indeed the case for the assumed density function given in  
Eq. (17.77). We may therefore simplify the condition for perfect equalization by requiring that y = x.
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considered. Here, we note from Eq. (17.73) that the distortion-to-(signal plus distortion) 
ratio is given by

  
𝔼31y - x224

𝔼3y24 = 11 - c022 + s2 (17.84)

  = 211 - c02,  

where, in the last line, we have made use of Eq. (17.74). The curves presented in the 
figure correspond to three values of this ratio, namely, 0.01, 0.1, and 0.8. We observe the 
following from these curves:

 1. When the convolutional noise is low, the blind equalization algorithm approaches 
a minimum mean-square-error criterion.

 2. When the convolutional noise is high, the nonlinear estimator appears to be indepen-
dent of the fine structure of the amplitude-modulated data. Indeed, different values 
of amplitude modulation result in only very small differences in gain, due to the nor-
malization defined by Eq. (17.83). This suggests that the use of a uniform amplitude 
distribution for multilevel modulation systems is an adequate approximation.

 3. The nonlinear estimator is robust with respect to variations in the variance of the 
convolutional noise.

 4. The input–output characteristic plotted in Fig. 17.9 for a high noise-to-(signal plus 
noise) ratio (e.g., 0.8) is closely approximated by the hyperbolic tangent function 
(Haykin, 1996)

 xn = a1 tanh aa2y

2
b , (17.85)

where the first constant

a1 = 1.945

and the second constant

a2 = 1.25.

Note that the slope of this nonlinearity at the origin is directly proportional to a2.

convergence considerations

For the iterative deconvolutional algorithm described by Eqs. (17.57) through (17.59) 
to converge in the mean value, we require the expected value of the tap weight wn i1n2 
to approach some constant as the number of adaptation cycles n approaches infin-
ity. Correspondingly, we find that the condition for convergence in the mean value is 
described by

𝔼3u1n - i2y1n24 = 𝔼3u1n - i2g1y1n224   for large n and for i = 0, {1, c, {L.

Multiplying both sides of this equation by wn i- k and summing over i, we get

 𝔼 c y1n2 a
L

i = -L
wn i- k1n2u1n - i2 d = 𝔼 c g1y1n22 a

L

i = -L
wn i- k1n2u1n - i2 d  for large n. 

(17.86)
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We next note from Eq. (17.53) that

  y1n - k2 = a
L

i = -L
wn i1n - k2u1n - k - i2  

  = a
L - k

i = -L - k
wn i- k1n2u1n - i2   for large n. 

Provided that L is large enough for the FIR equalizer to achieve perfect equalization, 
we may approximately write

 y1n - k2 ≈ a
L

i = -L
wn i- k1n2u1n - i2   for large n and large L. (17.87)

Accordingly, we may use Eq. (17.87) to simplify Eq. (17.86) as follows:

 𝔼3y1n2y1n - k24 ≃ 𝔼3g1y1n22y1n - k24   for large n and large L. (17.88)

We now recognize the following property: 

A stochastic process y(n) is said to be a Bussgang process if it satisfies the condition

 𝔼3y1n2y1n - k24 = 𝔼3y1n2g1y1n - k224, (17.89)

where the function g is a zero-memory nonlinearity.4 

In other words, a Bussgang process has the property that its autocorrelation function 
is equal to the cross-correlation between the process and the output of a zero-memory 
nonlinearity produced by that process, with both correlations being measured for the 
same lag. Note that a Bussgang process satisfies Eq. (17.89) up to a multiplicative con-
stant; in the case discussed here, the multiplicative constant is unity, by virtue of the 
assumption made in Eq. (17.83).

Returning to the issue at hand, we may state that the process y(n) acting as the 
input to the zero-memory nonlinearity in Fig. 17.7 is approximately a Bussgang process, 
provided that L is large; the approximation becomes better as L is made larger. For this 
reason, the blind equalization algorithm described by Eqs. (17.57) through (17.59) is 
referred to as a Bussgang algorithm (Bellini, 1986, 1988).

In general, convergence of the Bussgang algorithm is not guaranteed. Indeed, the 
cost function of the Bussgang algorithm operating with a finite L is nonconvex and may 
therefore have false minima.

For the idealized case of a doubly infinite equalizer, however, a rough proof of 
convergence of the Bussgang algorithm may be sketched as follows (Bellini, 1988) [the 
proof relies on a theorem derived in Benveniste et al. (1980) that provides sufficient 
 conditions for convergence]5: Let the function c(y) denote the dependence of the 

4A number of stochastic processes belong to the class of Bussgang processes. Bussgang (1952) was the 
first to recognize that any correlated Gaussian process has the property described in Eq. (17.89). Subsequently, 
Barrett and Lampard (1955) extended Bussgang’s result to all stochastic processes with exponentially decaying 
autocorrelation functions. These include an independent process, since its autocorrelation function consists of 
a delta function that may be viewed as an infinitely fast decaying exponential.

5Note that the function c(y) to be defined in Eq. (17.90) is the negative of that defined in Benveniste 
et al. (1980).
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estimation error in the LMS algorithm on the FIR filter output y(n). According to our 
terminology, we have [see Eqs. (17.57) and (17.58)]

 c1y2 = g1y2 - y. (17.90)

The Benveniste–Goursat–Ruget theorem states that the convergence of the Bussgang 
algorithm is guaranteed if the probability distribution of the data sequence x(n) is sub-
Gaussian and the second derivative of c(y) is negative on the interval [0, ∞). In particu-
lar, we may state the following:

 1. A probability distribution is said to be sub-Gaussian if the kurtosis g2 defined in 
Eq. (17.2), is negative (i.e., less than that of a Gaussian distribution). According 
to this equation, g2 = 3 for a Gaussian distribution. For example, a random vari-
able x with the probability density function

 fX1x2 = Ke-∙x>b∙n,  K = constant, (17.91)

  is sub-Gaussian when n 7 2. For the limiting case of n = ∞, the probability density 
function of Eq. (17.91) reduces to that of a uniformly distributed random vari-
able. Also, by choosing b = 13, we have 𝔼[x2] = 1. Thus, the probabilistic model 
assumed in Eq. (17.47) satisfies the first part of the Benveniste–Goursat–Ruget 
theorem.

 2. The second part of the theorem is also satisfied by the Bussgang algorithm, since

 
02c

0y2 6 0   for 0 6 y 6 ∞ . (17.92)

This is readily verified by examining the curves plotted in Fig. 17.9 or Eq. (17.85).

The Benveniste–Goursat–Ruget theorem exploited in this proof is based on the 
assumption of a doubly infinite equalizer. Unfortunately, this assumption breaks down 
in practice as we have to work with a finitely parameterized equalizer. To date, no zero-
memory nonlinear function g is known that would result in global convergence of the 
blind equalizer in Fig. 17.7 to the inverse of the unknown channel (Verdú, 1984; Johnson, 
1991). Global convergence of the Bussgang algorithm for an arbitrarily large, but finite, 
filter length remains an open problem. Nevertheless, there is practical evidence, sup-
ported by convergence analysis presented in Li and Ding (1995), for the conjecture that 
the Bussgang algorithm will converge to a desired global minimum if the FIR equalizer 
is long enough and initialized with a nonzero center tap (e.g., wn 0102 = 1 in Fig. 17.6).

decision-directed algorithm

When the Bussgang algorithm has converged, the blind equalizer should be switched 
smoothly to the decision-directed mode of operation. Then, minimum mean-square-error 
control of the tap weights of the FIR filter component in the equalizer is exercised, as 
in a traditional adaptive equalizer.

Figure 17.10 presents a block diagram of the equalizer operating in its decision-
directed mode. The only difference between this mode of operation and that of blind 
equalization described in Figure 17.7 lies in the type of zero-memory nonlinearity 
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employed. Specifically, the conditional mean estimation of the blind equalizer shown 
in Fig. 17.7 is replaced by a threshold decision device. Given the deconvolved sequence 
y(n)—that is, the equalized signal at the FIR filter output—the threshold device makes 
a decision in favor of a particular value in the known alphabet of the transmitted data 
sequence that is closest to y(n). We may thus write

 xn1n2 = dec1y1n22. (17.93)

For example, in the simple case of an equiprobable binary data sequence, the data level is

 x1n2 = e +1 for symbol 1
-1 for symbol 0

 (17.94)

and the decision function is

 dec1y1n22 = sgn1y1n22, (17.95)

where sgn denotes the signum function. Thus, the estimate xn1n2 is said to equal +1 if y(n) 
is positive and −1 if it is negative.

The equations that govern the operation of the decision-directed algorithm are 
the same as those of the Bussgang algorithm, except for the use of Eq. (17.93) in place 
of Eq. (17.57). Herein lies an important practical advantage of a blind equalizer that is 
based on the Bussgang algorithm and that incorporates the decision-directed algorithm: 

Its implementation is only slightly more complex than that of a traditional adap-
tive equalizer, yet it does not require the use of a training sequence.

Suppose that the following conditions are satisfied:

 1. On completion of blind equalization, the eye pattern is open. (The eye pattern 
refers to the synchronized superposition of different realizations of the received 
signal, with each realization corresponding to the transmission of a data symbol; 
the pattern is so called because of its resemblance to the human eye.)

 2. The step-size parameter m used in the LMS implementation of the decision-
directed algorithm is fixed (a common practice).

Figure 17.10 Block diagram of a decision-directed mode of operation.
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 3. The sequence of observations at the channel output, denoted by the vector u(n), 
is ergodic, in the sense that

 lim
NS∞

 
1
N

 a
N

n = 1
u1n2uT1n2 S 𝔼3u1n2uT1n24   almost surely. (17.96)

Then, under these conditions, the tap-weight vector in the decision-directed algorithm 
converges to the optimum (Wiener) solution in the mean-square-error sense (Macchi & 
Eweda, 1984). This is a powerful result, making the decision-directed algorithm 
an important adjunct of the Bussgang algorithm for blind equalization in digital 
communications.

annealing process

From the discussion presented on the Bussgang algorithm thus far, we see the need for 
an annealing process whereby the blind equalizer is enabled to deal with varying levels 
of convolutional noise as the equalization progresses from one adaptation cycle to the 
next. The need for such a process can be discerned from examination of the plots shown 
in Fig. 17.9 for three highly different values of noise-to-(noise plus signal) ratio. First of 
all, however, we recognize that the hyperbolic tangent function a1tanh (a2y/2) serves as 
a good approximator to the zero-memory soft nonlinearity g in the blind equalizer of 
Fig. 17.7 when the noise level is high. The primary purpose of the annealing process is 
to vary the slope parameter a2, while the scaling parameter a1 is maintained constant. 
With this particular scenario in mind, we may now postulate a three-phase annealing 
process as described here:

 1. Initialization. The scaling parameter a1 and slope parameter a2 are assigned pre-
scribed values. As pointed out previously, for the example plots of Fig. 17.9, a good 
choice is a1 = 1.945 and a2 = 1.25.

 2. Convergence phase. From Fig. 17.9, we observe that in moving from a noise-to-
(signal plus noise) ratio of 0.8 down to 0.1, the slope parameter a2 would need to 
increase by a very small amount. Yet, the blind equalizer would have to experience 
a large number of adaptation cycles before such a significant reduction in noise-
to-(noise plus signal) ratio can be attained. Accordingly, during the convergence 
phase of the annealing process, which may occupy 1000 adaptation cycles or more, 
the slope parameter a2 is increased very gradually until the blind equalizer reaches 
the neighborhood of a local or global minimum.

 3. Decision-directed phase. Once the blind equalizer has converged and the eye pat-
tern is open, the slope parameter a2 is smoothly enlarged in such a way that in the 
course of a few adaptation cycles, the hyperbolic tangent is gradually changed to 
its limiting form: the signum function.

We may thus expand the structure of the blind equalizer of Fig. 17.7 by adding an 
annealing controller, as shown in Fig. 17.11. In effect, this new structure disposes with 
the need for the decision-directed mode of operation depicted in Fig. 17.10.
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17.5  extensiOn Of the Bussgang algOrithm tO cOmplex 
BaseBand channels

Thus far, we have discussed the use of Bussgang algorithms only for the blind equaliza-
tion of M-ary PAM systems, which are characterized by a real baseband channel. In this 
section, we extend the use of this family of blind equalization algorithms to quadrature-
amplitude modulation (QAM) systems that involve a hybrid combination of amplitude 
and phase modulations (Haykin, 2013).

In the case of a complex baseband model of the channel, the transmitted data 
sequence x(n), the channel impulse response hn, and the received signal u(n) are all 
complex valued. We may thus write

  x1n2 = xI1n2 + jxQ1n2, (17.97)

  hn = hI, n + jhQ, n,  (17.98)

and

 u1n2 = uI1n2 + juQ1n2, (17.99)

where the subscripts I and Q refer to the in-phase (real) and quadrature (imaginary) 
components, respectively. Correspondingly, the conditional mean estimate of the com-
plex datum x(n), given the observation y(n) at the FIR filter output, is written as

  xn1n2 = 𝔼3x1n2 ∙y1n24  

  = xnI1n2 + jxnQ1n2  (17.100)

  = g1yI1n22 + jg1yQ1n22, 

Figure 17.11 Block diagram of an expanded blind equalizer including an annealing controller.
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where g denotes a zero-memory nonlinearity. Equation (17.100) states that the in-phase 
and quadrature components of the transmitted data sequence x(n) may be estimated 
separately from the in-phase and quadrature components of the FIR filter output y(n), 
respectively, Note, however, that the conditional mean 𝔼[x(n) |y(n)] can be expressed 
as in Eq. (17.100) only if the data transmitted in the in-phase and quadrature channels 
operate statistically independently of each other, which is usually the case.

Building on the complex LMS algorithm described in Chapters 5 and 6, Table 17.2 
presents a summary of the Bussgang algorithm for a complex baseband channel; the 
table also includes a real baseband channel as a special case.

17.6 special cases Of the Bussgang algOrithm

The Bussgang algorithm discussed in Sections 17.4 and 17.5 is of a general formulation, 
in that it includes a number of blind equalization algorithms as special cases. In this 
section, we consider two special cases of the Bussgang algorithm.

sato algorithm

The idea of blind equalization in M-ary PAM systems dates back to the pioneering work 
of Sato (1975b). The Sato algorithm consists of minimizing a nonconvex cost function

 J1n2 = 𝔼31xn1n2 - y1n2242, (17.101)

where y(n) is the FIR filter output defined in Eq. (17.53) and xn1n2 is an estimate of the 
transmitted data symbol x(n). This estimate is obtained by a zero-memory nonlinearity 
described by the formula

 xn1n2 = a sgn3y1n24. (17.102)

The constant

 a =
𝔼3x21n24

𝔼3 ∙ x1n2 ∙4 (17.103)

TaBle 17.2 Summary of Bussgang Algorithm for Blind Equalization of a Complex Baseband Channel

Initialization:

wn i102 = e 1, i = 0
0, i = {1, c, {L

Computation: n = 1, 2, c
 y1n2 = yI1n2 + jyQ1n2

 = a
L

i = -L
wn *

i 1n2u1n - i2
 xn1n2 = xnI1n2 + jxnQ1n2

 = g1yI1n22 + jg1yQ1n22
 e1n2 = xn1n2 - y1n2

 wn i1n + 12 = wn i1n2 + mu1n - i2e*1n2,  i = 0, {1, c, {L
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sets the gain of the equalizer. It is apparent that the Sato algorithm is a special (non-
optimal) case of the Bussgang algorithm, with the nonlinear function g(y) defined by

 g1y2 = a sgn1y2, (17.104)

where sgn denotes the signum function. The nonlinearity defined in Eq. (17.104) is 
similar to that in the decision-directed algorithm for binary PAM, except for the data-
dependent gain factor a.

The Sato algorithm for blind equalization was introduced originally to deal with 
one-dimensional multilevel (M-ary PAM) signals, with the objective of being more 
robust than a decision-directed algorithm. Initially, the algorithm treats such a digital 
signal as a binary signal by estimating the most significant bit; the remaining bits of the 
signal are treated as additive noise insofar as the blind equalization process is concerned. 
The algorithm then uses the results of this preliminary step to modify the error signal 
obtained from a traditional decision-directed algorithm.

The Benveniste–Goursat–Ruget theorem for convergence holds for the Sato algo-
rithm even though the nonlinear function c is not differentiable. According to this theorem, 
global convergence of the Sato algorithm can be achieved, provided that the probability 
density function of the transmitted data sequence can be approximated by a sub-Gaussian 
function such as the uniform distribution (Benveniste et al., 1980). However, global conver-
gence of the Sato algorithm holds only for the limiting case of a doubly infinite equalizer.6

godard algorithm

Godard (1980) was the first to propose a family of constant-modulus blind equalization 
algorithms for use in two-dimentional digital communication systems (e.g., M-ary QAM 
signals).7 The Godard algorithm minimizes a nonconvex cost function of the form

 J1n2 = 𝔼31 ∙ y1n2 ∙p - Rp224, (17.105)

6Deviations of the Sato algorithm from the limiting condition of a doubly infinite equalizer are dis-
cussed in the following papers:

•  In Mazo (1980), Verdú (1984), and Macchi and Eweda (1984), it is shown that the Sato algorithm 
exhibits local minima for discrete QAM input signals.

•  In Ding and Li (1989), it is shown that, for finitely parameterized equalizers, the Sato algorithm 
may converge to local minima for sub-Gaussian inputs.

7The original motivation for the development of the Godard algorithm was to decouple channel equal-
ization and carrier synchronization using M-ary QAM signals. The constant-modulus algorithm (CMA), a 
special case of the Godard algorithm, was so named by Treichler and Agee (1983), independently of Godard’s 
1980 paper, for constant envelope frequency-modulated signals. The CMA is probably the most widely inves-
tigated blind equalization algorithm and the one most widely used in practice.

The desire to reduce computational complexity of a blind equalizer has motivated the development 
of modified versions of CMA:

•  Signed-error version of CMA, where the error term e(n) is replaced by the signum function. 
Schnitter and Johnson (1999) exploit the judicious use of dither to modify the signed-error CMA, 
thereby resulting in an algorithm with robustness properties closely resembling those of the origi-
nal CMA; the reduction in computational complexity, however, is attained at the cost of an increase 
in mean-square error. (See Problem 10 for more details.)

•  Region-based quantization of the error term in CMA, which can be implemented using a look-up 
table in place of costly multipliers and adders (Endres et al., 2001).

M17_HAYK4083_05_SE_C17.indd   733 21/06/13   8:56 AM



734   Chapter 17  Blind Deconvolution

where p is a positive integer and

 Rp =
𝔼3 ∙ x1n2 ∙2p4
𝔼3 ∙ x1n2 ∙p4  (17.106)

is a positive real constant. The Godard algorithm is designed to penalize deviations of 
the blind equalizer output xn1n2 from a constant modulus. The constant Rp is chosen in 
such a way that the gradient of the cost function J(n) is zero when perfect equalization 
[i.e., xn1n2 = x1n2] is attained.

The tap-weight vector of the equalizer is adapted in accordance with the vectorizal 
version of the LMS algorithm, namely

 wn 1n + 12 = wn 1n2 + mu1n2e*1n2, (17.107)

where m is the step-size parameter, u(n) is the tap-input vector, and

 e1n2 = y1n2 ∙ y1n2 ∙p - 21Rp - ∙ y1n2 ∙p2 (17.108)

is the error signal (Godard, 1982). From the definition of the cost function J(n) in 
Eq. (17.105) and from the definition of the error signal e(n) in Eq. (17.108), we see that 
adaptation of the equalizer, according to the Godard algorithm, does not require carrier 
phase recovery. The algorithm therefore tends to converge slowly. However, it offers 
the advantage of decoupling the ISI equalization and carrier phase recovery problems 
from each other.

Two cases of the Godard algorithm are of specific interest:  

Case 1: p = 1 The cost function of Eq. (17.105) for this case reduces to

 J1n2 = 𝔼31 ∙y1n2 ∙ - R1224, (17.109)

where

 R1 =
𝔼3 ∙ x1n2 ∙24
𝔼3 ∙ x1n2 ∙4 . (17.110)

Case 1 may be viewed as a modification of the Sato algorithm.

Case 2: p = 2 In this case, the cost function of Eq. (17.105) reduces to

 J1n2 = 𝔼31 ∙ y1n2 ∙2 - R2224, (17.111)

where

 R2 =
𝔼3 ∙ x1n2 ∙44
𝔼3 ∙ x1n2 ∙24. (17.112)

Case 2 is referred to in the literature as the constant-modulus algorithm (CMA).

The Godard algorithm is considered to be the most successful among the Bussgang 
family of blind equalization algorithms, as demonstrated by the comparative studies 
reported in Shynk et al. (1991) and Jablon (1992). In particular, we may say the follow-
ing (Papadias, 1995):
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	 •	 The Godard algorithm is more robust than other Bussgang algorithms with respect 
to the carrier phase offset. This important property of the algorithm is due to the 
fact that the cost function used for its derivation is based solely on the amplitude 
of the received signal.

	 •	 Under steady-state conditions, the Godard algorithm attains a mean-square error 
that is lower than that of other Bussgang algorithms.

	 •	 Last, but by no means least, the Godard algorithm is often able to equalize a dis-
persive channel, such that the eye pattern is opened up when it is initially closed 
for all practical purposes.

summary of special forms of the complex Bussgang algorithm

The decision-directed, Sato, constant modulus, and Godard algorithms may be viewed 
as special cases of the complex Bussgang algorithm (Bellini, 1986). In particular, we may 
use Eqs. (17.93), (17.102), and (17.108) to set up the entries shown in Table 17.3 for the 
special forms of the zero-memory nonlinear function g pertaining to these algorithms 
(Hatzinakos, 1990). The entries for the decision-directed and Sato algorithms follow 
directly from the definition

 xn1n2 = g1y1n22. 

In the case of the Godard algorithm, we note that

 e1n2 = xn1n2 - y1n2 

or, equivalently,

 g1y1n22 = y1n2 + e1n2. 

We may use the latter relation and Eq. (17.108) to derive the special forms of the com-
plex Godard algorithm in Table 17.3.

TaBle 17.3 Special Cases of the Complex Bussgang Algorithm

 
 
Algorithm

Zero-memory 
nonlinear 
function g

 
 

Definitions

Decision-directed* sgn

Sato a sgn a =
3x21n24

𝔼3 ∙ x1n2 ∙4

Constant modulus y1n211 + R2 - ∙y1n2∙22 R2 =
𝔼3 ∙ x1n2 ∙44
𝔼3 ∙ x1n2 ∙24

Godard
y1n2

∙ y1n2 ∙
 1 ∙ y1n2 ∙ + Rp ∙ y1n2 ∙p - 1 - ∙ y1n2 ∙2p - 12 Rp =

𝔼3 ∙ x1n2 ∙2p4
𝔼3 ∙ x1n2 ∙p4

*The zero-memory nonlinear function sgn for the decision-directed algorithm applies if the input data are binary; for the 
general case of M-ary PAM, an M-ary slicer is required.
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17.7 fractiOnally spaced Bussgang equalizers

In this section, we complete the study of traditional blind deconvolution algorithms by 
tying together the two major themes of the chapter: SOS-based algorithms and Bussgang 
algorithms relying on HOS. We do so by underscoring the relevance of cyclostationarity 
for SOS as well as Bussgang algorithms.

In light of the material presented in Section 17.2, we may say that the importance 
of oversampling, fractional spacing, and cyclostationarity in SOS-based deconvolution 
algorithms is now well established. The same channel disparity condition and filtering- 
matrix rank condition, which were discussed in Section 17.3, can also be exploited 
advantageously for the Bussgang algorithms discussed in Sections 17.4 and 17.5. This 
important result was brought to light in Li and Ding (1996), who showed that all minima 
of the Godard algorithm achieve perfect channel equalization in a SIMO channel set-
ting (in combination with a multiple-input, single-output equalizer), under the same 
conditions as those in the filtering-matrix rank theorem with a minor adjustment to 
condition 3 of the theorem: The size N now represents the number of coefficients in 
each branch of the equalizer. This is in stark contrast to the situation involving a SISO 
channel (and, thus, a SISO equalizer), for which the multiple minima of the constant 
modulus criterion, in general, give disparate performance levels.

The clever proof presented in Li and Ding (1996) does not initially resemble that 
of the Benveniste–Goursat–Ruget theorem, although some points of tangency are worth 
bringing to light. This theorem assumes a doubly infinite equalizer, and on a minor tech-
nical point, assumes that the channel transfer function has no zeros on the unit circle. 
With {wk} denoting the equalizer tap weights, the combined channel-equalizer response is

 5ck6 = 5hk6*5wk6 

where the asterisk denotes convolution. If {wk} is doubly infinite, then so is {ck}; if the 
transfer function H(z) of the channel has no zeros on the unit circle, then an arbitrary 
configuration of the combined response {ck} may be attained for an appropriate setting 
of the equalizer tap weights {wk}. If, instead, {wk} is a finite-length sequence, then W(z) 
is an FIR filter and any zeros of H(z) remain in the combined transfer function; such a 
combined channel-equalizer response {ck} is clearly subject to constraints, namely, that 
its z-transform vanishes at the zeros of H(z).

Now, using 𝔼[c2(n)] as the cost function, where c(n) is defined in Eq. (17.90), the 
stationary points in the combined channel-equalizer response space would be solutions 
to the system

 
d𝔼3c21n24

dck
= 0  for all k. (17.113)

The minimum points of the cost function would be those stationary points for 
which the second derivative matrix (i.e., Hessian), whose ( j, k) element, namely, 
02𝔼3c21n24>1dcjdck2, is positive (semi)-definite. For “correctly” chosen nonlinearities 
g(·) and appropriate signal statistics, all solutions yield an ideal combined response, that 
is, a response having a sole nonzero term [e.g., Benveniste et al. (1980), Godard (1980)].
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This analysis by itself, however, does not apply to the finite-equalizer case, since 
it ignores the constraint that the combined response contain the channel zeros as fac-
tors. In particular, the finite-length constraint on the equalizer may preclude any ideal 
combined response being attainable.

The doubly infinite equalizer case (combined with a channel having no zeros on 
the unit circle) provides an exceptional setting, because all configurations of the com-
bined response are then attainable, including an ideal equalizer. The descriptions in 
the equalizer coefficient space and the combined channel-equalizer response space are 
then equivalent. Formally, we may show (Benveniste et al., 1980) for this case that any 
stationary point in the combined response space generates a stationary point (or pos-
sibly a stationary “manifold”) in the equalizer space, and that the characterization of 
each stationary point as minimum or saddle point is likewise preserved. (In the case of a 
saddle point, the trajectories going to the saddle point are stable, whereas the trajectories 
coming from the saddle point are unstable.)

The favorable situation described herein carries over to the finite-length equal-
izer case, provided that we use a SIMO channel combined with a MISO equalizer. 
This particular combination yields a signal-flow diagram similar to that of Fig. 17.2, 
in which each channel output u1l2

n  is now fed to an FIR filter with tap weights 5w1l2
k 6, 

with the L filter outputs summed together. Denoting the tap-weight vector of the lth 
equalizer branch as

 w1l2 = 3w1l2
0 , w1l2

1 , c, w1l2
N - 14T, l = 0, 1, c, L - 1, (17.114)

the combined channel-equalizer response involves the sum of the L branches as

  c = 3c0, c1, c, cM + N - 14T 

  = HTw,  (17.115)

where

 H = ≥
H102

H112
f

H1L - 12

¥  

and

 w = ≥
w102

w112
f

w1L - 12

¥ . 

The new setting described in Eq. (17.115) involves the same channel convolution matrix 
H of Eq. (17.15). If the conditions of the filtering-matrix rank theorem are satisfied 
(where N is now the length of each equalizer branch), then H has full column rank M + N. 
In this case, an arbitrary configuration of the combined channel-equalizer response vec-
tor c (containing M + N elements) can be reached for an appropriate choice of the equal-
izer coefficients. Calculating the minimum points in the equalizer space then reduces to 
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the (simpler) problem of calculating minimum points in the combined response space. 
If the remaining conditions of the Benveniste–Goursat–Ruget theorem are satisfied, 
then all minimum points yield ideal equalizers, in the absence of channel noise.8 We 
thus see that cyclostationarity and the related concepts hold performance advantages 
for Bussgang algorithms as well, in addition to their special interest for SOS-based blind 
deconvolution algorithms. In particular, we may state that the conditions for perfect 
blind equalizability using fractionally spaced Bussgang algorithms are as follows (Li and 
Ding, 1996; Johnson et al., 2000):

 1. The channel convolution matrix H has full column rank.
 2. The channel is noise free.
 3. The transmitted signal (i.e., channel input) consists of i.i.d. complex-valued symbols 

that are circularly symmetric.
 4. The underlying probability distribution of the transmitted signal is sub-Gaussian, 

which means that its kurtosis is smaller than that of a Gaussian distribution.

Conditions 1 and 2 pertain to the channel-equalizer combination, while conditions 3 
and 4 pertain to the transmitted signal. However, in a practical situation, the channel 
is always noisy. Provided that the channel noise is white and relatively small (i.e., the 
received SNR is high), then the minimum points of the blind equalizer will be perturbed 
but remain in the neighborhood of the ideal minimum points pertaining to the noiseless 
channel (Li and Ding, 1996).

computer experiment

In this computer experiment,9 we consider a four-tap channel model and two-tap equal-
izer, both of which are T/2-spaced, where T is the symbol period. The 2-by-2 channel 
matrix used in the experiment is given by

 H = ch1 h3

h0 h2
d = c -0.5 0.3

1.0 0.2
d . 

8The convergence analysis of a stochastic gradient-descent adaptive algorithm amounts to studying 
the stable equilibria (i.e., local and global minima) of the algorithm. Since the channel convolutional matrix 
H may have a nontrivial null space, the equilibria of the algorithm are classified into:

• Channel-dependent equilibria (CDE).

• Algorithm-dependent equilibria (ADE).

The null space of H is affected by the channel diversity produced by oversampling. In Ding (1997), it 
is shown that the convergence behavior of fractionally spaced equalizers (FSEs) is determined by the ADE 
alone, so long as the channel convolutional matrix H has full column rank. This full rank condition is equiva-
lent to requiring (1) that all subchannels have no common zeros and (2) that the size of H is large enough; 
these requirements are known as the length-and-zero condition. In particular, FSEs using such blind decon-
volution algorithms as the Godard algorithm (Godard, 1980) and the Shalvi–Weinstein algorithm (Shalvi & 
Weinstein, 1990) are globally convergent to desired equilibria.

9This computer experiment is based on Johnson et al. (2000). This reference presents a highly detailed 
treatment of fractionally spaced Bussgang algorithms.
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This matrix is invertible, which means that the even polynomial

 He1z2 = h0 + h2z
-1 

and the odd polynomial

 Ho1z2 = h1 + h3z
-1 

have different roots; hence, the transfer function H(z) has no zeros on the unit circle.
Let the tap-weight vector of the blind equalizer be denoted by

 w = cw0

w1
d . 

Then in the general case of a noisy channel, the cost function of the fractionally spaced 
Bussgang equalizer is defined by (Johnson et al., 2000)

  J1w2 =
1
4

 s4
s1g2, s - 32 7HTw 7 44 +

3
4
 s4

s 7HTw 7 42  

  + 
1
4

 s4
n1g2, n - 32 7w 7 44 +

3
4

 s4
n 7w 7 42  

  + 
3
2

 s2
ss

2
n 7HTw 7 22 # 7w 7 22 -

1
2

 s2
sg2, s1s2

s 7HTw 7 2 + s2
n 7w 7 222 

  + 
1
4

 s4
sg

2
2, s,    (17.116)

where s2
s  and g2, s are, respectively, the variance and kurtosis of the zero-mean transmitted 

signal and s2
n and g2, n are, respectively, the variance and kurtosis of the zero-mean additive 

white channel noise. The 𝕃k-norm of a vector x with components x1 and x2 is defined by

 7x 7 k = 1xk
1 + xk

221>k,  k = 2, 4. (17.117)

Figure 17.12 depicts a three-dimensional plot of the cost function J(w) versus the 
tap weights w0 and w1. This figure is obtained by evaluating Eq. (17.116) for a transmitted 
signal in the form of binary phase-shift keying with i.i.d. symbols and kurtosis g2, s = 1, and 
assuming a noiseless channel. Figure 17.13 displays the corresponding contour plots of 
tap-weight w1 versus tap-weight w0 for varying cost function J. These two figures clearly 
show that all four minimum points of the cost function are indeed global minima, each 
of which therefore yields perfect equalization.

Figure 17.14 illustrates the effect of nonzero channel noise on the contour plots of 
the blind equalizer. This figure pertains to SNR of 20 dB, which is defined by

 SNR = 10 log10 as
2
s

s2
n
b  dB. 

Comparing the contour plots of Fig. 17.13 with those of Fig. 17.14, we see that the presence 
of channel noise causes a perturbation in the shape of the error-performance surface, with 
the result that the minimum points of the cost function J(w) are now local rather than 
global. In other words, in the presence of channel noise, the different minimum points of 
the cost function no longer result in the same level of equalizer performance.
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Figure 17.14 Contour plots for a noisy channel, 
showing the tap-weight w1 versus w0, with each 
contour corresponding to a fixed value of the cost 
function J1w0, w12; the signal-to-noise ratio for the 
computations is 20 dB.

Figure 17.13 Contour plots for a noise-free 
channel, showing the tap-weight w1 versus w0, 
with each contour corresponding to a fixed value 
of the cost function J1w0, w12.

Figure 17.12 Three-dimensional plot 
of the cost function J(w0, w1) versus the 
tap-weights w0 and w1, assuming a noise-
free channel.
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17.8  estimatiOn Of unknOwn prOBaBility distriButiOn functiOn 
Of signal sOurce

In deriving the Bussgang algorithm for blind deconvolution in Section 17.4, the under-
lying probabilistic distribution of the signal source was assumed to be a uniform distri-
bution, which is the least informative of all possible probability distributions. Suppose, 
however, that we are given a set of cumulants expressing an incomplete but useful 
probabilistic model of the signal source. In such a scenario, we may raise the following 
basic question,

Given such a model, how do we estimate the unknown probability distribution of 
the signal source?

Clearly, in pursuing such an approach, the blind deconvolution problem is more infor-
mative than the uniform distribution problem, and an algorithm exploiting an estimate 
of the unknown distribution is likely to be more statistically efficient than the Bussgang 
algorithm, hence the interest in the material presented in this section. In any event, our 
first task is to address the solution to the above-mentioned question.

maximum entropy principle

Inspired by Shannon’s information theory, Jaynes (1982) formulated a rationale for the 
broadly defined field of maximum entropy methods, which have found applications on 
several fronts.

To elaborate, the maximum entropy principle, hereafter referred to simply as the 
MaxEnt principle, is summarized as follows:

When an inference is made about a probabilistic problem of interest on the basis 
of incomplete information about the problem, the inference should be drawn from 
the probability distribution that maximizes the entropy, subject to constraints 
imposed on the distribution for practical reasons.

The MaxEnt problem is therefore a constrained optimization problem, the solution of 
which naturally involves the method of Lagrange multipliers, discussed in Appendix C.

Before proceeding further, however, we need to define what we mean by entropy. 
Consider a continuous random variable X, whose sample value is denoted by x. 
According to Shannon’s information theory,10 the entropy of the random variable X is 
defined by the following formula:

 H1X2 = - L
∞

-∞
fX1x2 log fX1x2dx (17.118)

10In the classic paper “A Mathematical Theory of Communication,” Shannon (1948) laid down the 
foundations of information theory as we know it today. The concept of entropy defined in Eq. (17.118) is 
inspired by the concept of entropy as understood in thermodynamics. It occupies an important place in 
information theory.
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742   Chapter 17  Blind Deconvolution

where fX(x) is the probability density function (pdf) of X. Note that H(X) is not a func-
tion of X; rather, the argument X in H(X) is simply the random variable for which the 
entropy is defined. It is on the basis of Eq. (17.118) that the MaxEnt principle is defined.

To proceed with the problem at hand, let m1, m2, c, mk denote prior knowledge 
about the statistics of the random variable X. The ith moment of X is formally defined 
by the expectation

  mi = 𝔼3Xi4  

  = L
∞

-∞
xifX1x2dx, i = 1, 2, c, K. (17.119)

With this prior knowledge, the stage is now set for invoking the MaxEnt principle to find 
an estimate of the pdf, fX(x), which is denoted by fnX1x2. Specifically, using the method of 
Lagrange multipliers with the entropy of the random variable X defined in Eq. (17.118) 
as the constraint, we may follow the procedure described in Jumarie (1990) to express 
the desired estimate, fnX(x), as follows:

 fnX1x2 = exp aa
K

i = 1
li x

ib , (17.120)

where li is the ith Lagrange multiplier. Moreover, according to Jumarie, the formula for 
finding the Lagrange multipliers is defined by the summation

 a
K

k = 1
klkmk + i = -mi, i = 1, 2, c, K. (17.121)

However, it should be noted that according to Eq. (17.121), we need 2K moments of the 
random variable X in order to calculate the desired K Lagrange multipliers.11 However, 
statistical errors made in adopting the approximate pdf of Eq. (17.120) are in perfect 
accord with the MaxEnt principle.

estimation of the conditional expectation

With the estimate fnX1x2, defined in Eq. (17.120), we may now go on to consider the 
conditional mean expectation, 𝔼3X ∙ Y4, which plays a key role in addressing the zero-
mean Bayesian estimation, discussed in Section 17.4. To this end, we use the definition 
of marginal distribution in probability theory to express the pdf of the blind equalizer’s 
output in Figure 17.7; specifically, we write

 fY1y2 = L
∞

-∞
fY1y ∙ x2fX1x2dx. (17.122)

Then, substituting this equation into Eq. (17.71), we may redefine the conditional mean 
expectation as the ratio of two definite integrals, as shown by

11In an effort to simplify calculation of the Lagrange multipliers, Pinchas and Bobrovsky (2006) 
derived a new formula that invokes another assumption, over and above the assumptions made in deriving 
the Bussgang algorithm in Section 17.4—namely, the unknown pdf, fX(x), is assumed to be even symmetric.
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 𝔼3X ∙ Y4 = L
∞

-∞
xfY1y ∙ x2fX1x2dx

L
∞

-∞
fY1y ∙ x2fX1x2dx

. (17.123)

Note that the two integrals in Eq. (17.123) are similar, except for the presence of the 
sample value x in the integral of the numerator.

In Section 17.4, we assumed that the convolutional noise n is Gaussian distributed 
with zero mean and variance s2; moreover, n was defined in Eq. (17.73) to be

 v = y - c0 x, 

where the scaling factor c0 applied to the input x was chosen to be slightly smaller than unity.
On the other hand, in a new approach formulated by Pinchas and Bobrovsky 

(2006) to solve the blind deconvolution problem using the MaxEnt principle, c0 is taken 
to be unity. In such a case, the Gaussian distribution of the convolutional noise v in  
Eq. (17.78) is reformulated as follows:

 fY1y ∙ x2 =
122ps

 exp a-  
1y - x22

2s2 b , (17.124)

where s2 is the variance of the convolutional noise v. Thus, substituting the approximate 
formula of Eq. (17.120) and the formula of Eq. (17.124) into Eq. (17.123), we obtain the 
desired approximate formula for the conditional mean expectation, 𝔼3X ∙ Y4.

In order to make this approximation analytically manageable, Pinchas and 
Bobrovsky introduced a new set of definitions under the assumption that the unknown 
pdf, fX(x), is even symmetric, as follows:

 𝔼3X ∙ Y4 = L
∞

-∞
a11x2 exp1-c1x2>r2dx

L
∞

-∞
a01x2 exp1-c1x2>r2dx

, (17.125)

where, in accordance with Eq. (17.123) and the use of Eq. (17.121), if we set

  a01x2 = exp a  a
K

k = 1
lkxkb , (17.126)

then

  a11x2 = xa01x2,  (17.127)

  c1x2 = 1y - x22,  (17.128)

and
 r = 2s2. (17.129)

There is no approximation made in Eq. (17.125), provided that summation order K is 
infinitely large.

Hereafter, the functions a0(x), a1(x), and c(x) are all assumed to be real con-
tinuous functions of the variable x. Under this assumption, we may view the definite 
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integrals in the numerator and denominator of Eq. (17.125) to be Laplace integrals, with 
the exponential function exp1-c1x2>r2 playing the role of a kernel.

laplace’s method for local analysis

Analytic evaluation of the Laplace integrals in Eq. (17.125) is a difficult proposition. To 
get around this difficulty, Pinchas and Bobrovsky (2006) settled for an approximate local 
analysis of the integrals. Using Laplace’s method,12 they derived series expansions of 
the two definite integrals in the numerator and denominator of Eq. (17.125). With local 
approximations in mind around the point −∞ 6 x0 6 ∞, the approximations involve the 
new terms aj1x02, a122

j 1x02>c1x02, and a142
j 1x02>c1x02, where, in terms of aj1x02, we have 

the following even-order partial derivatives:

 a122
j 1x02 =

02

0x2aj1x2 `
x = x0

 (17.130)

and

 a142
j 1x02 =

04

0x4aj1x2 `
x = x0

. (17.131)

For j = 0, the partial derivative in Eq. (17.130) corresponds to the definite integral in the 
denominator of Eq. (17.125), and for j = 1, the partial derivative of Eq. (17.131) corre-
sponds to the definite integral in the numerator of Eq. (17.125). Note also that the even 
orders of the partial derivatives, defined in Eqs. (17.130) and (17.131), result from the 
even symmetric assumption of the pdf, fX(x). According to Pinchas and Bobrovsky (2006), 
the numerical error in using Laplace’s method for K = 4 is on the order of r3; hence, for 
small r (i.e., large SNR), the error is small enough to be ignored for all practical purposes.

Blind channel equalization

Let xn denote the conditional-mean estimate of the random value X, given Y. Then, in light 
of Eq. (17.70), the approximation procedure, just described, may be summed up as follows:

 𝔼3X ∙ Y4 ≈ xn. 

With blind channel equalization as the task of interest, given the observation 
Y = y as the decoded sequence in Fig. 17.7 and the corresponding estimate X = xn,  
Pinchas and Bobrovsky (2006) formulated a mathematically demanding algorithm for 

12Consider the integral

I1t2 = L
∞

-∞
a1x2 exp1- tc1x22dx,

where a(x) and c(x) are both real continuous functions of x. Laplace’s method rests on the following idea 
(Bender & Orszag, 1999):

If the function c(x) attains its minimum value at the point x = x0, where −∞ 6 x0 6 ∞, and if a(x0) ≠ 0, 
then only the immediate neighborhood of x = x0 contributes to the full asymptotic series expansion of 
I(t) for large t.

Note that t in this footnote corresponds to 1/r in Eq. (17.125).
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blind channel equalization. For details, reference should be made to their 2006 paper, 
in which extensive Monte Carlo simulations are presented for five different channels, 
operating at different levels of intersymbol interference and for 16-QAM and 64-QAM, 
where 64 stands for the number of symbols used in the simulation. In the simulations, 
Pinchas and Bobrovsky compared their new blind channel equalization algorithm against 
several other corresponding algorithms, including the Godard algorithm (described 
previously in the chapter). The simulation results of the Pinchas–Bobrovsky algorithm 
consistently outperformed the old ones in terms of statistical efficiency, meaning that 
the steady-state mean-square error was smaller and the rate of convergence was faster.

From the perspective of blind equalization for practical applications, the rate of 
convergence of the Pinchas–Bobrovsky algorithm (based on the MaxEnt principle) 
appears to have an advantage over traditional Bussgang algorithms insofar as statistical 
efficiency is concerned. However, formulation of this new algorithm is mathematically 
demanding, which, in turn, could mean that the algorithm is more sensitive to finite-
precision effects compared to the Godard algorithm, for example. This comparative 
evaluation is apparently missing from the paper (Pinchas and Bobrovsky, 2006).

17.9 summary and discussiOn

Blind deconvolution is an example of unsupervised learning, in the sense that it identifies 
the inverse of an unknown linear time-invariant (possibly non-minimum-phase) system 
without having access to a training sequence (i.e., a desired response). This operation 
requires the identification of both the magnitude and phase of the system’s transfer 
function. To identify the magnitude component, we only need second-order statistics 
(SOS) of the received signal (i.e., the system output). However, identifying the phase 
component is more difficult.

One class of deconvolution procedures, discussed in this chapter, relies on SOS 
and makes up for the lack of a desired response by exploiting cyclostationarity, which 
characterizes the output of a communication channel involving the use of modulation. 
In this chapter, we have shown that it is algorithmically feasible to identify an unknown 
linear channel solely on the basis of cyclostationary statistics of the received signal, as 
exemplified by the subspace decomposition procedure described in Section 17.3. This is 
indeed a significant algorithmic achievement in the blind equalization of a communica-
tion channel in signal-processing terms.

The SOS-based subspace decomposition procedure for blind channel identifica-
tion relies on block processing for its implementation. It therefore offers rapid acquisi-
tion, which makes it particularly attractive for use in a highly nonstationary environment 
(e.g., wireless communications). However, this important advantage is gained at the 
expense of a highly intensive computational complexity, which, in light of the ever-
expanding computer technology, may not be a serious practical issue in the long run.

The second class of blind deconvolution procedures discussed in this chapter, 
namely, Bussgang algorithms, exemplified by the Godard algorithm, relies on the use of 
higher-order statistics (HOS) in an implicit sense to make up for the absence of a desired 
response. This form of blind deconvolution mandates the use of nonlinear processing. 
Most importantly, the received signal must be non-Gaussian for the procedure to work.
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The Bussgang algorithm performs blind equalization of a linear communication 
channel by subjecting the received signal to an iterative deconvolution process. When 
the algorithm has converged in the mean value, the deconvolved sequence assumes 
Bussgang statistics—hence the broadly defined name of the algorithm. The distinguish-
ing features of the Bussgang algorithm are as follows:

	 •	 The minimization of a nonconvex cost function and, therefore, the likelihood of 
being trapped in a local minimum.

	 •	 A low computational complexity—slightly greater than that of a traditional adaptive 
equalizer (based on the LMS principle algorithm) having access to a training sequence.

	 •	 A relatively slow rate of convergence.

In a sense, the SOS-based subspace decomposition procedure and the implicit 
HOS-based family of Bussgang algorithms are complementary: Moreover, these two 
themes are tied together in the design of fractionally spaced Bussgang equalizers.

Another implicit HOS-based blind convolution algorithm discussed in the chapter 
is the new algorithm formulated by Pinchas and Bobrovsky (2006), using the MaxEnt 
principle. In mathematical terms, this new algorithm is more demanding than the 
Godard algorithm. However, computer simulations, reported in their 2006 paper, show 
that this new algorithm outperforms the Godard algorithm in terms of statistical efficiency. 

We conclude this discussion on an important issue that deserves serious con-
siderations: Specifically, in Chapter 11, we stressed the need for paying attention to 
robustness of an adaptive filtering algorithm with respect to unknown environmental 
disturbances (uncertainties). In a sense, robustness also includes the issue of sensitivity 
of the algorithm to finite-precision effects, discussed in Chapter 12. Regrettably, how-
ever, robustness is yet to feature in the signal-processing literature on blind deconvolu-
tion on a scale comparable to that on traditional LMS and RLS algorithms. 

prOBlems

 1. In this problem, we explore the possibility of extracting the phase response of an unknown 
channel using cyclostationary statistics.

 (a) Using Eq. (17.3) for the received signal u(t) at the output of a linear communication 
channel with impulse response hn, and invoking the assumptions made in Section 17.3 on 
the transmitted signal xk and channel noise n(t), show that the autocorrelation function 
of u(t) evaluated at the two time instants t1 and t2 is given by

  ru1t1, t22 = 𝔼3u1t12u*1t224  

  = a
∞

k = -∞
 a

∞

l = -∞
rx1kT - lT2h1t1 - kT2h*1t2 - lT2 + s2

nd1t1 - t22, 

  where rx(kT) is the autocorrelation function of the transmitted signal for lag kT and s2
n 

is the noise variance. Demonstrate that u(t) is cyclostationary in the wide sense.
 (b) The cyclic autocorrelation function and spectral density of a cyclostationary process u(t) 

are respectively defined by the continuous-time versions of Eqs. (1.163) and (1.167), viz.,

 rau1t2 =
1
T
 L

T>2

-T>2
ru at +

t

2
, t -

t

2
b  exp1j2pat2dt 
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  and

 Sa
u1v2 = L

∞

-∞
rau1t2 exp1- j2pft2dt,  v = 2pf, 

  where

 a =
k
T

,  k = 0, {1, {2, c. 

  Let Ψk(v) denote the phase response of Sk>T
u 1v2 and Φ(v) denote the phase response of 

the channel. Show that

 Ψk1v2 = Φ av +
kp
T

b - Φ av -
kp
T

b ,  k = 0, {1, {2, c. 

 (c) Let ck(T) and f(t) denote the inverse Fourier transforms of Ψk(v) and Φ(v), respectively. 
Using the result of part (b), show that

 ck1t2 = -2jf1t2sin apkt
T

b ,  k = 0, {1, {2, c. 

  What conclusions can you draw from this relation with regard to the possibility of extract-
ing the phase response Φ(v) from ck(t)?

 2. Suppose that the channel convolutional matrix H of the SIMO model defined in  
Eq. (17.15) has been estimated by means of the subspace decomposition procedure described 
in Section 17.3.

   Show that, in the noise-free case, perfect equalization of the channel is achieved by using 
a multichannel structure whose own filtering matrix is defined by the pseudoinverse of H.

 3. Using the definitions of channel convolutional matrix H in Eq. (17.15) and the eigenvectors 
gk associated with the noise space n, derive Eq. (17.27).

 4. The use of linear prediction provides the basis for other procedures for blind identification. 
The basic idea behind these procedures resides in the generalized Bezout identity (Kailath, 
1980). Define the L-by-1 polynomial vector

 H1z2 = 3H1021z2, H1121z2, c, H1L - 121z24T, 

  where H(l)(z) is the transfer function of the lth virtual channel. Under the condition that H(z) 
is irreducible, the generalized Bezout identity states that there exists a 1-by-L polynomial 
vector

 G1z2 = 3G1021z2, G1121z2, c, G1L - 121z24T 

  such that
 G1z2H1z2 = 1; 

  that is,

 a
L - 1

l = 0
G1l21z2H1l21z2 = 1. 

The implication of this identity is that a set of moving-average processes described in terms 
of a white-noise process n(n) by the operation y(n) = H(z)[n(n)] may also be represented by 
an autoregressive process of finite order.

M17_HAYK4083_05_SE_C17.indd   747 21/06/13   8:57 AM



748   Chapter 17  Blind Deconvolution

Consider the ideal case of a noiseless channel for which the received signal of the lth 
virtual channel is defined by

 u1l2
n = a

M

m = 0
h1l2

m xn - m,  l = 0, 1, c, L - 1, 

where xn is the transmitted symbol and h1l2
n  is the impulse response of the lth virtual channel. 

Using the generalized Bezout identity, show that

 a
L - 1

l = 0
G1l21z23u1l2

n 4 = xn 

and, thus, that xn is reproduced exactly. [Note that G(l)(z) acts as an operator.] How would 
you interpret this result in light of linear prediction?

 5. Refer to the block diagram of Fig. 17.7, using a zero-memory nonlinear function, g. Equation 
(17.80) defines the conditional mean estimate of the transmitted symbol x, assuming that the 
convolutional noise n is additive, white, Gaussian, and statistically independent of x. Derive 
this formula.

 6. For perfect equalization, we require that the equalizer output y(n) be exactly equal to the trans-
mitted symbol x(n). Show that when the Bussgang algorithm has converged in the mean value 
and perfect equalization has been attained, the nonlinear estimator must satisfy the condition

 𝔼3xng1xn24 = 1, 

where xn is the conditional mean estimate of x.

 7. Equation (17.59) provides an adaptive method for finding the tap weights of the FIR filter 
in the Bussgang algorithm for performing iterative deconvolution. Develop an alternative 
method for doing this computation, assuming the availability of an overdetermined system 
of equations and the use of the method of least squares, which was discussed in Chapter 9.

 8. A data stream consisting of i.i.d. symbols is applied to a binary phase-shift keying (PSK) sys-
tem. The resulting modulated signal, x(n), is applied to a linear channel of unknown impulse 
response. For blind equalization of the channel, the constant-modulus algorithm (i.e., the 
Godard algorithm with p = 2) is used.

 (a) Plot the error signal e(n) versus the decoded sequence y(n).
 (b) Assuming the use of the signed-error version of the CMA, plot the piece-wise approxima-

tion of e(n).
 (c) Formulate the CMA and its signed-error version.

You may refer to footnote 7 for a brief description of the signed-error CMA.

 9. Repeat Problem 8 for the case of a transmitter using quadrature phase-shift keying (QPSK).

 10. In this problem, we build on the material presented in Problem 8 for real-valued data by 
exploiting the dithered signed-error version of the CMA, which is hereafter referred to as 
DSE-CMA. (See footnote 7.) This new algorithm is described by the updated equation

 w1n + 12 = w1n2 + mu1n23a sgn1n1n224, 
where

  n1n2 = e1n2 + ae1n2,  

  e1n2 = y1n21R2 - y21n22, 

and m, a, and R2 are all positive constants and e1n2 is the added dither. The samples of the 
dither are i.i.d. over the interval [-1, 1].
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According to quantization theory, the operator a sgn(n(n)) has an effect equivalent to 
that of the two-level quantizer

 Q1n1n22 = e ∆ >2 for   n1n2 Ú 0
- ∆ >2 for   n1n2 6 0

, 

where ∆ = 2a and a Ú ∙e1n2 ∙  for the relevant parts of the decoded sequence y(n).
 (a) Show that the conditional expectation of n(n), given y(n), is equivalent to a hard-limited 

version of the error signal e(n) in the traditional CMA:

 𝔼3n1n2 ∙y1n24 = •
 a for n1n2 7 0
e1n2 for ∙n1n2 ∙ … a

-a for n1n2 6 -a

. 

 (b) Plot the result obtained in part (a) for a = 2.

 11. The transmitter of a digital communication system uses QPSK, which is driven by a data 
stream consisting of i.i.d. symbols. The modulated signal is applied to a linear channel of 
unknown impulse response.

For blind equalization of the channel, it is proposed to use the Shalvi–Weinstein equalizer, 
whose design is based on the cost function

 J = 𝔼3 ∙ y1n2 ∙44   subject to 𝔼3 ∙ y1n2 ∙24 = s2
x, 

where y(n) is the equalizer output and s2
x is the variance of the original data sequence.

 (a) Show that the Shalvi–Weinstein criterion is essentially the same as the Godard criterion 
for p = 2.

 (b) To be more precise, show that, in the absence of channel noise, the minima of the Shalvi–
Weinstein cost function are the same as the minima of the Godard cost function. (Hint: 
Rewrite the tap-weight vector in polar form—that is, a unit-norm vector times a radial 
scale factor—and then optimize the Godard cost function with respect to the radial scale 
factor.)

 12. Derive the cost function J(w) defined in Eq. (17.116) that applies to a fractionally spaced 
Bussgang equalizer for a linear communication channel.
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Epilogue

In this final chapter of the book, we address two ways of thinking about adaptive filtering:

 1. Section 1 looks back to the material covered in previous chapters of the book. 
Specifically, this section revisits three pervasive issues that play key roles in linear 
adaptive-filtering applications: robustness, efficiency, and complexity.

 2. Section 2 looks forward to an emerging new topic in nonlinear adaptive filtering. 
Although this topic has been discussed at some length in the literature, this section 
presents an exposé of a new class of kernel-based adaptive filtering, which builds 
on ideas in machine learning as well as linear adaptive filtering.

With the material covered in Chapter 2 being new to the book, it is longer than 
Section 1.

1. RobustnEss, EfficiEncy, and complExity

These three issues featured in all the chapters of the book; one, two, or all three of them 
were discussed in one chapter or another. However, it was in Chapters 11 and 13 where 
all these issues were considered side by side.

Robustness–Efficiency trade-off

From a practical point of view, it is highly desirable for an adaptive filtering algorithm 
to be robust in the presence of unknown disturbances. Another desirable property—
namely, statistical efficiency—also deserves attention of its own because of its practical 
importance. The key questions to be recalled here are:

 1. How do we measure robustness and efficiency individually?
 2. Just as importantly, how do we decide to opt for one over the other?

Considering the issue of robustness first, suppose we have a linear adaptive filtering 
algorithm, viewed as an estimator, that is prone to the presence of unknown disturbances 
at its input. The estimator maps the disturbances at the input to estimation errors at the 
output. On this basis, we may introduce the notion of energy gain, defined as follows:

The energy gain of an estimator is the ratio of the error energy at the output to 
the total disturbance energy at the input.
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Since this ratio depends on disturbances that are unknown, we remove this dependence 
by picking the largest energy gain measured over all conceivable disturbances, which are 
likely to arise in practice. In so doing, we come up with the H∞ norm of the estimator, 
paving the way to describe the optimal H∞ estimation problem as follows:

Find that particular causal estimator whose H∞ norm has the smallest possible 
value under all conceivable disturbances.

The optimal H∞ estimator that solves this problem is of a minimax nature in the follow-
ing sense:

Nature, acting as the opponent, has access to all conceivable unknown distur-
bances that can arise, thereby increasing the energy gain. On the other hand, the 
estimation-algorithmic designer has the privilege of being able to select that par-
ticular algorithm that minimizes the energy gain.

In the context of linear adaptive filtering, there are two basic algorithms to choose 
from, the least-mean-square (LMS) algorithm and the recursive least-squares (RLS) 
algorithm. The findings reported on these two algorithms in Chapter 11 on robustness 
are summarized as follows:

 1. The LMS algorithm is H∞ optimal, in that no other adaptive filtering algorithm 
achieves a maximum energy gain less than unity. In mathematical terms, we may 
therefore write

 g2
LMS … 1 for 0 6 m 6 min

n = 1, c, N

1
7u1n2 7 2 and any integer N, (1)

where g2 denotes the maximum energy gain, m is the step-size parameter, and u(n) 
is the input vector.

 2. On the other hand, the maximum energy of the RLS algorithm is lower- and upper-
bounded as follows:

 12r - 122 … g2
RLS … 12r + 122, (2)

where r is a dimensionless quantity that is greater than one.

From this pair of equations, we readily see that when robustness is the issue of interest, 
the LMS algorithm outperforms the RLS algorithm. So, if robustness is the requirement 
for a linear adaptive filtering application of interest, the LMS algorithm is the method 
of choice.

Turning next to the issue of statistical efficiency, there are two possible measures 
for quantifying efficiency:

 1. Rate of convergence, which is defined as the number of adaptation cycles needed 
for an adaptive filtering algorithm to effectively reach a “steady state.”

 2. Misadjustment, which is defined as the excess mean-square error of an adaptive 
filtering algorithm expressed as a percentage of the optimal mean-square error 
produced by the Wiener filter, which is viewed as a frame of reference for the 
algorithm.
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In Chapter 11, we adopted the rate of convergence as the measure of statistical efficiency:

Typically, it is here that the RLS algorithm outperforms the LMS algorithm by an 
order of magnitude. 

Accordingly, when statistical efficiency measured in terms of the rate of convergence is 
the requirement, the RLS algorithm is the method of choice.

In light of the discussion so far, we may go on to say:

There is no way of designing a linear adaptive filtering algorithm that is both 
robust and statistically efficient.

Rather, the designer needs to make a decision in favor of the LMS or RLS algorithm, or 
their respective extensions, depending on the application of interest. Saying it another 
way, there is no free lunch, in that one way or another, a trade-off is made between 
robustness and efficiency.

complexity

Today, we live in a world that is increasingly defined by big data as well as by the need 
for fast on-line data processing. The term “big data” refers to an ensemble of data sets, 
which is so large and complex that this processing is an emerging challenge. To meet 
these challenging trends in the context of linear adaptive filtering, we are compelled to 
keep algorithmic complexity as low as possible. To satisfy this requirement, it is highly 
desirable to opt for an adaptive filtering algorithm for which the computational com-
plexity increases linearly with respect to the number of adjustable tap weights (i.e., 
parameters) in the finite-duration impulse response (FIR) filter, particularly when the 
requirement calls for a large number of tap weights.

In such circumstances, the question to be resolved is:

Which of the two adaptive filtering algorithms, the LMS and the RLS, is the 
method of choice when computational complexity or simplicity is a requirement?

From the discussions presented in Chapters 6 and 9, we recall that algorithmic complex-
ity of the LMS follows a linear law, whereas that of the RLS follows a square law. Hence, 
the obvious answer to the question just raised is to opt for the LMS algorithm.

Given that the LMS algorithm distinguishes itself from the RLS algorithm in two 
important practical respects—namely, computational simplicity and robustness—it is 
not surprising that the LMS algorithm is the most widely used tool for linear adaptive 
filtering applications. It will remain so for years to come as well.

With computationally efficient processing of big data as the challenge, we may 
raise the next question:

How do we build on the widely used LMS algorithm such that linear adaptive fil-
tering power is enhanced significantly, including the elimination of manual tuning 
of the step-size parameter?

The answer to this increasingly important question is in two parts, which follow from 
Chapter 13 on adaptation in nonstationary environments:

 1. The LMS algorithm is expanded by vectorizing its step-size parameter and intro-
ducing a new parameter called the meta-step-size parameter. The new result of 
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1Much of the material presented in this section, up to and including the representer theorem, is adapted 
from Section 6.10 of the book (Haykin, 2009).

this expansion, exemplified by the incremental delta-bar-delta (IDBD) algorithm 
 (Sutton, 1992), makes it possible for each element in the vector to adaptively match 
a particular feature of the input data.

 2. For complete automatic adjustment of all the parameters in the IDBD algorithm, an 
effort is made to eliminate the manual tuning of the meta-step-size parameter. The 
result, which takes care of the second part of the question by building on the IDBD 
algorithm in a heuristic manner, is called the Autostep method (Mahmood, 2013).

Both the IDBD algorithm and the Autostep method are rooted in the method of sto-
chastic gradient descent, which was discussed in Chapter 5. Hence, just like the LMS 
algorithm, they both follow a linear law for their computational complexity.

summarizing Remarks

The Autostep method brings a new way of thinking to linear adaptive filtering in a 
twofold sense:

 1. The Autostep method employs an adaptation-within-adaptation mechanism.
 2. With manual tuning of the meta-step-size parameter in the IDBD algorithm elimi-

nated, all the parameters in the Autostep method are now automatically adjustable.

We have referred to the Autostep method as a heuristic expansion of the IDBD algo-
rithm, aimed at eliminating the meta-step-size parameter through clever formulation. The 
challenge is how to improve on the Autostep method in a rigorous mathematical way!

2. KERnEl-basEd nonlinEaR adaptivE filtERing

In much of the material covered in this book, we focused attention on linear adaptive 
filtering, in the sense that no nonlinear physical element was built into the filtering 
structure (except for Chapter 17 on blind deconvolution). However, there are prac-
tical situations in which the underlying physical mechanism generates training data 
(for supervised adaptation) that are inherently nonlinear. For example, in underwater 
communications, the communication channel is not only highly nonstationary but also 
nonlinear. In such situations, there may well be a need for nonlinear adaptive filtering. 
Nonlinear adaptive filtering could make a difference in other applications as well.

In this section,1 we revisit the popular LMS algorithm, but this time nonlinearity 
is purposely built into the filtering structure. The practical utility of the LMS algorithm 
is thereby extended beyond its traditional adaptive signal-processing power. The new 
algorithm is called kernel least mean square (KLMS), which is a member of a new class 
of broadly defined kernel adaptive filters, in which a kernel is responsible for nonlinear-
ity. The motivation for using this kind of nonlinearity is twofold2:

 1. Transform a nonlinear adaptive filtering problem into a linear one, so that we may 
explore the literature on linear adaptive filters, be they of the LMS or RLS variety.

2Liu et al. (2010) present a detailed account of two families of kernel adaptive filters, those that exploit 
the LMS algorithm and its extensions and those that exploit the RLS algorithm and its extensions.
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 2. Structure the new nonlinear adaptive filtering algorithm, so as to operate  iteratively 
in an on-line manner.

To be more precise, the mathematical formulation of kernel adaptive filtering 
algorithms is rooted in reproducing kernel Hilbert spaces. As such, we may refer to this 
new class of adaptive filtering algorithms as nonlinear in an overall sense but linear in 
reproducing kernel Hilbert spaces; it is in the latter context that linear adaptive filtering 
comes into play. To be consistent with the rest of the book, the formulation is carried 
out entirely in the complex domain.

In a historical context, the roots of reproducing kernel Hilbert spaces may be 
traced to a classic paper by Aronszajn (1950). However, it was in the machine- learning 
literature where this new way of thinking developed, particularly so in a class of 
 machine-learning algorithms called support vector machines (Boser et al., 1992; Vapnik, 
1998; Schölkopf & Smola, 2002).

Kernel adaptive filtering is in its early stages of development. Nevertheless, it 
 offers a number of useful attributes (Theodoridis et al., 2011 and Theodoridis, 2012):

 1. Use is made of convex cost functions, which lead to unique, well-characterized 
solutions.

 2. Demands on computational and memory resources can be relatively moderate.
 3. Unified mathematical treatment of different types of nonlinearities is provided.

As with every innovation, however, kernel adaptive filtering algorithms do have limita-
tions of their own, which are discussed later in the section.

the complex Hilbert space

As already mentioned, the idea of a reproducing kernel Hilbert space (RKHS) plays a 
key role in the underlying mathematical theory of the kernel least-mean-square (KLMS) 
filtering algorithm. To set the stage for defining the RKHS, we must start with what a 
Hilbert space is. To simplify mathematical exposition throughout this section, we find it 
convenient for the sake of simplicity to use the following notation:

 un K u1n2 (3)

for the signal vector applied to the input of the KLMS that is the focus of attention 
herein; as before, n stands for discrete time.

Consider, then, a complex nonlinear function w(un),3 whose argument un lies in a 
complex Euclidean space. However, the complex continuous space, in which the function 
w(un) resides, is entirely different. To define this new space, we require it to satisfy the 
following two distinct mathematical conditions:

 1. The space is of infinite dimension.
 2. Every Cauchy sequence4 in the space is convergent.

3In reality, w1un2 is a functional, in that it represents a function of a function.
4Consider the sequence 5w1un26M

n = 1 for varying n. Such a sequence is said to be a Cauchy sequence if 
it satisfies the following requirement:

For any e 7 0, there is an integer M such that ∙w1un2 - w1ui2 ∙ 6 e for all n, i 7 M.
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A complex continuous functional space, which satisfies both of these two conditions, is 
said to be a complex Hilbert space; henceforth, this space is denoted by H, which is not 
to be confused with the same symbol used in Chapter 17 on blind deconvolution.

properties of the complex Hilbert space

Properties of the complex Hilbert space include the following:

 1. Conjugate symmetry. The inner product of a pair of nonlinear functions, w(un) and 
w(ui) in H, satisfies the property of conjugate symmetry, as shown by

 8w1un2, w1ui29H = 8w1ui2, w1un29* for all n and i, (4)

where the asterisk denotes complex conjugation.
 2. Positive semidefiniteness. The norm of a complex nonlinear function, w(un), defined 

as the inner product of the function w(un) with itself in H, satisfies the property of 
positive semidefiniteness, defined by

  7w1un2 7 2H = 8w1un2, w1un29H 

  Ú 0 for all n.  
(5)

The term 7w1un2 7 2H is called the squared norm of the complex nonlinear function 
w1un2 in H.

 3. Distribution (linearity). Given a pair of constants, a and b, the distribution (linearity) 
of complex nonlinear functions in the complex Hilbert space is described as follows:

 81aw1un2 + bw1um22, w1ul29H = a8w1un2, w1ul29 + b81w1um2, w1ul229H, (6)

which holds for all constants a and b as well as all indices n, m, and l.

the notion of a Kernel

Now that we have defined a complex Hilbert space, the next issue to address is the 
 notion of a kernel.

Just as an FIR filter is at the heart of linear adaptive filtering, so a kernel is at the 
heart of the new class of nonlinear adaptive filters that we have in mind. In linear adap-
tive filtering, we only have two spaces: an input space, where the incoming data lie, and 
an output space, where the actual response of the filter lies. On the other hand, kernel-
based adaptive filters have three spaces: an input space, a feature space, and an output 
space. The feature space is naturally hidden, in that it is not directly reachable from the 
outside. The kernel lies in the feature space.

The input space of the KLMS algorithm is wired directly (i.e., in a weightless 
manner) to the feature space, and the feature space is linearly connected to the output 
space. It is in the latter setting that the LMS comes into play in the KLMS algorithm. In 
general, the input space is a complex Euclidean space as mentioned previously, whereas 
the feature space is a complex Hilbert space by design.

To move on, consider Fig. 1, where attention is focused on the nonlinear mapping 
from the input space to the feature space. Specifically, the input vectors, un and ui, are 
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mapped into the complex nonlinear functions, w(un) and w(ui), respectively. With such a 
setting, we may make the following, intuitively satisfying statement:

A kernel, denoted by k1un, ui2, provides a measure of the similarity (matching) 
that may exist between the pair of complex nonlinear functions, w1un2 and w1ui2, 
in the feature space.

Putting this statement in mathematical form in terms of inner products in the complex 
Hilbert space, we may formally define the kernel as follows:

 k1un, ui2 = 81w1ui2, w1un229H. (7)

In this defining equation, note carefully that the indices n and i in the kernel k1un, ui2 
have been reversed with respect to those in the inner product of the complex nonlinear 
functions w1ui2 and w1un2 in H. Another point that should also be noted: Earlier in this 
section, we required that the complex Hilbert space be of infinite dimension. It therefore 
follows that the feature map, w, can take care of all kinds of kernels, be they of finite or 
infinite dimension, as well as real or complex.

In light of how the kernel k1un, ui2 is defined in Eq. (7), we may propose another 
insightful way of describing it:

The kernel k1un, ui2 provides a measure of the similarity (matching) between 
the images produced in the feature space under a form of nonlinear embedding, 
denoted by the feature map, w, which is applied to any pair of vectors, un and ui, 
that lie in the complex Euclidean space (i.e., input space).

In the machine-learning literature, the kernel defined mathematically in Eq. (7) is 
commonly referred to as a Mercer kernel. It is so named in recognition of the fact that 
the kernel k1un, ui2 satisfies a theorem in functional analysis that was first described by 
Mercer (1909).5 Henceforth, we will adopt the name Mercer kernel.

FiguRE 1 Illustration of the nonlinear mapping 
of vectors un and ui in the input space onto the 
respectively transformed nonlinear functions 
w1un2 and w1ui2 in the feature space.

5Mercer’s theorem (Mercer, 1909). This theorem was originally formulated for a real domain. To be 
consistent with the material presented herein, the theorem is stated in the complex domain as follows:

Let k1u, u∼2 be a continuous Hermitian symmetric kernel, where the vectors u and u∼ reside in a complex 
Euclidean space, denoted by U. This kernel can be expanded in the series

k1u, u∼2 = a
∞

i = 1
liq

*
i 1u2qi(1u∼2,

(continued)
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properties of the mercer Kernel

Properties of the Mercer kernel include the following:

 1. The Mercer kernel is a positive semidefinite function of its arguments. To demon-
strate this property, we first express the kernel k1un, ui2 in the following equivalent 
form:

 k1un, ui2 = 8k1•, ui2,  k1•, un29H, (8)

which is another way of describing an inner product in the complex Hilbert space, 
with the Mercer kernel viewed as a complex nonlinear function in its own right. 
Hence, given n = 1, 2, c, N and likewise for i, and given a corresponding vector 
of constants—namely, cn = 5cn6N

n = 1 and likewise for ci—we may go on to write 
the following:

  a
N

n = 1
a
N

i = 1
c*nk1un, ui2ci = a

n

i = 1
aa

N

n = 1
c*n8k1•, ui2, k1•, un29Hb  

  = a
N

i = 1
cihk1•, ui2, a

N

n = 1
cnk1•, un2 i

H

 
(9)

  = h a
N

i = 1
cik1•, ui2, a

N

n = 1
cnk1•, un2 i

H

  

  = g a
N

n = 1
cnk1•, un2 g

2

H

.

with nonnegative li Ú 0 for all i. For this expansion to converge absolutely and uniformly, it is neces-
sary and sufficient that the condition

LULU
k1u, u∼2c*(1u2c1u∼2dudu∼ 7 0

holds for all c1•2, normalized such that

LU
∙c1u2 ∙2du = 1.

The qi(u) are called the eigenfunctions of the expansion, and the corresponding li are called the asso-
ciated eigenvalues. The fact that all of the eigenvalues are nonnegative means that the kernel is positive 
semidefinite.

Mercer’s theorem is remarkable in that it defines not only the necessary and sufficient condition for 
the series expansion of the kernel k1u, u∼2 to be convergent but also provides a constructive procedure for the 
corresponding feature map. To demonstrate this latter point, consider the following mapper:

F1u2 = 32l1q11u2, 2l2q21u2, c4T,

where the superscript T denotes transposition. We may then go on to express the kernel k1u, u∼2 in its custom-
ary form, as shown by

 k1u, u∼2 = a
∞

i = 1
12liqi1u22* # 12liqi1u∼22

 = a
∞

i = 1
w*i 1u2 # wi1u∼2

 = 8wi1u2, wi1u∼29H  .
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6The Gaussian kernel is one of the many kernels described in the machine-learning literature (see, e.g., 
Schölkopf & Smola, 2002).

In the first line of Eq. (9), we made use of Eq. (8) on the right-hand side. Then, in the 
second and third lines, we made use of the distribution property of H in Eq. (6). In 
the last line we made use of the positive semidefiniteness property of H in Eq. (5).

 2. The Mercer kernel is a conjugate-symmetric function. This second property is justi-
fied as follows:

  k1un, ui2 = 8k1•, ui2, k1•, un29H 

  = 8k1•, un2, k1•, ui29*H (10)

  = k*1ui, un2.  

 3. The Mercer kernel, k1un, ui2, is an element of an N-by-N positive semidefinite 
 matrix. To justify this third and last property of the Mercer kernel, we start by 
introducing an N-by-N matrix:

  K = 5k1un, ui26N
n, i = 1 

  = D k1u1, u12 k1u1, u22 g k1u1, uN2
k1u2, u12 k1u2, u22 g k1u2, uN2

f f f
k1uN, u12 k1uN, u22 g k1uN, uN2

T . (11)

This matrix is a positive semidefinite matrix, in that for any complex N-by-1 vector, 
c, the matrix K satisfies the following condition:

 cHKc Ú 0, (12)

where the superscript H denotes Hermitian matrix transposition. The condition 
described in Eq. (12) follows readily from the definitions of matrix K and vector 
c. Accordingly, we say that the matrix K is a Hermitian-symmetric matrix; that is, 
K = KH. Such a matrix is called the kernel matrix; it is also referred to as the Gram 
matrix in the machine-learning literature.

ExamplE 1  gaussian Kernel

For an illustrative example, consider a Gaussian kernel6 defined as follows:

 k1•, un2 = exp a-  
1

2s2
7• - un 7 2b , (13)

where the data vector un defines the center of the Gaussian kernel and s2 provides a measure of 
its width (spread) for all n. Indeed, the feature space of the Gaussian kernel has infinite dimension, 
a point that follows readily from the defining equation (13).
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the Reproducing property of mercer Kernels

Consider next a function f(•) that is picked from the complex Hilbert space H, in which • 
denotes an arbitrary nonlinear vector. This function may be expressed by the following 
series expansion in terms of the kernel k1•, ui2H as follows:

 f1•2 = a
l

i- 1
aik1•, ui2, (14)

where ai is the coefficient of the expansion. The inner product of the function f(•) and 
the Mercer kernel k1•, u2 in H are expressed as follows:

  8 f1•2, k1•, u29H = haa
l

i = 1
aik1•, ui2b , k1•, u2 i

H

 

  = a
l

i = 1
ai8k1•, ui2, k1•, u29H 

(15)

  = a
l

i = 1
aik1u, ui2  

  = f1u2,  

where in the second line we made use of Eq. (8). The final result obtained in Eq. (15) is 
the original function f1•2 in Eq. (14), with the vector u assuming the role of its argument.

For obvious reasons, the property of the Mercer kernel described in Eq. (15) is 
known as the reproducing property of the Mercer kernel (Aronszajn, 1950). We may 
therefore say:

The Mercer kernel is endowed with the reproducing kernel Hilbert space (RKHS) 
property.

Hereafter, we refer to this designation as the RKHS property.

the Kernel trick

Previously, we mentioned that dimensionality of the feature space can be high, and pos-
sibly infinitely so, compared to the input space. Consequently, algorithmic optimization 
of the KLMS algorithm in the feature space can be computationally demanding. To over-
come this difficulty, formulate the KLMS algorithm in terms of images of the input vec-
tors; that is, follow the second intuitive way of describing the Mercer kernel introduced 
in words earlier. Mathematically speaking, we may employ the RKHS property—namely,

  8w1ui2, w1un29H = 8k1•, ui2, k1•, un29H 

  = k1un, ui2,  
(16)

which is a restatement of Eq. (7). In so doing, the costly computation of inner products in 
the high-dimensional feature space is replaced with a much less demanding computation 
of kernels in the original Euclidean input space, where both un and ui reside.

To implement the property described in Eq. (16), we proceed in two steps:

Step 1. Formulate the KLMS algorithm in terms of complex continuous functions 
in the feature space.
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Step 2. To optimize the algorithm, recast it by replacing the computation of inner 
products in the feature space with the computation of the Mercer kernel in the 
complex Euclidean input space.

The rule behind replacing step 1 with step 2 is commonly referred as the kernel trick in 
the machine-learning literature.

the Representer theorem

We finish off the preparatory material on kernel-based adaptive filtering, leading to 
the formulation of the RKHS, by demonstrating the analytic power of working in this 
new space. To proceed, define a space H viewed as the RKHS, which is induced by the 
 Mercer kernel k1•, u2. Given any complex nonlinear function f1•2∈ H, we may decom-
pose into the sum of two components, both of which lie in H:

 1. One component is contained in the span of the kernel functions, denoted by 
k1•, u12, k1•, u22, c, k1•, ul2. Denoting this component by the function of f}1•2, 
we may use Eq. (15) to represent it by the series expansion:

 f}1•2 = a
l

i = 1
aik1•, ui2H. (17)

 2. The second component is orthogonal to the span of the kernel functions, which is 
denoted by f#1•2.

Thus, the original function f1•2 is expressed as the summation:

   f1•2 = f}1•2 + f#1•2  

  = a
l

i = 1
aik1•, ui2H + f#1•2. 

(18)

Next, consider a complex nonlinear function, denoted by f1un2 in the RKHS. 
Building on Eq. (8), we may express this new function as follows:

  f1un2 = 8 f1•2, k1•, un29H  

  = haa
l

i = 1
aik1•, ui2 + f#1•2b , k1•, un2 i

H

 

  = haa
l

i = 1
aik1•, ui2, k1•, un2b i

H

+ 8 f#1•2, k1•, un29H (19)

  = a
l

i = 1
ai8k1•, ui2, k1•, un29H 

  = a
l

i = 1
aik1un, ui2,  

where in the third line we made use of the distribution (linearity) of the complex Hilbert 
space in Eq. (7), in the fourth line we used the zero orthogonality of f#1•2 with respect 
to f#1•2, and finally, we made use of Eq. (8).
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7The celebrated representer theorem was first described in the paper by Kimeldorf and Wahba (1971) 
for solving practical problems in statistical estimation based on squared-loss (cost) functions.

Equation (19) is a mathematical statement of the representer theorem,7 which, in 
words, may be expressed as follows:

Any complex nonlinear function in the RKHS can be represented by a linear 
combination of Mercer kernels.

As we shall see in the next subsection, the representer theorem occupies an important 
place in formulation of the KLMS algorithm.

the Kernel least-mean-square (Klms) algorithm

At long last, we can derive the KLMS algorithm. Naturally, to do this derivation we 
build not only on the preparatory material developed so far in this section but also on 
the related material for the traditional LMS algorithm covered in Chapter 6.

With this objective in mind, we first refer back to Chapter 6 to reproduce the 
weight-update formula of Eq. (6.3) as follows:

 wn n + 1 = wn n + me*nun, 

where we have used the simplified notation defined in Eq. (3). Then, under the assumed 
zero initial condition, we find that repeated application of this update formula yields the 
following input–output relationship:

  dnn = wn H
n un  

  = ma
n - 1

i = 1
eiu

H
i un, 

(20)

where dnn is the estimate of the desired response, dn, produced at the output of the LMS 
algorithm in response to the input vector un; the ei denotes an error signal. Examination 
of Eq. (20) reveals two noteworthy points:

 1. Linearity of the input–output relationship, which reaffirms the LMS as a linear 
filtering algorithm.

 2. Bypassing of the weight vector wn n, which is of particular interest to the discussion 
at hand.

Referring back to Fig. 1, we see that for an input vector ui in the complex  Euclidean 
input space, its nonlinearly mapped version in the feature space is the complex function 
w(ui). Based on this observation, we may construct the analogy between the linear LMS 
algorithm and its nonlinear counterpart, the KLMS algorithm, as shown in Table 1. This 
table is particularly helpful in using what we know about the LMS algorithm and apply-
ing it to the KLMS algorithm. Indeed, we may look to this table as the linkage between 
linear adaptive filtering and kernel-based nonlinear filtering.

In light of Table 1, we may make the following statement:

In place of the inner product uH
i un in Eq. (20) for the complex Euclidean input 

space of the traditional LMS algorithm, we have the inner product 8w1ui2, w1un29H 
in the complex Hilbert space for the KLMS algorithm.
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Accordingly, recognizing that the feature space is linearly connected to the output space 
in the KLMS algorithm, we may build on Eq. (20) to formulate the estimate of the 
desired response dn in the KLMS algorithm in response to the input un, which we denote 
by dnn, as shown by

  dnn = ma
n - 1

i = 1
ei8w1ui2, w1un29H 

  = ma
n - 1

i = 1
eik1un, ui2,  

(21)

where in the second line we made use of Eq. (16).
In Eq. (21), we have an important formula for the estimate dnn because it  bypasses 

the need for computing the weight vector in the KLMS algorithm. This formula is 
 important for the following simple reason:

In the KLMS algorithm, depending on how the Mercer kernel is chosen, it is 
possible for iterative computation of the weight vector to go on expanding indefi-
nitely because the feature space of the algorithm may have an infinite dimension 
of its own.

The key question to be resolved therefore is:

How do we overcome this computational difficulty?

The answer is to bypass the need for employing weights and build on the representer 
theorem for guidance.

To be specific, comparing Eq. (21) for the KLMS algorithm with Eq. (19) for the 
representer theorem, we may readily make the following observation by setting l = n - 1 
and f1un2 = dn:

The KLMS algorithm is a special case of the representer theorem.

Specifically, we may express Eq. (20) in the equivalent form:

 dnn = a
n - 1

i = 1
aik1un, ui2, (22)

TABlE 1 Mathematical Analogy Between the lMS and KlMS Algorithms

Algorithm Inputs Complex inner products Correlation (covariance) function

Traditional LMS ui, un Complex Euclidean space:

uH
i un

Correlation of tap-input vector: R

KLMS Transformed inputs:

w1ui2, w1un2
Complex Hilbert space:

8w1ui2, w1un29H
Kernel matrix (Gram):

1
N

 K,

where N is the size of the training data 
set over which the matrix is defined.
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which is produced in response to the input vector un. Moreover, as a result of the com-
parison, we have

 ai = mei, i = 1, 2, c, n - 1. (23)

With dn denoting the actual desired response, which becomes available at adaptation 
cycle n, we may express the corresponding error signal in the usual way:

 en = dn - dnn. (24)

Based on Eq. (22), we may now describe the topological composition of the KLMS 
algorithm in the form shown in Fig. 2. The interesting point to note here is the fact that the 
part of the figure labeled “linear combiner” plays a role in the KLMS algorithm similar 
to that of the linear combiner in the tradition LMS algorithm, with one basic difference:

The linear combiner in the KLMS algorithm is made up of error signal–based 
parameters, whereas the linear combiner in the LMS algorithm is made up of the 
FIR filter’s tap weights.

comparison of Klms topology with Radial-basis  
function (Rbf) network

At first glance the KLMS topology in Fig. 2 may bring to mind the radial-based func-
tion (RBF) network, which is widely used in machine learning (Haykin, 2009). In reality, 
however, the KLMS algorithm differentiates itself from the RBF network in three ways:

 1. The KLMS algorithm can accommodate a variety of Mercer kernels that are not 
RBFs.

FiguRE 2 Topological diagram of the KLMS algorithm based on the representer theorem.
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8In Bouboulis and Theodoridis (2011) and Bouboulis et al. (2012), derivation of the KLMS algorithm 
follows an entirely different procedure from that described in this section.

To be specific, the Wirtinger calculus described in Appendix B is generalized. This generalization is 
achieved by incorporating the Frechét differential into the Wirtinger calculus, hence the reference to the 
generalization as the Frechét–Wirtinger calculus. The Frechét differential deals with functionals, which befits 
the fact that, as pointed out previously in footnote 3, the feature w1un2 is in reality a functional. With the 
Frechét–Wirtinger calculus as the mathematical tool at hand, the stage is set for deriving the KLMS algorithm 
for nonlinear filtering using the notion of a gradient in the method of stochastic gradient descent. As such, 
the mathematically rigorous deviation presented in the two above-mentioned papers is developed, first using 
principles in the complex RKHS and Frechét–Wirtinger calculus.

 2. Unlike the RBF network with a fixed structure, the KLMS network of Fig. 2 is a 
network that grows with time.

 3. The parameters that connect the feature space to the output space are not weights; 
rather, the ai represent error signal–based parameters in accordance with  
Eq. (23).

Moreover, the KLMS algorithm is a simple kernel-based adaptive filtering algo-
rithm for which computational complexity follows a linear law, just like the traditional 
LMS algorithm.

formulation of the Klms algorithm

Table 2 presents the proposed outline of the KLMS algorithm in its complex form, for 
which we may use the Gaussian kernel, for example. The early part of the table—namely, 
Preliminaries, Selections, and Initializations—speaks for itself. Herein, we elaborate on 
the three computational steps that represent the core of the algorithm.8

In step 1 under Computation in Table 2, we build on the insightful use of Eq. (20) 
pertaining to the traditional LMS algorithm, thereby formulating Eq. (22) for the KLMS 
algorithm. This latter equation defines the estimate of the desired response, dnn, produced 
by the KLMS algorithm in response to the input vector un.

Step 2 under Computation follows the traditional terminology in adaptive  filtering, 
wherein the error signal, en, is defined as the difference between the actual desired 
 response, dn, and its estimate, dnn, as shown in Eq. (24).

Finally, step 3 under Computation provides the update for the parameter an in 
the representer theorem in light of the updated error signal, en, computed in step 2. In 
particular, use is made of Eq. (23) for i = n.

The description of these three steps is testimony to how simple the KLMS algo-
rithm is in computational terms.

properties inherited from the lms algorithm

Regularization. Much of the commonality that exists between the traditional 
LMS and KLMS algorithms is attributed to the fact that they are both example applica-
tions of the method of stochastic gradient, discussed in Chapter 5. Accordingly, they are 
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both model-independent, which in turn means that just as the traditional LMS algorithm 
does not require regularization, so it is with the KLMS algorithm.

Statistical Learning Theory. Turning next to the algorithmic learning curve, 
which was discussed at length in Section 6.4 for the traditional LMS algorithm, we may 
summarize the findings reported there as follows:

Under the assumption that the step-size parameter, m, is small, the learning curve 
for the LMS algorithm is described mathematically in Eq. (6.98), with two useful 
points in mind:

 1. Equation (6.98) does not include FIR’s tap-weights in its formulation.

 2.  Rather, the formulation is based on eigendecomposition of the correlation 
matrix, R, of the input vector, un.

It follows, therefore, that the same formula in Eq. (6.98) applies equally well to the 
KLMS algorithm provided that, in accordance with the last column in Table 1, we make 
the following substitution:

The scaled kernel matrix, 11>N2K, is substituted for the correlation matrix, R, 
in analyzing Eq. (6.98) to formulate the learning curve for the KLMS algorithm, 
where N is the size of the training data used to compute K.

TABlE 2  The KlMS Algorithm in the Complex Domain

Preliminaries:

Training data: 5un, dn6N
n = 1

Dictionary of the input vectors: U = 5un6
Dictionary of parameters in the representer theorem: a = 5an6N - 1

n = 1

Selections:

 1. Step-size parameter, m, is selected in accordance with Eq. (25).
 2. Mercer kernel and associated RKHS are selected.
 3. The feature space is selected.

Initializations:

 1. Error signal, e1 = d1, recognizing that e0 for n = 0 is zero.
 2. Representer theorem parameter, a1 = md1.
 3. First entry in the dictionary, U, is the input vector u1.

Computation:

For n = 2, 3, c, compute

Step 1. dnn = a
n - 1

i = 1
aik1un, ui2

Step 2. en = dn - dnn

Step 3. an = men

Step 4.  Go back to step 1. Add the new input un + 1 to the dictionary U, add an to the dictionary a, and 
repeat the computation.
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On this basis, if lmax denotes the largest eigenvalue of the scaled kernel matrix, 11>N2K, 
then to assure convergence of the learning curve of the KLMS algorithm, the step-size 
parameter, m, must satisfy the following condition:

 m 6
2

lmax
. (25)

As it is with the LMS algorithm, the preferred choice for m is to make it small compared 
to the reciprocal of lmax.

Moreover, in accordance with Eqs. (6.104) and (6.105) in Section 6.6 on the effi-
ciency of the LMS algorithm as well as Table 1, we may go on to characterize the statisti-
cal efficiency of the KLMS algorithm by the following two measures:

 1. Rate of convergence. With N natural modes of the KLMS algorithm, each of which 
is characterized by an eigenvalue of its own, the kth time constant is defined by

 tmse, k, KLMS ≈
1

2mlk
,  k = 1, 2, c, N. (26)

Correspondingly, the slowest time constant is given by

 tmse, min, KLMS ≈
1

2mlmin
, (27)

where lmin denotes the smallest eigenvalue of 11>N2K. In effect, Eq. (27) defines 
the most pessimistic rate of convergence of the KLMS algorithm. Note also 
that the rate of convergence is inversely proportional to the step-size param-
eter, m, which in turn means that the smaller we make m,the slower the rate of 
convergence will be.

 2. Misadjustment. This second measure of statistical efficiency is the excess mean-
square error of the KLMS, expressed as a percentage of the optimal mean-square 
error produced by the Wiener filter. Specifically, we have

 MKLMS ≈
m

2N
 tr[K], (28)

where tr[ ] is the trace operator. Here, we see that the misadjustment is directly 
proportional to the step-size parameter m; the smaller we make m, the smaller the 
misadjustment of the algorithm will be.

Robustness. The material described in Eq. (1) for robustness of the LMS algorithm 
applies equally well to the KLMS algorithm. Specifically, robustness of the KLMS algo-
rithm is assured provided that its maximum energy gain satisfies the following condition:

 g2
KLMS … 1 for 0 6 m 6 min

n = 1, c, N

1

7w1un2 7 2H
 and any integer N,  (29)

where 7w1un2 7 2H is the squared norm of the complex nonlinear function w1un2, as defined 
in Eq. (5). This definition is reproduced here in expanded form:
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  7w1un2 7 2H = 8w1un2, w1un29H 

  = LU

∙w1un2∙2dun,  
(30)

where U denotes the complex Euclidean space in which the input vector un lies for all n. 
To fulfill the requirement of Eq. (29), the integral in Eq. (30) would have to evalu-

ated for n = 1, 2, c, N and then the smallest value picked as the permissible upper 
bound on m. Evaluation of this integral needs careful consideration. For example, in 
the case of a Gaussian kernel, w1un2, we may have to use the Monte Carlo integration 
theorem (Press et al., 1988) for its approximate evaluation using computer simulations.

ExamplE 2  comparison of the Klms versus the lms algorithm

In this example, we compare the KLMS versus the traditional LMS algorithm for predicting the 
monthly unemployment in the United States, consisting of 775 data points that extended from 
January 1, 1948, to July 1, 2012. The task is to perform one-step prediction, based on the 10 data 
points 1i.e., n = 102, and progress in this manner across the complete data set. For the sake of com-
parison, the learning curve, computed in the manner just described, is repeated for both algorithms.

Figure 3 plots the learning curves for the LMS and KLMS algorithms, using the following 
specifications:

 1. LMS: step-size parameter = 0.1.

 2. KLMS: step-size parameter = 1.0.
Gaussian kernel, with width (spread), s2 = 500.

Examination of the two learning curves in Fig. 3 leads to the following observations:

 1. The KLMS algorithm has a rate of convergence that is an order of magnitude faster than 
that of the LMS algorithm.

 2. The misadjustment produced by the KLMS algorithm is smaller than that produced by the 
LMS algorithm by approximately 20%.

FiguRE 3 Smooth mean-square-error 
(MSE) curves for the KLMS and traditional 
LMS algorithms, used to predict the 
unemployment rate in the United States.
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limitations of the Klms algorithm

In the introductory material to this section, we highlighted the attributes of the KLMS 
algorithm for nonlinear adaptive filtering. Herein, we describe its two practical limita-
tions (Theodoridis et al., 2011 and Theodoridis, 2012):

 1. The KLMS algorithm shares the same disadvantages of other kernel methods used 
in machine learning:

How do we pick the right Mercer kernel for each specific application encoun-
tered in practice?

Unfortunately, we have yet to find a systematic procedure for how to address this 
question in practice.

 2. Referring back to Eq. (21), it is apparent that the KLMS algorithm has a memory-
growing problem; that is:

The memory of the KLMS algorithm grows with increasing number of adapta-
tion cycles.

There are two ways of tackling the memory-growing problem:

 1. Sparsification. In this approach, the computation performed in the KLMS algo-
rithm is sparsified. To this end, the training data set is viewed as a dictionary, as 
indicated in Table 2, with computational resources being employed only when they 
are needed. Expansion of the memory is thereby limited under the proviso that a 
prescribed rule is satisfied (Liu et al., 2010).

 2. Quantization. In this second approach, a quantization process is employed, where-
in the size of the input data space or that of the feature space is compressed as 
needed, as described by Chen et al. (2012). In their paper, a simple on-line vector 
quantization method is adopted with the aim of exploiting the notion of redun-
dancy, be that in the input space or the feature space.

Regardless of whether we adopt the sparsification or the quantization approach 
for mitigating the memory-growing problem, we cannot escape from the no-free-lunch 
theorem, which in the context of the practical issue at hand means that continued mem-
ory growth is curtailed by sacrificing optimality.

summarizing Remarks

The KLMS algorithm is basically a nonlinear extension of the traditional LMS algo-
rithm. In theoretic terms, this new approach to nonlinear adaptive filtering is not only 
elegant but also enriched by the extensive literature already developed on support vec-
tor machines and extensions thereof in machine learning.

Most importantly, experimental results (e.g., those presented in Example 2) indi-
cate that the rate of convergence and misadjustment of the KLMS algorithm improve 
significantly compared to the traditional LMS algorithm, so much so that its statistical 
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efficiency is practically on par with that of the traditional RLS algorithm. Accordingly, 
we may say that when robustness and efficiency are jointly required, they can both be 
achieved at the expense of increased system complexity; however, the desired linear 
law of computational complexity is maintained. The KLMS algorithm may therefore be 
viewed as another potential candidate for adaptive processing of big data, provided that 
the memory-growing problem is tamed efficiently through sparsification, quantization, 
their joint deployment, or some other means. Needless to say, this provision is a chal-
lenging task and may remain so for some time.
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This appendix presents a brief review of the functional theory of complex variables. In 
the context of the material considered in the text, a complex variable of interest is the 
variable z associated with the z-transform. We begin the review by defining analytic 
functions of a complex variable and then derive the important theorems that make up 
the important subject of complex variables.1

A.1 CAuChy–RiemAnn equAtions

Consider a complex variable

 z = x + jy, 

where x = Re[z] and y = Im[z]. We speak of the plane in which the complex variable 
z is represented as the z-plane. Let f(z) denote a function of the complex variable z, 
written as

 w = f 1z2 = u + jv. 

The function w = f(z) is single valued if there is only one value of w for each z in a 
given region of the z-plane. If more than one value of w corresponds to z, the function 
w = f(z) is said to be multiple valued.

We say that a point z = x + jy in the z-plane approaches a fixed point z0 = x0 + jy0 if 
x S x0 and y S y0. Let f(z) denote a single-valued function of z that is defined in some 
neighborhood of the point z = z0. The neighborhood of z0 is the set of all points in a suf-
ficiently small circular region centered at z0. Let

 lim
zSz0

 f 1z2 = w0. 

In particular, if f(z0) = w0, then the function f(z) is said to be continuous at z = z0.
Let f(z) be written in terms of its real and imaginary parts as

 f 1z2 = u1x, y2 + jv1x, y2. 

A p p e n d i x  A

theory of Complex Variables

1For a detailed treatment of the functional theory of complex variables, see Wylie and Barrett (1982).
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Then, if f(z) is continuous at z0 = x0 + jy0, its real and imaginary parts, u(x, y) and v(x, y), 
respectively, are continuous functions at (x0, y0), and vice versa.

Let w = f(z) be continuous at each point of some region of interest in the 
z-plane. The complex quantities w and z may then be represented on separate planes 
of their own, referred to as the w- and z-planes, respectively. In particular, a point 
(x, y) in the z-plane corresponds to a point (u, v) in the w-plane by virtue of the 
relationship w = f(z).

Consider an incremental change ∆z such that the point z0 + ∆z may lie anywhere 
in the neighborhood of z0, throughout which the function f(z) is defined. We may then 
define the derivative of f(z) with respect to z at z = z0 as

 f′1z02 = lim
∆zS0

 
f1z0 + ∆z2 - f 1z02

∆z
. (A.1)

Clearly, for the derivative f ¿(z0) to have a unique value, the limit in Eq. (A.1) must be 
independent of the way in which ∆z approaches zero.

For a function f(z) to have a unique derivative at some point z = x + jy, it is neces-
sary that its real and imaginary parts satisfy certain conditions. Let

 w = f 1z2 = u1x, y2 + jv1x, y2. 

With ∆w = ∆u + j∆v and ∆z = ∆x + j∆y, we may write

  f′1z2 = lim
∆zS0

 
∆w
∆z

 

  = lim
∆xS0
∆yS0

 
∆u + j∆v

∆x + j∆y
. 

(A.2)

Suppose that we let ∆z S 0 by first letting ∆y S 0 and then ∆x S 0, in which case ∆z is 
purely real. We then infer from Eq. (A.2) that

  f′1z2 = lim
∆xS0

 
∆u
∆x

+ j 
∆v
∆x

 

  =
0u
0x

+ j 
0v
0x

.  
(A.3)

Suppose next that we let ∆z S 0 by first letting ∆x S 0 and then ∆y S 0, in which case 
∆z is purely imaginary. This time, we infer from Eq. (A.2) that

  f′1z2 = lim
∆yS0

 
∆v
∆y

- j 
∆u
∆y

 

  =
0v
0y

- j 
0u
0y

.  
(A.4)
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If the derivative f ¿(z) is to exist, it is necessary that the two expressions in Eqs. (A.3) 
and (A.4) be one and the same. Hence, we require that

 
0u
0x

+ j 
0v
0x

=
0v
0y

- j
0u
0y

. 

Accordingly, equating real and imaginary parts, we get the following pair of relations:

  
0u
0x

=
0v
0y

;  (A.5)

  
0v
0x

= -
0u
0y

. (A.6)

Equations (A.5) and (A.6), known as the Cauchy–Riemann equations, were derived from 
a consideration of merely two of the infinitely many ways in which ∆z can approach 
zero. For ∆w/∆z evaluated along these other paths also to approach f ¿(z), we need only 
make the additional requirement that the partial derivatives in Eqs. (A.5) and (A.6)  
are continuous at the point (x, y). In other words, provided that the real part u(x, y) and 
the imaginary part v(x, y), together with their first partial derivatives, are continuous at 
the point (x, y), the Cauchy–Riemann equations are not only necessary but also sufficient 
for the existence of a derivative of the complex function w = u(x, y) + jv(x, y) at the point 
(x, y). Accordingly, the function is said to be complex-differential in a complex plane.

A function f(z) is said to be analytic, or holomorphic, at some point z = z0 in  
the z-plane if it has a derivative at z = z0 and at every point in the neighborhood of z0;  
the point z0 is called a regular point of the function f(z). If the function f(z) is not 
analytic at a point z0, but if every neighborhood of z0 contains points at which f(z) is 
analytic, the point z0 is referred to as a singular point of f(z).

A.2 CAuChy’s integRAl FoRmulA

Let f(z) be any continuous function of the complex variable z, analytic or otherwise. 
Let c be a sectionally smooth path joining the points A = z0 and B = zn in the z-plane. 
Suppose that the path c is divided into n segments ∆sk by the points zk, k = 1, 2, c, 
n - 1, as illustrated in Fig. A.1. This figure also shows an arbitrary point zk on seg-
ment ∆sk, depicted as an elementary arc of length ∆zk. Consider, then, the summation 
Σn

k = 1 f1zk2∆zk. The line integral of f(z) along the path c is defined by the limiting value 
of this summation as the number n of segments is allowed to increase indefinitely in 
such a way that ∆zk approaches zero. That is

 Cc

 f 1z2 dz = lim
nS ∞

 a
n

k = 1
f 1zk2∆zk. (A.7)

In the special case when the points A and B coincide and c is a closed curve, the integral 
in Eq. (A.7) is referred to as a contour integral and is written as Ac f 1z2 dz. Note that, 
according to the notation described herein, the contour c is traversed in the counter-
clockwise direction.
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Let f(z) be an analytic function in a given region r, and let the derivative f ¿(z) be 
continuous there. Then, the line integral Ac f 1z2 dz is independent of the path c that 
joins any pair of points in the region r. If the path c is a closed curve, the value of this 
integral is zero. We thus have Cauchy’s integral theorem, stated as follows:

If a function f(z) is analytic throughout a region r, then the contour integral of 
f(z) along any closed path c lying inside the region r is zero; that is,

 Cc

 f 1z2dz = 0. (A.8)

Cauchy’s integral theorem is of cardinal importance in the study of analytic functions.
An important consequence of Cauchy’s theorem is known as Cauchy’s integral 

formula. Let f(z) be analytic within and on the boundary c of a simple connected region. 
Let z0 be any point in the interior of c. Then, Cauchy’s integral formula states that

 f 1z02 =
1

2pj
 Cc

 
f 1z2

z - z0
 dz, (A.9)

where the contour integration around c is taken in the counterclockwise direction.
Cauchy’s integral formula expresses the value of the analytic function f(z) at an 

interior point z0 of c in terms of its values on the boundary of c. With this formula, it is 
a straightforward matter to express the derivative of f(z) of all orders as

 f 1n2
 1z02 =

n!
2pj

 Cc

 
f1z2

1z - z02n + 1 dz, (A.10)

where f (n)(z0) is the nth derivative of f(z) evaluated at z = z0. Equation (A.10) is obtained 
by repeated differentiation of Eq. (A.9) with respect to z0.

FIguRE A.1 Sectionally smooth 
path.
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Cauchy’s inequality

Let the contour c consist of a circle of radius r and center z0. Then, using Eq. (A.10) to 
evaluate the magnitude of f (n)(z0), we may write

  ∙ f 1n2
 1z02 ∙ =

n!
2p

 ` Cc

 
f1z2

1z - z02n + 1 dz `  

  …
n!
2p

 Cc

 
∙ f1z2 ∙

∙ z - z0 ∙n + 1 ∙ dz ∙  

  …
n!
2p

 
M

r n + 1 Cc

∙ dz ∙  

  =
n!
2p

 
M

r n + 1 2pr  

  = n! 
M
r n ,  (A.11)

where M is the maximum value of f(z) on c. The inequality (A.11) is known as Cauchy’s 
inequality.

A.3 lAuRent’s seRies

Let the function f(z) be analytic in the annular region of Fig. A.2, including the bound-
ary of the region. The annular region consists of two concentric circles c1 and c2 whose 
common center is z0. Let the point z = z0 + h be located inside the annular region, as 
depicted in the figure. According to Laurent’s series,

 f 1z0 + h2 = a
∞

k = -∞
akhk, (A.12)

FIguRE A.2 Annular region.
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where the coefficients for varying k are given by

 ak = d 1
2pj

 Cc2

 
f1z2 dz

1z - z02k + 1, k = 0, 1, 2, c

1
2pj

 Cc1

 
f1z2 dz

1z - z02k + 1, k = -1, -2, c
. (A.13)

Note that we may also express the Laurent expansion of f(z) around the point z as

 f 1z2 = a
∞

k = -∞
ak 1z - z02k. (A.14)

When all the coefficients of negative index have the value zero, Eq. (A.14) reduces 
to Taylor’s series:

 f 1z2 = a
∞

k = 0
ak 1z - z02k. (A.15)

In light of Eq. (A.10) and the first line of Eq. (A.13), we may define the coefficient

 ak =
f 1k2

 1z02
k!

,    k = 0, 1, 2, c. (A.16)

Taylor’s series provides the basis of Liouville’s theorem, considered next.

liouville’s theorem

Let a function f(z) of the complex variable z be bounded and analytic for all values of z. 
Then, according to Liouville’s theorem, f(z) is simply a constant.

To prove this theorem, we first note that, since f(z) is analytic everywhere inside 
the z-plane, we may use Taylor’s series to expand f(z) about the origin:

 f 1z2 = a
∞

k = 0

f 1k2102
k!

 zk. (A.17)

The power series of Eq. (A.17) is convergent and therefore provides a valid represen-
tation of f(z). Let contour c consist of a circle of radius r and origin as center. Then, 
invoking Cauchy’s inequality (A.11), we may write

 ∙ f 1k2
 102 ∙ …

k!Mc

r k , (A.18)

where Mc is the maximum value of f(z) on c. Correspondingly, the value of the kth coef-
ficient in the power series expansion of Eq. (A.17) is bounded as

 ∙ ak ∙ =
∙ f 1k2

 102 ∙
k!

…
Mc

r k …
M

r k , (A.19)

Z02_HAYK4083_05_SE_APP1.indd   775 21/06/13   9:20 AM



776   Appendix A  Theory of Complex Variables

where M is the bound on |f(z)| for all values of z. Since, by hypothesis, M does exist, it 
follows from Eq. (A.19) that, for an arbitrarily large r,

 ak = e f 102, k = 0
0, k = 1, 2, c. (A.20)

Accordingly, Eq. (A.17) reduces to

 f 1z2 = f 102 = constant, 

which proves Liouville’s theorem.
A function f(z) that is analytic for all values of z is said to be an entire function. 

Thus, Liouville’s theorem may be restated as follows (Wylie & Barrett, 1982):

An entire function, which is bounded for all values of z, is a constant.

A.4 singulARities And Residues

Let z = z0 be a singular point of an analytic function f(z). If the neighborhood of z = z0 
contains no other singular points of f(z), the singularity at z = z0 is said to be isolated. 
In the neighborhood of such a singularity, the function f(z) may be represented by the 
Laurent series

  f 1z2 = a
∞

k = -∞
ak 1z - z02k  

  = a
∞

k = 0
ak 1z - z02k + a

- 1

k = -∞
ak 1z - z02k (A.21)

  = a
∞

k = 0
ak 1z - z02k + a

∞

k = 1

a- k

1z - z02k.  

The particular coefficient a-1 in the Laurent expansion of f(z) in the neighborhood of 
the isolated singularity at the point z = z0 is called the residue of f(z) at z = a. The residue 
plays an important role in the evaluation of integrals of analytic functions. In particular, 
putting k = -1 in Eq. (A.13), we get the following connection between the residue a–1 
and the integral of the function f(z):

 a-1 =
1

2pj
 Cc

 f 1z2 dz. (A.22)

There are two nontrivial cases to be considered:

 1. The Laurent expansion of f(z) contains infinitely many terms with negative  powers 
of z - z0, as in Eq. (A.21). The point z - z0 is then called an essential singular 
point of f(z).
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 2. The Laurent expansion of f(z) contains at most a finite number of terms m with 
negative powers of z - z0, as given by

 f 1z2 = a
∞

k = 0
ak1z - z02k +

a-1

z - z0
+

a-2

1z - z022 + g +
a-m

1z - z02m. (A.23)

According to the latter representation, f(z) is said to have a pole of order m at z = z0. 
The finite sum of all the terms containing negative powers on the right-hand side of  
Eq. (A.23) is called the principal part of f(z) at z = z0.

Note that when the singularity at z = z0 is a pole of order m, the residue of the pole 
may be determined by using the formula

 a-1 =
1

1m - 12!  
dm - 1

dzm - 1 31z - z02m
 f 1z24z = z0

. (A.24)

In effect, by using this formula, we avoid the need to derive the Laurent series. For the 
special case when the order m = 1, the pole is said to be simple. Correspondingly, the 
formula of Eq. (A.24) for the residue of a simple pole reduces to

 a-1 = lim
zSz0

 1z - z02f 1z2. (A.25)

A.5 CAuChy’s Residue theoRem

Consider a closed contour c in the z-plane containing a number of isolated singularities 
of some function f(z). Let z1, z2, c, zn define the locations of these isolated singulari-
ties. Around each singular point of the function f(z), we draw a circle small enough to 
ensure that it does not enclose the other singular points of f(z), as depicted in Fig. A.3. 
The original contour c, together with these small circles, constitutes the boundary of a 

FIguRE A.3 Multiply connected 
region.
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multiply connected region in which f(z) is analytic everywhere and to which Cauchy’s 
integral theorem may therefore be applied. Specifically, for the situation depicted in the 
figure, we may write

 
1

2pj
 Cc

 f 1z2 dz +
1

2pj
 Cc1

f 1z2 dz + g+
1

2pj
 Ccn

f 1z2 dz = 0. (A.26)

Note that the contour c is traversed in the positive sense (i.e., the counterclockwise 
direction), whereas the small circles are traversed in the negative sense (i.e., the clock-
wise direction).

Suppose we now reverse the direction along which the integral around each small 
circle in Fig. A.3 is taken. This operation has the effect of applying a minus sign to each 
of the integrals in Eq. (A.26) that involve the small circles c1, c, cn. Accordingly, 
for the case when all the integrals around the original contour c and the small circles 
c1, c, cn are taken in the counterclockwise direction, we may rewrite Eq. (A.26) as

 
1

2pj
 Cc

 f 1z2 dz =
1

2pj
 Cc1

f 1z2 dz + g +
1

2pj
 Ccn

f 1z2 dz. (A.27)

By definition, the integrals on the right-hand side of Eq. (A.27) are the residues of the 
function f(z), evaluated at the various isolated singularities of f(z) within the contour c. 
We may thus express the integral of f(z) around the contour c simply as

 Cc

 f 1z2 dz = 2pja
n

k = 1
Res 1 f 1z2, zk2, (A.28)

where Res (f(z), zk) stands for the residue of the function f(z) evaluated at the iso-
lated singular point z = zk. Equation (A.28) is called Cauchy’s residue theorem and is 
extremely important in the theory of functions in general and in evaluating definite 
integrals in particular.

A.6 pRinCiple oF the ARgument

Consider a complex function f(z), characterized as follows:

 1. The function f(z) is analytic in the interior of a closed contour c in the z-plane, 
except at a finite number of poles.

 2. The function f(z) has neither poles nor zeros on the contour c. By a “zero,” we 
mean a point in the z-plane at which f(z) = 0. In contrast, at a “pole,” as defined 
previously, we have f(z) = ∞ . Let N be the number of zeros and P be the number 
of poles of the function f(z) in the interior of contour c, where each zero or pole 
is counted according to its multiplicity.

We may then state the following theorem (Wylie & Barrett, 1982):

 
1

2pj
 Cc

 
f′ 1z2
f 1z2  dz = N - P. (A.29)
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Here, as is usual, f ¿(z) is the derivative of f(z). We note that

 
d
dz

 ln f 1z2 =
f′1z2
f 1z2  dz, 

where ln denotes the natural logarithm. Hence,

  Cc

 
f′1z2
f 1z2  dz = ln f 1z2 ∙c  

  = ln ∙ f 1z2 ∙c + j arg f 1z2 ∙c , (A.30)

where |f(z)| denotes the magnitude of f(z) and arg f(z) denotes the argument of f(z). 
The first term on the right-hand side of Eq. (A.30) is zero, since the logarithmic function  
ln f(z) is single valued and the contour c is closed. Hence,

 Cc

 
f′1z2
f 1z2  dz = j arg f 1z2 ∙c . (A.31)

Thus, substituting Eq. (A.31) into Eq. (A.29), we get

 N - P =
1

2p
 arg f 1z2 ∙c . (A.32)

This result, which is a reformulation of the theorem described in Eq. (A.29), is called 
the principle of the argument.

For a geometric interpretation of the principle of the argument, let c be a closed 
contour in the z-plane, as in Fig. A.4(a). As z traverses the contour c in the counterclock-
wise direction, w = f(z) traces out a contour c′ of its own in the w-plane; for the purpose 
of illustration, c′ is shown in Fig. A.4(b). Suppose now a line is drawn in the w-plane 

FIguRE A.4 (a) Contour c in the z-plane; (b) contour c′ in the w-plane, where w = f(z).
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from the origin to the point w = f(z), as depicted in Fig. A.4(b). Then, the angle u that 
this line makes with a fixed direction (shown as the horizontal direction in the figure) 
is arg f(z). The principle of the argument thus provides a description of the number of 
times the point w = f(z) winds around the origin of the w-plane (i.e., the point w = 0) as 
the complex variable z traverses the contour c in a counterclockwise direction.

Rouché’s theorem

Let the function f(z) be analytic on a closed contour c and in the interior of c. Let  
g(z) be a second function that, in addition to satisfying the same condition for analyticity 
as f(z), fulfills the following condition on the contour c:

 ∙ f 1z2 ∙ 7 ∙ g1z2 ∙ . 

In other words, on the contour c,

 ` g1z2
f 1z2 ` 6 1. (A.33)

Define the function

 F 1z2 = 1 +
g1z2
f 1z2 , (A.34)

which has no poles or zeros on c. By the principle of the argument applied to F(z),  
we have

 N - P =
1

2p
 arg F 1z2 ∙c . (A.35)

However, from Eq. (A.33), when z is on the contour c, it follows that

 ∙ F 1z2 - 1 ∙ 6 1. (A.36)

In other words, the point w = F(z) lies inside a circle with center at w = 1 and unit radius, 
as illustrated in Fig. A.5. Therefore,

 ∙ arg F 1z2 ∙ 6
p

2
    for z on c, (A.37)

or, equivalently,
 arg F 1z2 ∙c = 0. (A.38)

From Eq. (A.38), we infer that N = P, where both N and P refer to f(z). From the defini-
tion of the function F(z) given in Eq. (A.34), we note that the poles of F(z) are the zeros 
of f(z) and the zeros of F(z) are the zeros of the sum f(z) + g(z). Accordingly, the fact 
that N = P means that f(z) + g(z) and f(z) have the same number of zeros. This result is 
known as Rouché’s theorem, which may be formally stated as follows:

Let f(z) and g(z) be analytic on a closed contour c and in the interior of c. Let 
|f(z)| 7  |g(z)| on c. Then, f(z) and f(z) + g(z) have the same number of zeros 
inside contour c.

Z02_HAYK4083_05_SE_APP1.indd   780 21/06/13   9:20 AM



Section A.7 Inversion Integral for the z-Transform   781

exAmple

Consider the contour depicted in Fig. A.6(a). This contour constitutes the boundary of a multiply 
connected region in the z-plane. Let F(z) and G(z) be two polynomials in z–1, both of which are 
analytic on the contour and in the interior of it. Moreover, let |F(z)| 7 |G(z)|. Then, according to 
Rouché’s theorem, both F(z) and F(z) + G(z) have the same number of zeros inside the contour 
described in Fig. A.6(a).

Suppose now that we let the radius R of the outside circle c in the figure approach infin-
ity. Also, let the separation l between the two straight-line portions of the contour approach 
zero. Then, in the limit, the region enclosed by the contour will be made up of the entire area 
that lies outside the inner circle c1, as depicted in Fig. A.6(b). In other words, the polynomials 
F(z) and F(z) + G(z) have the same number of zeros outside the circle c1, under the condi-
tions just described. [Note that the circle c1 is traversed in the clockwise direction (i.e., in a 
negative sense).]

A.7 inVeRsion integRAl FoR the z-tRAnsFoRm

The material presented in Sections A.1 through A.6 is applicable to functions of a 
complex variable in general. In this section and the next, we consider the special 
case of a complex function defined as the z-transform of a sequence of samples 
taken in time.

Let X(z) denote the z-transform of a sequence x(n) that converges to an analytic 
function in the annular domain R1 6 ∙ z ∙ 6 R2. By definition, X(z) may be written as 
the Laurent series

 X1z2 = a
∞

m = -∞
x1m2z-m,    R1 6 ∙ z ∙ 6 R2, (A.39)

where, for convenience of presentation, we have used m in place of n as the index of 
time. Let c be a closed contour that lies inside the region of convergence R1 6 ∙z ∙ 6 R2. 

FIguRE A.5 Point w = f(z) on a 
closed contour lying inside the unit 
circle.
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Section A.8 Parseval’S Theorem   783

Then, multiplying both sides of Eq. (A.39) by zn– 1, integrating around the contour c in 
a counterclockwise direction, and interchanging the order of integration and summa-
tion, we get

 
1

2pj
 Cc

 X1z2zn 
dz
z

= a
∞

m = -∞
x1m2 

1
2pj

 Cc

 zn - m 
dz
z

. (A.40)

The interchange of integration and summation is justified here because the Laurent 
series that defines X(z) converges uniformly on c. Let

 z = reju,    R1 6 r 6 R2. (A.41)

Then,

 zn - m = r n - mej1n - m2u 

and

 
dz
z

= j du. 

Correspondingly, we may express the contour integral on the right-hand side of  
Eq. (A.40) as

  
1

2pj
 Cc

 zn - m 
dz
z

=
1

2p
 L

2p

0
r n - mej1n - m2u du 

  = e1, m = n
0, m ≠ n

.  

(A.42)

Inserting Eq. (A.42) into Eq. (A.40), we get

 x1n2 =
1

2pj
 Cc

 X  1z2zn 
dz
z

. (A.43)

Equation (A.43) is called the inversion integral formula for the z-transform.

A.8 pARseVAl’s theoRem

Let X(z) denote the z-transform of the sequence x(n) with the region of convergence 
R1x 6 ∙ z ∙ 6 R2x. Let Y(z) denote the z-transform of a second sequence y(n) with the 
region of convergence R1y 6 ∙ z ∙ 6 R2y. Then, Parseval’s theorem states that

 a
∞

n = -∞
x1n2 y*1n2 =

1
2pj

 Cc

 X1z2Y* a 1
z*

b  
dz
z

, (A.44)

where c is a closed contour defined in the overlap of the regions of convergence of 
X(z) and Y(z), both of which are analytic, and the asterisk denotes complex conjugation. 
The function Y*(1/z*) is obtained from the z-transform Y(z) by using 1/z* in place of 
z and then taking the complex conjugate of the resulting function. Note that Y*(1/z*) 
is analytic, too.
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To prove Parseval’s theorem, we use the inversion integral of Eq. (A.43) to write

  a
∞

n = -∞
x1n2y* 1n2 =

1
2pj

 a
∞

n = -∞
y*1n2Cc

 X1z2zn 
dz
z

 (A.45)

  =
1

2pj
 Cc

 X1z2 a
∞

n = -∞
y*1n2zn 

dz
z

. 

From the definition of the z-transform of y(n), namely,

 Y1z2 = a
∞

n = -∞
y1n2z-n, 

we note that

 Y* a 1
z*

b = a
∞

n = -∞
y*1n2zn. (A.46)

Hence, using Eq. (A.46) in Eq. (A.45), we get the result given in Eq. (A.44), and the 
proof of Parseval’s theorem is completed.

Z02_HAYK4083_05_SE_APP1.indd   784 21/06/13   9:20 AM



785

A p p e n d i x  B

Wirtinger Calculus for 
Computing Complex Gradients

In Chapter 2 on Wiener filters, we described a procedure for computing the complex 
gradient vector of a real cost function in terms of its filter coefficients. The procedure 
described therein was based on evaluating the partial derivative of the cost function of 
each filter coefficient in terms of its real and imaginary parts, treated separately. From 
an algebraic perspective, this procedure makes intuitive sense.

When, however, the requirement is for a simple and straightforward procedure 
to compute the complex gradient vector of a cost function, particularly with matrix 
analysis for mathematical compactness in mind, we need a new procedure that does 
not involve the evaluation of separate derivatives with respect to the real and imagi-
nary parts of every filter coefficient in the cost function. To satisfy this requirement, we 
look to Wirtinger calculus, so named in honor of Wilhelm Wirtinger (1927). Compared 
to the procedure described in Chapter 2, Wirtinger calculus is more mathematically 
sophisticated.

B.1 WirtinGer CAlCulus: sCAlAr GrAdients

To begin the discussion, we have to recognize that a real cost function is not complex-
differentiable in a complex plane. The reason is that it violates the Cauchy–Riemann 
equations—namely, Eqs. (A.5) and (A.6) derived in Appendix A on complex variable 
theory. Simply put, this violation is attributed to the fact that the imaginary part of the 
cost function is zero, by definition.

Wirtinger calculus1 relaxes the rigid mathematical structure of the Cauchy–
Riemann equations in a clever way:

The cost function is treated as a real-differentiable function in a complex plane.

The end result is a simple, straightforward procedure for computing the complex gradi-
ent of a cost function.

1For a detailed treatment of Wirtinger calculus, the reader is referred to Adali and Li (2010), which 
includes an extended list of related references. Moreover, Adali and Li address Jacobians and Hessians 
(involving second-order derivatives).
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786   Appendix B  Wirtinger Calculus for Computing Complex Gradients

The key point behind Wirtinger calculus is summed up in the following theorem 
(Adali & Li, 2010):

Let f be a function of real variables, x and y, such that we may write

 f 1z, z*2 = f 1x, y2, (B.1)

where z is a complex variable defined by

 z = x + jy (B.2)

and z* is the complex conjugate of z. The function f so defined is complex- 
differentiable with respect to z and z*, which are viewed as a pair of independent 
constants.

The following two corollaries follow from this theorem:

 1. The partial derivatives defined by

 
0f

0z
=

1
2

 a 0f

0x
- j 

0f

0y
b  (B.3)

and

 
0f

0z*
=

1
2

 a 0f

0x
+ j 

0f

0y
b  (B.4)

are both computable because z and z* are viewed in f(z, z*) as independent 
 constants.

 2. The second corollary is in two parts:

2.1 A necessary and sufficient condition for the function f to have a stationary 
point in the complex plane is that

 
0f

0z
= 0, (B.5)

 where z* is formally treated as a constant.

2.2 Similarly,

 
0f

0z*
= 0 (B.6)

 is also a necessary and sufficient condition; this time, z is formally treated as 
a constant.

To summarize the procedure for computing the complex gradient of a real function 
f, we may proceed in one of two ways:

 1. The given function f is expressed in the form f (z, z*), and the partial derivative 
0f>0z* is computed by formally treating z as a constant.

 2. The partial derivative 0f>0z is computed by formally treating z* as a constant.
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These two partial derivatives are naturally related as follows:

 
0f

0z*
= a 0f

0z
b*. (B.7)

Henceforth, we proceed by computing 0f>0z*, as illustrated in the following example.

exAMple 1: First-Order predictor

Consider a first-order predictor defined by the scalar product

 un1n2 = w*u1n - 12, (B.8)

where w is an adjustable complex parameter and un1n2 is an estimate of the current input u(n) 
given the past input u1n - 12. The prediction error is defined by

  e1n2 = u1n2 - un1n2  

  = u1n2 - w*u1n - 12. 
(B.9)

The mean-square value of the prediction error, representing the cost function, is defined by

  J1w2 = �3e1n2e*1n24  

  = �31u1n2 - w*u1n - 1221u*1n2 - wu*1n - 1224, (B.10)

where � is the expectation operator. With Wirtinger calculus in mind, we redefine the symbol for 
the cost function in Eq. (B.10) in the new form

 J1w, w*2 = �31u1n2 - w*u1n - 1221u*1n2 - wu*1n - 1224. 
Hence, differentiating J(w, w*) with respect to w* and formally treating w as a constant, we may 
go on to write

  
0J1w, w*2

0w*
=

0
0w*

 �31u1n2 - w*u1n - 1221u*1n2 - wu*1n - 1224  

  = � c 0
0w*

 51u1n2 - w*u1n - 1221u*1n2 - wu*1n - 1226 d  (B.11)

  = -�3u1n - 121u*1n2 - wu*1n - 1224.  

Following the definition introduced in Eq. (2.42) for an autocorrelation function, we have

 r1-12 = �3u1n - 12u*1n24. (B.12)

Moreover, assuming that the input is stationary, we also have

 s2
u = �3 � u1n - 12�24, (B.13)

which describes the variance of the input, assumed to have zero mean. Thus, substituting  
Eqs. (B.12) and (B.13) into Eq. (B.11), setting the partial derivative to zero, and solving for the 
optimum w, wo, we write

 wo =
r1-12
s2

u
, (B.14)

which defines the optimum predictor of order one.
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B.2 GenerAlized WirtinGer CAlCulus: GrAdient VeCtOrs

Consider next the more general case of a cost function formulated around a multi-
dimensional finite-duration impulse response (FIR) filter, which is characterized by a 
tap-weight vector w. In such a scenario, we generalize Wirtinger calculus by defining the 
corresponding cost function as J(w, wH), where wH is the Hermitian transpose of w. This 
definition is justified because it is perfectly consistent with the definition of an inner 
product that has been used throughout the text. For a reminder, given a pair of vectors, 
w and u, of the same dimensionality, their inner product is defined by wHu or uHw. In 
effect, wH for computing a gradient vector assumes the role of w* for computing a sca-
lar gradient. Except for this change, the underlying theory of Wirtinger calculus holds.

Thus, to generalize the procedure for computing the complex gradient of a cost 
function, we may proceed along one of two paths:

 1. Differentiate J(w, wH) with respect to wH, formally treating w as a constant vector.
 2. Differentiate J(w, wH) with respect to w, formally treating wH as a constant vector.

To be consistent with the choice made in Section B.1, we adopt the first path, as illus-
trated in the next example.

exAMple 2: Wiener Filter

Referring to Chapter 2 on the Wiener filter, the generalized cost function is defined by

 J1w, wH2 = �C 1d1n2 - wHu1n221d*1n2 - uH1n2w2S , 
 (+++)+++* (++1+)++1+* 
 estimation error, e1n2 e*1n2 

(B.15)

where u(n) is the input vector and d(n) is the desired response. Differentiating J(w, wΗ) with 
respect to wH and formally treating w as a constant vector, we obtain the partial derivative

  
0J1w, wH2

0wH =
0

0wH �31d1n2 - wHu1n221d*1n2 - uH1n2w24  

  = � c 0
0wH 51d1n2 - wHu1n221d*1n2 - uH1n2w26 d  (B.16)

  = -�3u1n21d*1n2 - uH1n2w24.  

At this point, we introduce the following definitions:

Correlation function of the input vector u(n):

 R = �3u1n2uH1n24, (B.17)

and cross-correlation vector of the input vector u(n) and desired response d(n):

 p = �3u1n2d*1n24,  (B.18)

which follow from Eqs. (2.29) and (2.32), respectively.
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Accordingly, we may recast Eq. (B.16) in the following form:

 
0J1w, wH2

0wH = -p + Rw. (B.19)

Setting this partial gradient vector to zero and solving for the optimum tap-weight vector, wo, 
we obtain

 wo = R-1p, (B.20)

which is the very solution defined in Eq. (2.36).
The insightful observation to be made from this example is the straightforward manner in 

which the Wiener solution of Eq. (B.20) is derived. This trademark of Wirtinger calculus—namely, 
simplicity—applies equally well to the next example.

exAMple 3: log-likelihood Function

For another example, consider the real log-likelihood function discussed in Chapter 9, reproduced 
here as

 l1w2 = F -
1

s2 EHE, (B.21)

where F is a constant, s2 is the variance of white noise representing measurement error in a mul-
tiple linear regression model, and the estimation error vector is defined by

 E = d - Aw, (B.22)

where d is the desired response vector, A is the data matrix, and w is the vector characterizing the 
parameterized regression model.

Following the generalized Wirtinger calculus, we introduce a new symbol for the objective 
function:

  l1w, wH2 = F -
1

s2 1d - Aw2H1d - Aw2  

  = F -
1

s2 1dH - wHAH21d - Aw2. 

(B.23)

Differentiating l(w, wH) with respect to wH and formally treating w as a constant vector, we obtain

  
0

0wH l1w, wH2 =
0

0wH cF -
1

s2 1dH - wHAH21d - Aw2 d  

  =
1

s2 AH1d - Aw2.  

(B.24)

Using wo again to denote the optimum w and, correspondingly, defining the optimum error  vector, 
Eo, as

 Eo = d - Awo, 
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we may rewrite Eq. (B.24) in the desired form:

 
0l

0wH =
1

s2AHEo,  (B.25)

which is exactly the result described in Eq. (9.70).

B.3 AnOther ApprOACh tO COMpute GrAdient VeCtOrs

In Examples 1 through 3, we proceeded along the following two steps:

 1. Define the estimation error.
 2. Apply the generalized Wirtinger calculus to the expected value of the estimation 

error multiplied by its complex conjugate; the product, in its intact form, represents 
the cost function.

Another way of approaching the problem is:

 1. Define the cost function in its expanded form, using the expectation operator.
 2. Apply the generalized Wirtinger calculus.

Typically, in this latter approach, we find inner product terms, such as pHw and wHp,  
and quadratic terms, such as wHRw, showing up in the cost function. Applying the 
generalized Wirtinger calculus to these terms individually yields the following useful 
results:

 
0

0wH(pHw) = 0, (B.26)

where w is formally treated as a constant vector;

 
0

0wH1wHp2 = p; (B.27)

and

 
0

0wH1wHRw2 = Rw, (B.28)

where w is formally treated as a constant vector.

The final example illustrates the second procedure.

exAMple 4: Wiener Filter revisited

Referring to Eq. (2.50) in the chapter on Wiener filters, the cost function is defined by

 J1w2 = s2
d - wHp - pHw + wHRw. (B.29)
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Following the generalized Wirtinger calculus, we write

 J1w, wH2 = s2
d - wHp - pHw + wHRw. (B.30)

Differentiating J(w, wH) with respect to wH and formally treating w as a constant vector, we 
readily obtain

 
0

0wHJ1w, wH2 = -p + Rw, (B.31)

where we have made use of Eqs. (B.26) to (B.28). Setting Eq. (B.31) equal to zero and solving for 
wo, we obtain the same result reported in Eq. (B.20).

B.4 expressiOns FOr the pArtiAl deriVAtiVes 
ef

ez
 And 

ef

ez*

By definition, the complex variable z = x + jy. We therefore have

x =
1
2

 (z + z*) and y =
1
2j

 (z - z*)

Applying the Wirtinger Calculus, we may correspondingly write

0x
0z

=
1
2

 and 
0y

0z
=

- j

2

for z* treated formally as a constant. Accordingly, using the chain rule of calculus, we 
may go on to write

  
0f

0z
=

0f

0x
 
0x
0z

+
0f

0y
 
0y

0z
 

 =
1
2

 a 0f

0x
- j 

0f

0y
b  

(B.32)

Similarly, we may show that

 
0f

0z*
=

1
2

 a 0f

0x
+ j 

0f

0y
b  (B.33)

It follows therefore for the function f(z) to have a stationary point, a sufficient and 

necessary condition is for the two partial derivatives, 
0f

0x
 and 

0f

0y
, to be both zero, which is 

intuitively satisfying.
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Optimization consists of determining the values of some specified variables that minimize 
or maximize an index of performance or objective function that combines important prop-
erties of a system into a single real-valued number. The optimization may be constrained or 
unconstrained, depending on whether the variables are also required to satisfy side equa-
tions or not. Needless to say, the additional requirement to satisfy one or more side equa-
tions complicates the issue of constrained optimization. In this appendix, we derive the 
classical method of Lagrange multipliers for solving the complex version of a constrained 
optimization problem. The notation used in the derivation is influenced by the nature of 
applications that are of interest to us. We consider first the case when the problem involves 
a single-side equation and then the more general case of multiple-side equations.

C.1 OptimizatiOn invOlving a Single equality COnStraint

Consider the minimization of a real-nonnegative objective function f(w) that is a qua-
dratic function of a parameter vector w, subject to the constraint

 wHs = g, (C.1)

where s is a prescribed vector, g is a complex constant, and the superscript H denotes 
Hermitian transposition (i.e., transposition combined with complex conjugation). We 
may redefine the constraint by introducing a new function c(w) that is linear in w, as 
shown by

  c1w2 = wHs - g 

  = 0 + j0.  
(C.2)

In general, the vectors w and s and the function c(w) are all complex. For example, in a 
beamforming application, the vector w represents a set of complex weights applied to 
the individual sensor outputs, the vector s represents a steering vector whose elements 
are defined by a prescribed “look” direction, and the function f(w) to be minimized 
 represents the mean-square value of the overall beamformer output. In a harmonic 
retrieval application, w represents the tap-weight vector of a finite-duration impulse 
response (FIR) filter, s represents a sinusoidal vector whose elements are determined by 
the angular frequency of a complex sinusoid contained in the filter input, and the func-
tion f(w) represents the mean-square value of the filter output. In any event, assuming 

a p p e n d i x  C

method of lagrange 
multipliers
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that the issue is one of minimization, we may state the constrained optimization problem 
as follows:

  Minimize an objective function f 1w2, 
  subject to the constraint c1w2 = 0 + j0. (C.3)

The method of Lagrange multipliers converts the problem of constrained mini-
mization just described into one of unconstrained minimization by the introduction of 
Lagrange multipliers. First, we use the objective function f(w) and the complex con-
straint function c(w) to define a new real function

 h1w2 = f 1w2 + l1Re3c1w24 + l2Im 3c1w24, (C.4)

where l1 and l2 are real Lagrange multipliers and

 c1w2 = Re 3c1w24 + j Im 3c1w24. (C.5)

Next, we define the complex Lagrange multiplier:

 l = l1 + jl2. (C.6)

We may then rewrite Eq. (C.4) in the form

 h(w) = f(w) + l*c(w), (C.7)

where the asterisk denotes complex conjugation and the product term l*c(w) is real. 
The latter requirement is satisfied by proper choice of the constraint function c(w) of 
Eq. (C.2), which is where the complex constant g comes into play.

To minimize the overall objective function h(w) in Eq. (C.7), we apply the Wirtinger cal-
culus described in Appendix B and then set the resulting partial derivative to zero. Specifically, 
differentiating h(w) with respect to wH and treating w formally as a constant, we write

  
0

0wH h1w, wH2 =
0

0wHf1w2 + l*
0

0wH c1w2 

  = 0 + j0.  (C.8)

The partial derivative of Eq. (C.8) and the constraint function of Eq. (C.2) define the 
optimum solutions for the unknown weight vector w and the Lagrange multiplier l.

In optimization theory, Eq. (C.3), describing minimization of the objective function 
f(w) subject to the constraint c(w), is called the primal equation. Correspondingly, Eq. 
(C.8) is called the adjoint equation, which is where the actual optimization is carried out.

C.2 OptimizatiOn invOlving multiple equality COnStraintS

Consider next the minimization of a real function f(w) that is a quadratic function of 
the vector w, subject to a set of multiple linear constraints

 wHsk = gk,     k = 1, 2, c, K, (C.9)

where the number of constraints, K, is less than the dimension of the vector w and the gk are 
complex constants. We may state the multiple-constrained optimization problem as follows:

  Minimize a real function f 1w2, subject to the  
  constraints ck 1w2 = 0 + j0 for k = 1, 2, c, K. (C.10)
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The solution to this optimization problem is readily obtained by generalizing the 
results of Section C.1. Specifically, we formulate a system of simultaneous equations con-
sisting of the adjoint equation

 
0f

0wH + a
K

k = 1

0
0wH 1l*kck 1w22 = 0 +  j0 (C.11)

and the primal equation

 ck 1w2 = 0 + j0,  k = 1, 2, c, K. (C.12)

This system of equations defines the optimum solutions for the vector w and the set of 
complex Lagrange multipliers l1, l2 , c, lk.

C.3 Optimum BeamfOrmer

By way of an example, consider the problem of finding the weight vector w of a beam-
former that minimizes the function

 f 1w2 = wHw, (C.13)

subject to the constraint

 c1w2 = wHs - g = 0 + j0. (C.14)

The adjoint equation for this problem is

 
0

0wH 1wHw2 + l*
0

0wH 1wHs - g2 = 0 + j0. (C.15)

Invoking the rules of partial differentiation under Wirtinger calculus, we have

 
0

0wH 1wHw2 = w 

and

 
0

0wH 1wHs -  g2 = s. 

Substituting these two results into Eq. (C.15), we get

 w + l*s = 0 + j0. (C.16)

Next, solving Eq. (C.16) for the unknown l, we obtain

  l = -
wHs
sHs

 

  = -
g

sHs
.  

(C.17)

Finally, substituting Eq. (C.17) into Eq. (C.16) and solving for the optimum value wo of 
the weight vector w, we get

 wo = a g*

sHs
bs. (C.18)

This solution is optimum in the sense that wo satisfies the constraint of Eq. (C.14) and 
has the minimum Euclidean length possible.
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A p p e n d i x  d

estimation Theory

Estimation theory is a branch of probability and statistics that deals with the problem 
of deriving information about properties of random variables and stochastic processes, 
given a set of observed samples. This problem arises frequently in the study of communi-
cations and control systems. Maximum likelihood is by far the most general and powerful 
method of estimation. This method was first used by R. A. Fisher, who is considered to 
be the father of modern statistics, exemplified by his pioneering work on evolutionary 
biology (for details of the method, see the paper by Fisher, 1922). In principle, the method 
of maximum likelihood may be applied to any estimation problem, with the proviso that 
we formulate the joint probability density function of the available set of observed data. 
The method then yields almost all the well-known estimates as special cases.

d.1 LikeLihood FuncTion

The method of maximum likelihood is based on a relatively simple idea (Kmenta, 1971):

Different populations naturally generate different data samples, and any given data 
sample is more likely to have been generated from some population than from others.

Let fU 1u ∙𝛉2 denote the conditional joint probability density function of the 
 random vector U represented by the observed sample vector u with elements  
u1, u2, c, uM, where 𝛉 is a parameter vector with elements u1, u2, c, uK. The 
method of maximum likelihood is based on the principle that we should estimate the 
 parameter vector 𝛉 by its most plausible values, given the observed sample vector u. 
In other words, the maximum-likelihood estimators of u1, u2, c, uk are those values 
of the parameter vector for which the conditional joint probability density function 
fU 1u ∙𝛉2 is a maximum.

The name likelihood function, denoted by l(𝛉), is given to the conditional joint 
probability density function fU 1u ∙𝛉2, viewed as a function of the parameter vector 𝛉. 
Specifically, we write

 l1𝛉2 = fU 1u ∙𝛉2. (D.1)

Although the conditional joint probability density function and the likelihood function 
have exactly the same formula, it is important that we appreciate the physical distinction 
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between them. In the case of the conditional joint probability density function, the 
parameter vector 𝛉 is fixed and the observation vector u is variable. In the case of the 
likelihood function, the parameter vector 𝛉 is variable and the observation vector u  
is fixed.

In many cases, it turns out to be more convenient to work with the natural loga-
rithm of the likelihood function rather than with the likelihood itself. Thus, using L(𝛉) 
to denote the log-likelihood function, we write

  L1𝛉2 = ln 3l1𝛉24  

  = ln 3 fU 1u ∙𝛉24. (D.2)

The logarithmic function L(𝛉) is a monotonic transformation of l(𝛉). This means that 
whenever l(𝛉) decreases, its logarithm L(𝛉) also decreases. Since l(𝛉), being a formula 
for a conditional joint probability density function, can never become negative, it fol-
lows that there is no problem in evaluating the logarithmic function L(𝛉). We conclude, 
therefore, that the parameter vector for which the likelihood function l(𝛉) is a maximum 
is exactly the same as the parameter vector for which the log-likelihood function L(𝛉) 
is a maximum.

To obtain the ith element of the maximum-likelihood estimate of the parameter 
vector 𝛉, we differentiate the log-likelihood function with respect to ui and set the result 
equal to zero. We thus get a set of first-order conditions:

 
0L
0ui

= 0,    i = 1, 2, c, K. (D.3)

The first derivative of the log-likelihood function with respect to the parameter ui is 
called the score for that parameter. The vector of such parameters is known as the scores 
vector (i.e., the gradient vector). The scores vector is identically zero at the maximum-
likelihood estimates of the parameters [i.e., at the values of 𝛉 that result from the solu-
tions of Eq. (D.3)].

To find how effective the method of maximum likelihood is, we can compute 
the bias and variance for the estimate of each parameter. However, this is frequently 
difficult to do. Thus, rather than approach the computation directly, we may derive a 
lower bound on the variance of any unbiased estimate. We say an estimate is unbiased 
if the average value of the estimate equals the parameter we are trying to estimate. 
Later, we show how the variance of the maximum-likelihood estimate compares with 
this lower bound.

d.2 crAmér–rAo inequALiTy

Let U be a random vector with conditional joint probability density function fU 1u ∙𝛉2, 
where u is the observed sample vector with elements u1, u2, c, uM and 𝛉 is the 
 parameter vector with elements u1, u2, c, uK. Using the definition of Eq. (D.2) for the 
 log-likelihood function L1𝛉2 in terms of the conditional joint probability density func-
tion fU 1u ∙𝛉2, we form the K-by-K matrix
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 J = - H 𝔼 c 02L

0u2
 1
d 𝔼 c 02L

0u1 0u2
d g 𝔼 c 02L

0u1 0uK
d

𝔼 c 02L
0u2 0u1

d 𝔼 c 02L

0u2
 2
d g 𝔼 c 02L

0u2 0uK
d

f f f

𝔼 c 02L
0uK 0u1

d 𝔼 c 02L
0uK 0u2

d g 𝔼 c 02L

0u2
K
d

X . (D.4)

The matrix J is called Fisher’s information matrix.
Let I denote the inverse of Fisher’s information matrix J. Let Iii denote the ith 

diagonal element (i.e., the element in the ith row and ith column) of the inverse matrix I.  
Let uni be any unbiased estimate of the parameter ui, based on the observed sample  
vector u. We may then write (Van Trees, 1968)

 var 3uni4 Ú Iii,    i = 1, 2, c, K. (D.5)

Equation (D.5) is called the Cramér–Rao inequality. It enables us to construct a lower 
limit (greater than zero) for the variance of any unbiased estimator, provided, of course, 
that we know the functional form of the log-likelihood function. The lower limit is called 
the Cramér–Rao lower bound (CRLB).

If we can find an unbiased estimator whose variance equals the CRLB, then, 
according to Eq. (D.5), there is no other unbiased estimator with a smaller variance. 
Such an estimator is said to be efficient.

d.3 properTies oF mAximum-LikeLihood esTimATors

Not only is the method of maximum likelihood based on an intuitively appealing idea, 
as indicated in Section D.1, the resulting estimates also have some desirable properties. 
Indeed, under quite general conditions, the following asymptotic properties may be 
proved (Kmenta, 1971):

 1. Maximum-likelihood estimators are consistent. That is, the value of ui for which 
the score 0L>0ui is identically zero converges in probability to the true value of  
the parameter ui, i = 1, 2, c, K, as the sample size M approaches infinity.

 2. Maximum-likelihood estimators are asymptotically efficient; that is,

lim
MS∞

 e var 3ui, ml - ui4
Iii

f = 1,     i = 1, 2, c, K,

where ui, ml is the maximum-likelihood estimate of parameter ui and Iii is the ith 
diagonal element of the inverse of Fisher’s information matrix.

 3. Maximum-likelihood estimators are asymptotically Gaussian.

In practice, we find that the large-sample (asymptotic) properties of maximum- likelihood 
estimators hold rather well for sample size M Ú 50.
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d.4 condiTionAL meAn esTimATor

Another classic problem in estimation theory is that of the Bayes estimation of a random 
parameter. There are different answers to this problem, depending on how the cost func-
tion in the Bayes estimation is formulated (Van Trees, 1968). A particular type of the 
Bayes estimator of interest to us in this book is the so-called conditional mean estimator. 
We now wish to do two things: (1) derive the formula for the conditional mean estima-
tor from first principles and (2) show that such an estimator is the same as a minimum 
mean-square-error estimator.

Toward those ends, consider a random parameter x. We are given an observation 
y that depends on x, and the requirement is to estimate x. Let xn1y2 denote an estimate 
of the parameter x; the symbol xn1y2 emphasizes the fact that the estimate is a function 
of the observation y. Let C1x, xn1y22 denote a cost function that depends on both x and 
xn1y2. Then, according to Bayes’ estimation theory, we may write the following expression 
for the risk (Van Trees, 1968):

  r = 𝔼3C1x, xn1y224  

  = L
∞

-∞
dxL

∞

-∞
C1x, xn1y22fX, Y 1x, y2 dy. 

(D.6)

Here, fX, Y(x, y) is the joint probability density function of x and y. For a specified cost 
function C1x, xn1y22, the Bayes estimate is defined as the estimate xn1y2 that minimizes 
the risk r.

A cost function of particular interest (and one that is very much in the spirit of the 
material covered in this book) is the mean-square error, specified as the square of the 
estimation error, which is itself defined as the difference between the actual parameter 
value x and the estimate xn1y2; that is,

 e = x - xn1y2. (D.7)

Correspondingly, the cost function is defined by

 C1x, xn1y22 = C1x - xn1y22, (D.8)

or, more simply,

 C1e2 = e2. (D.9)

Thus, the cost function varies with the estimation error e in the manner indicated in  
Fig. D.1. It is assumed here that x and y are both real. Accordingly, for the situation at 
hand, we may rewrite Eq. (D.6) as

 rms = L
∞

-∞
dxL

∞

-∞
3x - xn1y242fX, Y 1x, y2 dy, (D.10)

where the subscripts in the risk rms indicate the use of the mean-square error as its basis. 
From probability theory, we have

 fX, Y 1x, y2 = fX 1x ∙y2fY 1y2, (D.11)

Z05_HAYK4083_05_SE_APP4.indd   798 21/06/13   9:22 AM



Section D.4 Conditional Mean Estimator   799

where fX(x | y) is the conditional probability density function of x, given y, and fY(y) is 
the (marginal) probability density function of y. Hence, using Eq. (D.11) in Eq. (D.10), 
we have

 rms = L
∞

-∞
dyfY 1y2L

∞

-∞
3x - xn1y242

 fX 1x ∙y2 dx. (D.12)

We now recognize that the inner integral and fY(y) in Eq. (D.12) are both non-
negative. We may therefore minimize the risk rms simply by minimizing the inner 
integral. Let the estimate so obtained be denoted by xnms 1y2. We find xnms 1y2 by differen-
tiating the inner integral with respect to xn1y2 and then setting the result equal to zero.

To simplify the presentation, let I denote the inner integral in Eq. (D.12). Then, 
differentiating I with respect to xn1y2 yields

 
dI
dxn

= -2L
∞

-∞
xfX 1x ∙y2 dx + 2xn1y2L

∞

-∞
fX 1x ∙y2 dx. (D.13)

The second integral on the right-hand side of Eq. (D.13) represents the total area under 
a probability density function and therefore equals unity. Hence, setting the derivative 
dI>dxn equal to zero, we obtain

 xnms 1y2 = L
∞

-∞
xfX 1x ∙y2 dx. (D.14)

The solution defined by Eq. (D.14) is a unique minimum.
The estimator xnms 1y2 defined in Eq. (D.14) is naturally a minimum mean- square-

error estimator—hence the use of the subscript ms. For another interpretation of this 
estimator, we recognize that the integral on the right-hand side of the equation is just 
the conditional mean of the parameter x, given the observation y.

We therefore conclude that the minimum mean-square-error estimator and the 
conditional mean estimator are indeed one and the same. In other words, we have

 xnms 1y2 = 𝔼3x ∙y4. (D.15)

Substituting Eq. (D.15) for the estimate xn1y2 in Eq. (D.12), we find that the inner integral 
is just the conditional variance of the parameter x, given y. Accordingly, the minimum value 
of the risk rms is just the average of this conditional variance over all observations y.

FigurE D.1 Mean-square error as a quadratic 
cost function.
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In this appendix, we expand on the statistical characterization of a discrete-time sto-
chastic process that is stationary in the wide sense. From Chapter 1, we recall that the 
ensemble-average correlation matrix of such a process is Hermitian. An important aspect 
of a Hermitian matrix is that it permits a useful decomposition of the matrix in terms 
of its eigenvalues and associated eigenvectors. This form of representation is commonly 
referred to as eigenanalysis, which is basic to the study of statistical signal processing.

We begin the discussion of eigenanalysis by outlining the eigenvalue problem in 
the context of the correlation matrix. We then study the properties of eigenvalues and 
eigenvectors of the correlation matrix and a related optimum filtering problem. We 
finish the discussion by briefly describing strategies for eigenvalue computations and 
related issues.

E.1 ThE EigEnvaluE ProblEm

Let the Hermitian matrix R denote the M-by-M correlation matrix of a wide-sense 
stationary discrete-time stochastic process pertaining to the M-by-1 observation vector 
u(n). In general, this matrix may contain complex elements. We wish to find an M-by-1 
nonzero vector q that satisfies the condition

 Rq = lq (E.1)

for some constant l. This condition states that the vector q is linearly transformed to 
the vector lq by the Hermitian matrix R. Since l is a constant, the vector q has special 
significance, in that it is left invariant in direction (in the M-dimensional space) by a 
linear transformation. For a typical M-by-M matrix R, there will be M such vectors. To 
show this, we first rewrite Eq. (E.1) in the form

 1R - lI2q = 0, (E.2)

where I is the M-by-M identity matrix and 0 is the M-by-1 null vector. The matrix  
(R - lI) has to be singular. Hence, Eq. (E.2) has a nonzero solution in the vector q if 
and only if the determinant of the matrix (R - lI) equals zero; that is,

 det1R - lI2 = 0. (E.3)

This determinant, when expanded, is clearly a polynomial in l of degree M. We thus 
find that, in general, Eq. (E.3) has M roots. Correspondingly, Eq. (E.2) has M solutions 

a P P E n d i x  E

Eigenanalysis
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in the vector q. Equation (E.3) is called the characteristic equation of the matrix R. Let  
l1, l2, c, lM denote the M roots of this equation. These roots are called the eigenvalues 
of the matrix R. Note that, in general, the use of root finding in the characteristic equa-
tion (E.3) is a poor method for computing the eigenvalues of the matrix R; the issue of 
eigenvalue computations is considered later, in Section E.5.

Let li denote the ith eigenvalue of the matrix R. Also, let qi be a nonzero vector 
such that

 Rqi = liqi. (E.4)

The vector qi is called the eigenvector associated with li. An eigenvector can corre-
spond to only one eigenvalue. However, an eigenvalue may have many eigenvectors. 
For example, if qi is an eigenvector associated with eigenvalue li, then so is aqi for any 
scalar a Z 0.

Although the M-by-M matrix R has M eigenvalues, they need not be distinct. The 
matrix R is said to be defective (degenerate) if it has an eigenvalue li whose algebraic 
multiplicity exceeds its geometric multiplicity. The algebraic multiplicity refers to the 
order of the eigenvalue li, and the geometric multiplicity refers to the dimensional-
ity of the associated eigenvector qi. A serious consequence of eigenvalue degeneracy 
is nondiagonalibility of the matrix R. (The issue of diagonalization is discussed in 
Section E.5.)

ExamPlE 1 defective matrix

The standard example of a defective matrix is

R = c 0 1
0 0

d .

The eigenvalues of R are

l1 = l2 = 0.

An associated eigenvector q must satisfy the condition

c 0 1
0 0

dq = 0,

which is satisfied by

q = cq1

0
d .

The algebraic multiplicity of the eigenvalue l = 0 is two, as it is a double eigenvalue. However, 
the geometric multiplicity of this eigenvalue is one since the associated eigenvector q is one-
dimensional. The given matrix R is therefore defective.

ExamPlE 2 White noise

Consider the M-by-M correlation matrix of a white-noise process described by the diagonal matrix

R = diag1s2, s2, c, s22,
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where s2 is the variance of a sample of the process. This correlation matrix R has a single degener-
ate eigenvalue equal to the variance s2 with multiplicity M. However, any M-by-1 random vector 
qualifies as the associated eigenvector, which shows that (for white noise) one eigenvalue s2 has 
M linearly independent eigenvectors. The matrix R = s2I is therefore not defective.

ExamPlE 3 Complex Sinusoid

Consider next the M-by-M correlation matrix of a time series whose elements are samples of a 
complex sinusoid with random phase and unit power. This correlation matrix may be written as

R = D1 ejv g ej1M - 12v

e-jv 1 g ej1M - 22v

f f  f f
e-j1M - 12v e-j1M - 22v g 1

T ,

where v is the angular frequency of the complex sinusoid. The M-by-1 vector

q = 31, ejv, c, ej1M - 12v4T,

where the superscript T denotes transposition, is an eigenvector of the correlation matrix R, and 
the corresponding eigenvalue is M (i.e., the dimension of the matrix R). In other words, a complex 
sinusoidal vector represents an eigenvector of its own correlation matrix, except for the trivial 
operation of complex conjugation.

Note that the correlation matrix R has rank one, which means that any column of R may 
be expressed as a linear combination of the remaining columns (i.e., the matrix R has only one 
independent column). It also means that the other eigenvalue of R is zero with multiplicity M - 1, 
and this eigenvalue has M - 1 linearly independent eigenvectors.

E.2 ProPErTiES of EigEnvaluES and EigEnvECTorS

In this section, we discuss the various properties of the eigenvalues and eigenvectors 
of the correlation matrix R of a stationary discrete-time stochastic process. Some of 
the properties derived here are direct consequences of the Hermitian property and 
the nonnegative definiteness of the correlation matrix R, which were established in 
Section 1.3. 

Property 1. If l1, l2, c, lM denote the eigenvalues of the correlation matrix R, 
then the eigenvalues of the matrix Rk equal lk

1, lk
 2, c, lk

M for any integer k 7 0.
Repeated premultiplication of both sides of Eq. (E.1) by the matrix R yields

 Rkq = lkq. (E.5)

This equation shows that (1) if l is an eigenvalue of R, then lk is an eigenvalue of Rk, 
which is the desired result, and (2) every eigenvector of R is also an eigenvector of Rk.

Property 2. Let q1, q2, c, qM be the eigenvectors corresponding, respectively, 
to the distinct eigenvalues l1, l2, c, lM of the M-by-M correlation matrix R. Then, the 
eigenvectors q1, q2, c, qM are linearly independent.
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We say that the eigenvectors q1, q2, c, qM are linearly dependent if there are 
scalars v1, v2, c, vM, not all zero, such that

 a
M

i = 1
viqi = 0. (E.6)

If no such scalars exist, we say that the eigenvectors are linearly independent.
We will establish Property 2 by contradiction. Suppose that Eq. (E.6) holds for 

certain scalars vi that are not all zero. Repeated multiplication of Eq. (E.6) by matrix R 
and the use of Eq. (E.5) yield the following set of M equations:

 a
M

i = 1
vil

k - 1
i qi = 0,    k = 1, 2, c, M. (E.7)

This set of equations may be written in the form of the single matrix equation

 3v1q1, v2 q2, c, vM qM4S = 0, (E.8)

where

 S = D1 l1 l2
1 g lM - 1

1

1 l2 l2
 2 g lM - 1

2

f f f  f f
1 lM l2

M g lM - 1
M

T . (E.9)

The matrix S is called a Vandermonde matrix (Strang, 1980). When the li are distinct, 
the Vandermonde matrix S is nonsingular. Therefore, we may postmultiply Eq. (E.8) by 
the inverse matrix S-1, obtaining

3v1q1, v2 q2, c, vM qM4 = O.

Hence, each column vi qi = 0. Since the eigenvectors qi are not zero, this condition can 
be satisfied if and only if the vi are all zero, which contradicts the assumption that the 
scalars vi are not all zero. In other words, the eigenvectors are linearly independent.

We may put Property 2 to an important use by having the linearly independent 
eigenvectors q1, q2, c, qM serve as a basis for the representation of an arbitrary vector 
w with the same dimension as the eigenvectors themselves. In particular, we may express 
the arbitrary vector w as a linear combination of the eigenvectors q1, q2, c, qM as

 w = a
M

i = 1
vi qi, (E.10)

where v1, v2, c, vM are constants. Suppose now we apply a linear transformation to the 
vector w by premultiplying it by the matrix R, obtaining

 Rw = a
M

i = 1
viRqi. (E.11)

By definition, Rqi = liqi. Therefore, we may express the result of this linear transforma-
tion in the equivalent form

 Rw = a
M

i = 1
viliqi. (E.12)
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We thus see that when a linear transformation is applied to an arbitrary vector w defined 
in Eq. (E.10), the eigenvectors remain independent of each other, and the effect of the 
transformation is simply to multiply each eigenvector by its respective eigenvalue.

Property 3. Let l1, l2, c, lM be the eigenvalues of the M-by-M correlation 
 matrix R. Then, all these eigenvalues are real and nonnegative.

To prove this property, we first use Eq. (E.1) to express the condition on the ith 
eigenvalue li as

 Rqi = liqi,    i = 1, 2, c, M. (E.13)

Premultiplying both sides of this equation by qH
i , the Hermitian transpose of eigen-

vector qi, we get

 qH
i Rqi = liq

H
i qi,    i = 1, 2, c, M. (E.14)

The inner product qH
i qi is a positive scalar, representing the squared Euclidean length 

of the eigenvector qi; that is, qH
i qi 7 0. We may therefore divide both sides of Eq. (E.14) 

by qH
i qi and so express the ith eigenvalue as

 li =
qH

i Rqi

qH
i qi

,    i = 1, 2, c, M. (E.15)

Since the correlation matrix R is always nonnegative definite, the Hermitian form 
qH

i Rqi in the numerator of this ratio is always real and nonnegative; that is qH
i Rqi Ú 0. 

Therefore, it follows from Eq. (E.15) that li Ú 0 for all i. That is, all the eigenvalues of 
the correlation matrix R are always real and nonnegative.

The correlation matrix R is positive definite, except in noise-free sinusoidal and 
noise-free array signal-processing problems, which are rare events, so we usually have 
qH

i Rqi 7 0 and, correspondingly, li 7 0 for all i. That is, the eigenvalues of the correla-
tion matrix R are almost always real and positive.

The ratio of the Hermitian form qH
i Rqi to the inner product qH

i qi on the right-
hand side of Eq. (E.15) is called the Rayleigh quotient of the vector qi. We may thus 
state that an eigenvalue of the correlation matrix equals the Rayleigh quotient of the 
corresponding eigenvector.

Property 4. Let q1, q2, c, qM be the eigenvectors corresponding, respectively, 
to the distinct eigenvalues l1, l2, c, lM of the M-by-M correlation matrix R. Then, the 
eigenvectors q1, q2, c, qM are orthogonal to each other.

Let qi and qj denote any two eigenvectors of the correlation matrix R. We say that 
these two eigenvectors are orthogonal to each other if

 qH
i qj = 0,     i ≠ j. (E.16)

Using Eq. (E.1), we may express the conditions on the eigenvectors qi and qj as

 Rqi = liqi (E.17)

and

 Rqj = ljqj. (E.18)
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Premultiplying both sides of Eq. (E.17) by the Hermitian-transposed vector qH
j , we get

 qH
j Rqi = liq

H
j qi. (E.19)

Since the correlation matrix R is Hermitian, RH = R. Also, from Property 3, we know 
that the eigenvalue lj is real for all j. Hence, taking the Hermitian transpose of both 
sides of Eq. (E.18), we get

 qH
j R = ljq

H
j . (E.20)

Postmultiplying both sides of Eq. (E.20) by the vector qi yields

 qH
j Rqi = ljq

H
j qi. (E.21)

Subtracting Eq. (E.21) from Eq. (E.19), we obtain

 1li - lj2qH
j qi = 0. (E.22)

Since the eigenvalues of the correlation matrix R are assumed to be distinct, we have  
li Z lj. Accordingly, the condition of Eq. (E.22) holds if and only if

 qH
j qi = 0,    i ≠ j, (E.23)

which is the desired result. That is, the eigenvectors qi and qj are orthogonal to each 
other for i Z j.

Property 5: Unitary Similarity Transformation. Let q1, q2, c, qM be the eigenvec-
tors corresponding, respectively, to the distinct eigenvalues l1, l2, c, lM of the M-by-M  
correlation matrix R. Define the M-by-M matrix

Q = 3q1, q2, c, qM4,
where

 qH
i qj = e1, i = j

0, i ≠ j
. 

Define the M-by-M diagonal matrix

 𝚲 = diag1l1, l2, c, lM2. 

Then, the correlation matrix R may be diagonalized as follows:

 QHRQ = 𝚲. 

The condition that qH
i qi = 1 for i = 1, 2, c, M requires that each eigenvector be 

normalized to have a length of unity. The squared length, or squared norm, of a vector q i 
is defined as the inner product qH

i qi. The orthogonality condition that qH
i qj = 0 for i Z j  

follows from Property 4. When both of these conditions are simultaneously satisfied, 
that is, when

 qH
i qj = e1, i = j

0, i ≠ j
, (E.24)

we say that the eigenvectors q1, q2, c, qM form an orthonormal set. By definition, the 
eigenvectors q1, q2, c, qM satisfy the equations [see Eq. (E.1)]

 Rqi = liqi,     i = 1, 2, c, M. (E.25)
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The M-by-M matrix Q has as its columns the orthonormal set of eigenvectors q1, q2, c, 
qM; that is,

 Q = 3q1, q2, c, qM4. (E.26)

The M-by-M diagonal matrix 𝚲 has the eigenvalues l1, l2, c, lM for the elements of 
its main diagonal:

 𝚲 = diag1l1, l2, c, lM2. (E.27)

Accordingly, we may rewrite the set of M equations (E.25) as the single matrix equation

 RQ = Q𝚲. (E.28)

Owing to the orthonormal nature of the eigenvectors, as defined in Eq. (E.24), we have

QHQ = I.

Equivalently, we may write

 Q-1 = QH. (E.29)

That is, the matrix Q is nonsingular, with an inverse Q-1 equal to the Hermitian trans-
pose of Q. A matrix that has this property is called a unitary matrix.

Thus, premultiplying both sides of Eq. (E.28) by the Hermitian-transposed matrix 
QH and using the property of Eq. (E.29), we get the desired result:

 QHRQ = 𝚲. (E.30)

This transformation is called the unitary similarity transformation.
We have thus proved an important result: The correlation matrix R may be 

diagonalized by a unitary similarity transformation. Furthermore, the matrix Q that 
is used to diagonalize R has as its columns an orthonormal set of eigenvectors associ-
ated with R. The resulting diagonal matrix 𝚲 has as its diagonal elements the eigen-
values of R.

By postmultiplying both sides of Eq. (E.28) by the inverse matrix Q-1 and then 
using the property of Eq. (E.29), we may also write

  R = Q𝚲QH  

  = a
M

i = 1
li qi q

H
i , (E.31)

where M is the dimension of matrix R. Let the projection Pi denote the outer product 
qiq

H
i . Then, it is a straightforward matter to show that

Pi = P2
i = PH

i ,

which, in effect, means that Pi = qiq
H
i  is a rank-one projection. Thus, Eq. (E.31) states 

that the correlation matrix of a wide-sense stationary process equals the linear combina-
tion of all such rank-one projections, each being weighted by its respective eigenvalue. 
This result is known as Mercer’s theorem; it is also referred to as the spectral theorem.

Z06_HAYK4083_05_SE_APP5.indd   806 21/06/13   9:26 AM



Section E.2 Properties of Eigenvalues and Eigenvectors   807

Property 6. Let l1, l2, c, lM be the eigenvalues of the M-by-M correlation 
 matrix R. Then, the sum of these eigenvalues equals the trace of matrix R.

The trace of a square matrix is defined as the sum of the diagonal elements of the 
matrix. Taking the trace of both sides of Eq. (E.30), we may write

 tr3QHRQ4 = tr3𝚲4, (E.32)

where tr denotes the trace operator. The diagonal matrix 𝚲 has as its diagonal elements 
the eigenvalues of R. Hence, we have

 tr3𝚲4 = a
M

i = 1
li. (E.33)

Using a rule in matrix algebra,1 we may write

 tr3QHRQ4 = tr3RQQH4. 
However, QQH equals the identity matrix I. Hence, we have

 tr3QHRQ4 = tr3R4. 
Accordingly, we may rewrite Eq. (E.32) as

 tr3R4 = a
M

i = 1
li. (E.34)

We have thus shown that the trace of the correlation matrix R equals the sum of the 
eigenvalues of R. Although, in proving this result, we used a property that requires the 
matrix R to be Hermitian with distinct eigenvalues, the result applies to any square matrix.

Property 7. The correlation matrix R is ill conditioned if the ratio of the largest 
eigenvalue to the smallest eigenvalue of R is large.

To appreciate the impact of Property 7, it is important that we recognize the fact 
that the development of an algorithm for the effective solution of a signal-processing 
problem and the understanding of associated perturbation theory go hand in hand (Van 
Loan, 1989). We may illustrate the synergism between these two fields by considering 
the linear system of equations

 Aw = d, 

where the matrix A and the vector d are data-dependent quantities and w is a coeffi-
cient vector characterizing a finite-duration impulse response (FIR) filter of interest. An 
elementary formulation of perturbation theory tells us that if the matrix A and vector d 
are perturbed by small amounts, dA and dd, respectively, and if 7dA 7 > 7A 7  and 7dd 7 > 7d 7  
are both on the order of some e V 1, then we have (Golub & Van Loan, 1996)

 
d 7w 7
7w 7 … e x1A2, 

1In matrix algebra, we have the following rule: Let A be an M-by-N matrix and B be an N-by-M matrix. 
Then, the trace of the matrix product AB equals the trace of BA.
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where dw is the change produced in w due to dA and dd and where x(A) is the condition 
number of matrix A with respect to inversion. The condition number is so called because 
it describes the ill condition or bad behavior of matrix A quantitatively. In particular, it 
is defined as (Wilkinson, 1963; Strang, 1980; Golub & Van Loan, 1996)

 x1A2 = 7A 7 7A-1 7 , (E.35)

where 7A 7  is a norm of matrix A and 7A-1 7  is the corresponding norm of the inverse 
matrix A−1. The norm of a matrix is a number assigned to the matrix that is in some 
sense a measure of the magnitude of the matrix. We find it natural to require that the 
norm of a matrix satisfy the following conditions:

 1. 7A 7 Ú 0, with equality if and only if A = O.
 2. 7 cA 7 = ∙c∙ 7A 7 , where c is any real number and |c| is its magnitude.
 3. 7A + B 7 … 7A 7 + 7B 7 .
 4. 7AB 7 … 7A 7 7B 7 .

Condition 3 is the triangle inequality, and condition 4 indicates mutual consistency. There 
are several ways of defining the norm 7A 7  that satisfy the preceding conditions (Ralston, 
1965). For our present discussion, however, we find it convenient to use the spectral 
norm,2 defined as the square root of the largest eigenvalue of the matrix product AHA, 
where AH is the Hermitian transpose of A; that is,

 7A 7 s = 1largest eigenvalue of  AHA21>2. (E.36)

Since, for any matrix A, the product AHA is always Hermitian and nonnegative defi-
nite, it follows that the eigenvalues of AHA are all real and nonnegative, as required. 
Moreover, from Eq. (E.15), we note that an eigenvalue of AHA equals the Rayleigh 
coefficient of the corresponding eigenvector. Squaring both sides of Eq. (E.36) and using 
this property, we may therefore write3

 7A 7 2s = max 
xHAHAx

xHx

 = max 
7Ax 7 2
7x 7 2 ,

where the denominator 7x 7 2 is the squared Euclidean norm, or squared length, of vec-
tor x, and likewise for the numerator 7Ax 7 2. We may thus express the spectral norm of 
matrix A in the equivalent form

 7A 7 s = max 
7Ax 7
7x 7 . (E.37)

2Another matrix norm of interest is the Frobenius norm, defined by (Stewart, 1973)

7A 7 F = B a
M

i = 1
a
N

j = 1
∙ aij∙2,

where M and N are the dimensions of matrix A and aij is the ijth element of A.
3Note that the vector x is one of the eigenvectors of AHA. Hence, at this stage, we can only say that 

7A 7 2s  is the maximum Rayleigh quotient of the eigenvectors. However, Property 7 may be extended to any 
vector after the minimax theorem is proved. (See Property 9.)
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According to this relation, the spectral norm of A measures the largest amount by which 
any vector (eigenvector or not) is amplified by matrix multiplication, and the vector 
that is amplified the most is the eigenvector that corresponds to the largest eigenvalue 
of AHA (Strang, 1980).

Consider now the application of the definition in Eq. (E.36) to the correlation 
matrix R. Since R is Hermitian, we have RH = R. Hence, from Property 1, we infer 
that if lmax is the largest eigenvalue of R, the largest eigenvalue of RHR equals l2

max. 
Accordingly, the spectral norm of the correlation matrix R is

 7R 7 s = lmax. (E.38)

Similarly, we may show that the spectral norm of R-1, the inverse of the correlation 
matrix, is

 7R-1 7 s =
1

lmin
, (E.39)

where lmin is the smallest eigenvalue of R. Thus, by adopting the spectral norm as the 
basis of the condition number, we have shown that the condition number of the cor-
relation matrix R is

 x1R2 =
lmax

lmin
. (E.40)

This ratio is commonly referred to as the eigenvalue spread, or the eigenvalue ratio, of 
the correlation matrix. Note that we always have x1R2 Ú 1.

Suppose that the correlation matrix R is normalized so that the magnitude of the 
largest element, r(0), equals unity. Then, if the condition number or eigenvalue spread 
of the correlation matrix R is large, the inverse matrix R-1 contains some very large 
elements. This behavior may cause trouble in solving a system of equations involving 
R-1. In such a case, we say that the correlation matrix R is ill conditioned—hence the 
justification of Property 7.

Property 8. The eigenvalues of the correlation matrix of a discrete-time stochastic 
process are bounded by the minimum and maximum values of the power spectral density 
of the process.

Let li, qi, and i = 1, 2, c, M, denote the eigenvalues of the M-by-M correlation 
matrix R of a discrete-time stochastic process u(n) and their associated eigenvectors, 
respectively. Reproducing Eq. (E.15) for convenience of presentation, we have

 li =
qH

i Rqi

qH
i qi

,    i = 1, 2, c, M. (E.41)

The Hermitian form in the numerator of Eq. (E.41) may be expressed in its expanded 
form as

 qH
i Rqi = a

M

k = 1
a
M

l = 1
q*

ikr1l - k2qil, (E.42)
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where the asterisk denotes complex conjugation, q*ik is the kth element of the row vector 
qH

i , r1l - k2 is the klth element of the matrix R, and qil is the lth element of the column 
vector qi. Using the Einstein-Wiener-Khintchine relation of Eq. (1.116), we may write

 r1l - k2 =
1

2p
 L

p

-p
S1v2ejv1l- k2 dv, (E.43)

where S(v) is the power spectral density of the process u(n). Hence, we may rewrite 
Eq. (E.42) as

  qH
i Rqi =

1
2p

 a
M

k = 1
a
M

l = 1
q*ikqilL

p

-p
S1v2ejv1l- k2 dv  

  =
1

2p
 L

p

-p
dvS1v2a

M

k = 1
q*ike-jvka

M

l = 1
qile

jvl. 

(E.44)

Let the discrete-time Fourier transform of the sequence q*i1, q*i2, c, q*iM be denoted by

 Q=
i1ejv2 = a

M

k = 1
q*ike-jvk. (E.45)

Then, using Eq. (E.45) in Eq. (E.44), we get

 qH
i Rqi =

1
2p

 L
p

-p
∙ Q=

i1ejv2 ∙2
 S1v2 dv. (E.46)

Similarly, we may show that

 qH
i qi =

1
2p

 L
p

-p
∙ Q=

i1ejv2 ∙2 dv. (E.47)

Accordingly, we may use Eq. (E.41) to redefine the eigenvalue li of the correlation 
matrix R in terms of the associated power spectral density as

 li = L
p

-p
∙ Q=

i1ejv2 ∙2
 S1v2 dv

L
p

-p
∙ Q =

i1ejv2 ∙2 dv
. (E.48)

Let Smin and Smax denote the absolute minimum and maximum values, respectively, of 
the power spectral density S(v). Then,

 L
p

-p
∙ Q=

i1ejv2 ∙2
 S1v2 dv Ú SminL

p

-p
∙ Q=

i1ejv2 ∙2 dv (E.49)

and

 L
p

-p
∙ Q=

i1ejv2 ∙2
 S1v2 dv … SmaxL

p

-p
∙ Q=

i1ejv2 ∙2 dv. (E.50)
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Hence, using Eq. (E.48), we deduce that the eigenvalues li are bounded by the maximum 
and minimum values of the associated power spectral density as follows:

 Smin … li … Smax,    i = 1, 2, c, M. (E.51)

Correspondingly, the eigenvalue spread x(R) is bounded as

 x1R2 =
lmax

lmin
…

Smax

Smin
. (E.52)

It is of interest to note that as the dimension M of the correlation matrix approaches 
infinity, the maximum eigenvalue lmax approaches Smax, and the minimum eigenvalue 
lmin approaches Smin. Accordingly, the eigenvalue spread l(R) of the correlation matrix 
R approaches the ratio Smax/Smin as the dimension M of the matrix R approaches infinity.

Property 9: Minimax Theorem. Let the M-by-M correlation matrix R have eigen-
values l1, l2, c, lM that are arranged in decreasing order as follows:

 l1 Ú l2 Ú gÚ lM. 

The minimax theorem states that

 lk =   min  max 
xHRx
xHx

,     k = 1, 2, cM, (E.53)
 dim1s2= k x∈s

x ≠ 0  

where s is a subspace of the vector space of all M-by-1 complex vectors, dim (s) denotes 
the dimension of subspace s, and x ∈ s signifies that the vector x (assumed to be non-
zero) varies over the subspace s.

Let ℂM denote a complex vector space of dimension M. For the purpose of our 
present discussion, we define the complex (linear) vector space ℂM as the set of all 
complex vectors that can be expressed as a linear combination of M basis vectors. 
Specifically, we may write

 ℂM = 5y6, (E.54)

where

 y = a
M

i = 1
aiqi (E.55)

is any complex vector, the qi are the basis vectors, and the ai are real-valued scalars. For 
the basis vectors, we may use any orthonormal set of vectors q1, q2, c, qM that satisfy 
the requirement

 qH
i qj = e 1, i = j

0, i ≠ j
. (E.56)

In other words, each basis vector is normalized to have a Euclidean length or norm of 
unity and is orthogonal to every other basis vector in the set. The dimension M of the 
complex vector space ℂM is the minimum number of basis vectors required to span the 
entire space.
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The basis functions define the “coordinates” of a complex vector space. Any com-
plex vector of compatible dimension may then be represented simply as a point in that 
space. Indeed, the idea of a complex vector space is a natural generalization of Euclidean 
geometry. Central to this idea is a subspace. We say that s is a subspace of the complex 
vector space ℂM if s involves a subset of the M basis vectors that define ℂM. In other 
words, a subspace of dimension k is defined as the set of complex vectors that can be 
written as a linear combination of the basis vectors q1, q2, c, qk; that is,

 x = a
k

i = 1
aiqi. (E.57)

Obviously, k … M. Note, however, that the dimension of the vector x is M.
These ideas are illustrated in the three-dimensional (real) vector space depicted 

in Fig. E.1. The (q1, q2)-plane represents a subspace s of dimensionality two. The repre-
sentations of vector y and vector x (i.e., the part of y lying in subspace s) are indicated 
in the figure.

Returning to the issue at hand, namely, a proof of the minimax theorem described 
in Eq. (E.53), we may proceed as follows: We first use the spectral theorem of Eq. (E.31) 
to decompose the M-by-M correlation matrix R as

 R = a
M

i = 1
liqiq

H
i , 

where the li are the eigenvalues of R and the qi are the associated eigenvectors. In view 
of the fact that the orthonormality conditions of Eq. (E.24) are satisfied by the eigen-
vectors q1, q2, c, qM, we may adopt them as the M basis vectors of the complex vector 

FigurE E.1 Projection of a vector onto a subspace in a three-dimensional (real) vector space.
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space ℂM. Let an M-by-1 vector x be constrained to lie in a subspace s of dimension k, 
as defined in Eq. (E.57). Then, using Eq. (E.31), we may express the Rayleigh quotient 
of the vector x as

 
xHRx
xHx

=
a
k

i = 1
a2

ili

a
k

i = 1
a2

i

. (E.58)

Equation (E.58) states that the Rayleigh quotient of a vector x lying in the subspace 
s of dimension k (i.e., the subspace spanned by the eigenvectors q1, q2, c, qk) is a 
weighted mean of the eigenvalues l1, l2, c, lk. Since, by assumption, l1 Ú l2 Ú c Ú lk,  
it follows that, for any subspace s of dimension k,

 max 
xHRx
xHx

… lk. 
 x∈s

x ≠ 0  

This result implies that

 min  max 
xHRx
xHx

… lk. (E.59)
 dim1s2= k x∈s

x ≠ 0  

We next prove that, for any subspace s of dimension k spanned by the eigen-
vectors qi1, qi2, c, qik where {i1, i2, c, ik} is a subset of {1, 2, c, M}, there exists at least  
one nonzero vector x common to s and the subspace s′ spanned by the eigenvectors 
qk, qk + 1, c, qM. To do so, we consider the system of M homogeneous equations,

 a
k

j = 1
ajqij = a

M

i = k
biqi, (E.60)

where the (M + 1) unknowns are made up as follows:

 1. A total of k scalars, namely, a1, a2, c, ak, on the left-hand side.
 2. A total of M - k + 1 scalars, namely, bk, bk + 1, c, bM, on the right-hand side.

Hence, the system of equations (E.60) will always have a nontrivial solution. Moreover, 
we know from Property 2 that the eigenvectors qi1, qi2, c, qik are linearly independent, 
as are the eigenvectors qk, qk + 1, c, qM. It follows therefore that there is at least one 
nonzero vector x = gk

j = 1 ajqij that is common to the space of qi1, qi2, c, qik and the 
space of qk, qk + 1, c, qM. Thus, using Eqs. (E.60), (E.57), and (E.41), we may also 
express the Rayleigh quotient of the vector x as a weighted mean of the eigenvalues  
lk, lk + 1, c, lM, as shown by

 
xHRx
xHx

= aM
i = kb2

ili

aM
i = kb2

i

. (E.61)

Since, by assumption, lk Ú lk + 1 Ú cÚ lM, and since x is also a vector in the subspace 
s, we may write
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max 
xHRx
xHx

Ú lk.
 x∈s

x ≠ 0  

Therefore,

 min  max 
xHRx
xHx

Ú lk, (E.62)
 dim1s2= k x∈s

x ≠ 0  

because s is an arbitrary subspace of dimension k.
All that remains for us to do is to combine the results of Eqs. (E.59) and (E.62), 

and the minimax theorem of Eq. (E.53) describing Property 9 follows immediately.
From Property 9, we may make two important observations:

 1. The minimax theorem, as stated in Eq. (E.53), does not require any special knowl-
edge of the eigenstructure (i.e., eigenvalues and eigenvectors) of the correlation 
matrix R. Indeed, the theorem may be adopted as the basis for defining the eigen-
values lk for k = 1, 2, c, M.

 2. The minimax theorem points to a unique twofold feature of the eigenstructure of 
the correlation matrix: (a) The eigenvectors represent the particular basis for an 
M-dimensional space that is most efficient in the energy sense, and (b) the eigen-
values are certain energies of the M-by-1 input (observation) vector u(n). This 
issue is pursued in greater depth under Property 10.

Another noteworthy point is that Eq. (E.53) may also be formulated in the fol-
lowing alternative, but equivalent, form:

 lk =    max   min 
xHRx
xHx

. (E.63)
 dim1s′2= M - k + 1 x∈s′

x ≠ 0  

Equation (E.63) is referred to as the maximin theorem.
From Eqs. (E.53) and (E.63), we may readily deduce the following two special cases:

 1. For k = M, the subspace s occupies the complex vector space ℂM entirely. Under 
this condition, Eq. (E.53) reduces to

 l1 = max 
xHRx
xHx

, (E.64)
 x∈ℂM

x ≠ 0  

  where l1 is the largest eigenvalue of the correlation matrix R.
 2. For k = 1, the subspace s′ occupies the complex vector space ℂM entirely. Under 

this condition, Eq. (E.63) reduces to

 lM = min 
xHRx
xHx

, (E.65)
 x∈ℂM

x ≠ 0  

  where lM is the smallest eigenvalue of the correlation matrix R.

Property 10: Karhunen–Loève expansion. Let the M-by-1 vector u(n) denote a 
data sequence drawn from a wide-sense stationary process of zero mean and correlation 
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matrix R. Let q1, q2, c, qM be eigenvectors associated with the M eigenvalues of the 
matrix R. Then, the vector u(n) may be expanded as a linear combination of these eigen-
vectors as follows:

 u1n2 = a
M

i = 1
ci 1n2qi. (E.66)

The coefficients of the expansion are zero-mean, uncorrelated random variables defined 
by the inner product

 ci 1n2 = qH
i u1n2,     i = 1, 2, c, M. (E.67)

The representation of the random vector u(n) described by Eqs. (E.66) and (E.67) 
is the discrete-time version of the Karhunen–Loève expansion. In particular, Eq. (E.67) 
is the “analysis” part of the expansion, in that it defines ci(n) in terms of the input 
vector u(n). On the other hand, Eq. (E.66) is the “synthesis” part of the expansion, 
in that it reconstructs the original input vector u(n) from ci(n). Given the expansion 
of Eq. (E.66), the definition of ci(n) in Eq. (E.67) follows directly from the fact that 
the eigenvectors q1, q2, c, qM form an orthonormal set, assuming that they are all 
 normalized to have unit length. Conversely, this same property may be used to derive 
Eq. (E.66), given Eq. (E.67).

The coefficients of the expansion are random variables characterized as

 𝔼3ci 1n24 = 0,    i = 1, 2, c, M (E.68)

and

 𝔼3ci 1n2c*j  1n24 = eli i = j
0, i ≠ j

. (E.69)

Equation (E.68) states that all the coefficients of the expansion have zero mean; this 
follows directly from Eq. (E.67) and the fact the random vector u(n) is itself assumed 
to have zero mean. Equation (E.69) states that the coefficients of the expansion are 
uncorrelated and that each one of them has a mean-square value equal to the respec-
tive eigenvalue. This second equation is readily obtained by using the expansion of 
Eq. (E.66) in the definition of the correlation matrix R as the expectation of the 
outer product u(n)uH(n) and then invoking the unitary similarity transformation (i.e., 
Property 5).

For a physical interpretation of the Karhunen-Loève expansion, we may view 
the eigenvectors q1, q2, c, qM as the coordinates of an M-dimensional space and thus 
represent the random vector u(n) by the set of its projections c1(n), c2(n), c, cM(n) 
onto these axes, respectively. Moreover, from Eq. (E.66), we see that

 a
M

i = 1
∙ ci 1n2∙2 = 7u1n) 7 2

 

, (E.70)

where 7u1n2 7  is the Euclidean norm of u(n). That is to say, the coefficient ci(n) has an 
energy equal to that of the observation vector u(n), measured along the ith coordinate. 
Naturally, this energy is a random variable whose mean value equals the ith eigenvalue, 
as shown by the formula
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 𝔼3 ∙ ci 1n2 ∙24 = li,    i = 1, 2, c, M. (E.71)

This result follows directly from Eqs. (E.67) and (E.69).

E.3 loW-rank modEling

A key problem in statistical signal processing is that of feature selection, which refers to 
a process whereby a data space is transformed into a feature space that, in theory, has 
exactly the same dimension as the original data space. However, it would be desirable 
to design the transformation in such a way that the data vector can be represented by 
a reduced number of “effective” features and yet retain most of the intrinsic informa-
tion content of the input data. In other words, the data vector undergoes a reduction in 
dimensionality.

To be specific, suppose we have an M-dimensional data vector u(n) representing a 
sample realization of a wide-sense stationary process. Suppose also that we would like 
to transmit this vector over a noisy channel using a new set of p distinct numbers, where 
p 6 M. Basically, this is a feature-selection problem, which may be solved with the help 
of the Karhunen-Loève expansion, described next.

According to Eq. (E.66), the data vector u(n) may be expanded as a linear com-
bination of the eigenvectors q1, q2, c, qM associated with the respective eigenvalues  
l1, l2, c, lM of the correlation matrix R of u(n). It is assumed that the eigenvalues are 
all distinct and arranged in decreasing order, as shown by

 l1 7 l2 7 g7 li 7 g7 lM. (E.72)

The data representation described in Eq. (E.66) using all the eigenvalues of matrix 
R is exact, in the sense that it involves no loss of information. Suppose, however, that 
we have prior knowledge that the M - p eigenvalues lp + 1, c, lM at the tail end of  
Eq. (E.72) are all very small. Then, we may take advantage of this prior knowledge by 
retaining the p largest eigenvalues of matrix R and thereby truncating the Karhunen-
Loève expansion of Eq. (E.66) at the term i = p. Accordingly, we may define an approxi-
mate reconstruction of the data vector u(n) defined by:

 un1n2 = a
p

i = 1
ci 1n2qi,     p 6 M. (E.73)

The vector un1n2 has rank p, which is lower than the rank M of the original data vector 
u(n). For this reason, the data model defined by Eq. (E.73) is referred to as a low-rank 
model. The important point to note here is that we may reconstruct the approxima-
tion un1n2 by using the set of p numbers, {ci(n); i = 1, 2, c, p}. The ci(n) are themselves 
defined in terms of the data vector u(n) by Eq. (E.67). In other words, the new vector 
c(n), having c1(n), c2(n), c, cp(n) as elements, may be viewed as the reduced-rank 
representation of the original data vector u(n).

Figure E.2 depicts the essence of the feature selection procedure. We start with 
an M-dimensional data space in which a particular point defines the location of the 
data vector u(n). This point is transformed, via Eq. (E.67), into a new point in a feature 
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space of dimension p that is lower than M. The transformation depicted in the figure is 
sometimes referred to as a subspace, or reduced-rank, decomposition.

Clearly, in using Eq. (E.73) to reconstruct the data vector u(n), an error is incurred 
due to the fact that un1n2 is of lower rank than u(n). The reconstruction error vector is 
defined by

 e1n2 = u1n2 - un1n2. (E.74)

Using Eqs. (E.66) and (E.73) in Eq. (E.74) yields

 e1n2 = a
M

i = p + 1
ci 1n2qi. (E.75)

The mean-square error is therefore

  e = 𝔼3 7e1n2 7 24  

  = 𝔼3eH
 1n2e1n24  

  = 𝔼 c a
M

i = p + 1
a
M

j = p + 1
c*i  1n2cj 1n2qH

i qj d  (E.76)

  = a
M

i = p + 1
a
M

j = p + 1
𝔼3c*i  1n2cj 1n24qH

i qj  

  = a
M

i = p + 1
li,  

which confirms that the data reconstruction defined by Eq. (E.73) is a good one, pro-
vided that the eigenvalues lp + 1, c, lM are all very small compared with l1, c, lp.

FigurE E.2 Transformation involved in subspace decomposition.

Z06_HAYK4083_05_SE_APP5.indd   817 21/06/13   9:26 AM



818   Appendix E  Eigenanalysis

an application of low-rank modeling

To appreciate the practical value of the low-rank model based on Eq. (E.73), consider 
the transmission of a data vector u(n) over a noisy communication channel. Suppose  
the received signal is corrupted by channel noise vector v(n), which is modeled as additive 
white noise of zero mean. Then,

 𝔼3u1n2NH
 1n24 = O (E.77)

and
 𝔼3N1n2NH

 1n24 = s2I. (E.78)

Equation (E.77) says that the noise vector N(n) is uncorrelated with the data vector 
u(n). Equation (E.78), with I denoting the identity matrix, says that the elements of the 
noise vector are uncorrelated with each other and that each element has variance s2.

In Fig. E.3, we describe two methods for accomplishing the data transmission over 
the channel. One method is direct, and the other is indirect. In the direct method shown 
in Fig. E.3(a), the received signal vector is given by

 ydirect 1n2 = u1n2 + N1n2. (E.79)

The mean-square value of the transmission error is therefore

 edirect = 𝔼3 7ydirect 1n2 - u1n2 7 24
 = 𝔼3 7N1n2 7 24
 = 𝔼3NH

 1n2N1n24.

FigurE E.3 Data transmission using (a) a direct method and (b) an indirect method inspired by 
low-rank modeling.
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From Eq. (E.78), we see that each element, say, ni(n), of the noise vector N(n) has vari-
ance s2. We may therefore express Edirect simply as

  edirect = a
M

i = 1
𝔼3 ∙ ni 1n2 ∙24 

  = Ms2,  

(E.80)

where M is the size of N(n).
Consider next the indirect method shown in Fig. E.3(b), in which the input vector 

u(n) is first applied to a transmit filter bank whose individual tap-weight vectors are 
set equal to the Hermitian transpose of the eigenvectors q1, q2, c, qp associated with the 
p largest eigenvalues l1, l2, c, lp of the correlation matrix R of u(n). The resulting  
p-by-1 vector c(n), whose elements are made up of the inner products of u(n) with  
q1, q2, c, qp, in accordance with Eq. (E.67), constitutes the transmitted signal vector

 c1n2 = 3q1, q2, c, qp4H
 u1n2. (E.81)

Correspondingly, the received signal vector is defined by

 r1n2 = c1n2 + N1n2, (E.82)

where the channel noise vector N(n) is now of size p, to be compatible with that of c(n). 
To reconstruct the original data vector u(n), the received signal vector r(n) is applied to 
a receive filter bank, whose individual tap-weight vectors are defined by the eigenvectors 
q1, q2, c, qp. The resulting output vector of the receiver is given by

  yindirect 1n2 = 3q1, q2, c, qp4r1n2  

  = 3q1, q2, c, qp4c1n2 + 3q1, q2, c, qp4N1n2. 
(E.83)

Hence, evaluating the mean-square value of the overall reconstruction error for the 
indirect method, we get

  Eindirect = 𝔼3 7yindirect 1n2 - u1n2 7 24 

  = a
M

i = p + 1
li + ps2.  

(E.84)

The first term of Eq. (E.84) is due to the low-rank modeling of the data vector u(n) prior 
to transmission over the channel. The second term is due to the effect of channel noise.

Comparing Eq. (E.84) for the indirect method with Eq. (E.80) for the direct 
method, we readily see that the use of low-rank modeling offers an advantage, provided 
that we have

 a
M

i = p + 1
li 6 1M - p2s2. (E.85)

This is an interesting result (Scharf & Tufts, 1987). It states that if the tail-end eigenvalues 
lp + 1, c, lM of the correlation matrix of the data vector u(n) are all very small, the 
mean-square error produced by transmitting a low-rank approximation to the original 
data vector [as in Fig. E.3(b)] is less than the mean-square error produced by transmit-
ting the original data vector without any approximation [as in Fig. E.3(a)].
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The result described in Eq. (E.84) is particularly important in that it highlights the 
essence of what is commonly referred to as the “bias-variance trade-off.” Specifically, 
a low-rank model is used for representing the data vector u(n), thereby incurring a 
bias. Interestingly enough, this is done knowingly, in return for a reduction in variance, 
namely, the part of the mean-square error due to the additive noise vector N(n). Indeed, 
the example described herein clearly illustrates the motivation for using a parsimonious 
(i.e., simpler) model that may not exactly match the underlying physics responsible for 
generating the data vector u(n), hence the bias, but the model is less susceptible to noise, 
hence a reduction in variance.

E.4 EigEnfilTErS

A fundamental issue in communication theory is that of determining an optimum FIR 
filter, with the optimization criterion being that of maximizing the output signal-to-noise 
ratio. In this section, we show that this filter optimization is linked to an eigenvalue 
problem.

Consider an FIR filter whose impulse response is denoted by the sequence wn. 
The sequence x(n) applied to the filter input consists of a useful signal component u(n), 
plus an additive noise component n(n). The signal u(n) is drawn from a wide-sense sta-
tionary stochastic process of zero mean and correlation matrix R. The zero-mean noise 
n(n) is white with a constant power spectral density determined by the variance s2. It is 
assumed that the signal u(n) and the noise n(n) are uncorrelated; that is,

𝔼3u1n2n*1m24 = 0   for all 1n, m2.

The filter output is denoted by y(n). The situation described herein is depicted in Fig. E.4.
Since the filter is linear, the principle of superposition applies. We may therefore 

consider the effects of signal and noise separately. Let Po denote the average power of 
the signal component of the filter output y(n). We may thus write:

 Po = wHRw, (E.86)

where the elements of the vector w are the filter coefficients and R is the correlation 
matrix of the signal component u(n) in the filter input x(n).

FigurE E.4 FIR filtering.
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Consider next the effect of noise acting alone. Let No denote the average power of 
the noise component in the filter output y(n). This is a special case of Eq. (E.86), given by

 No = s2wHw, (E.87)

where s2 is the variance of the white noise in the filter input x(n).
Let (SNR)o denote the output signal-to-noise ratio. Dividing Eq. (E.86) by (E.87), 

we may write

  1SNR2o =
Po

No
 

  =
wHRw
s2wHw

. (E.88)

The optimization problem may now be stated as follows:

Determine the coefficient vector w of an FIR filter so as to maximize the (SNR)o 
subject to the constraint wHw = 1.

Equation (E.88) shows that, except for the scaling factor 1/s2, the (SNR)o is equal 
to the Rayleigh quotient of the coefficient vector w of the FIR filter. We see therefore 
that the optimum-filtering problem, as stated herein, may be viewed as an eigenvalue 
problem. Indeed, the solution to the problem follows directly from the minimax theo-
rem. Specifically, using the special form of the minimax theorem given in Eq. (E.64), we 
may state the following:

	 •	 The maximum value of the output signal-to-noise ratio is given by

 1SNR2o, max =
lmax

s2 , (E.89)

  where lmax is the largest eigenvalue of the correlation matrix R. (Note that lmax 
and s2 have the same units but different physical interpretations.)

	 •	 The coefficient vector of the optimum FIR filter that yields the maximum output 
signal-to-noise ratio of Eq. (E.89) is defined by

 wo = qmax, (E.90)

  where qmax is the eigenvector associated with the largest eigenvalue lmax of the 
correlation matrix R. The correlation matrix R belongs to the signal component 
u(n) in the filter input as indicated previously.

An FIR filter whose impulse response has coefficients equal to the elements of 
an eigenvector is called an eigenfilter (Makhoul, 1981). Accordingly, we may state that 
the maximum eigenfilter (i.e., the eigenfilter associated with the largest eigenvalue of the 
correlation matrix of the signal component in the filter input) is the optimum filter. It is 
important to note that the optimum filter described in this way is uniquely character-
ized by an eigendecomposition of the correlation matrix of the signal component in the 
filter input. The power spectrum of the white noise at the filter input merely affects the 
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maximum value of the (SNR)o. In particular, to compute the maximum eigenfilter, we 
may proceed as follows:

 1. An eigendecomposition of the correlation matrix R is performed.
 2. Only the largest eigenvalue lmax and the associated eigenvector qmax are retained.
 3. The eigenvector qmax defines the impulse response of the optimum filter. The 

eigenvalue lmax, divided by the noise variance s2, defines the maximum value of 
the (SNR)o.

The optimum filter so characterized may be viewed as the stochastic counterpart 
of a matched filter. The optimum filter just described maximizes the (SNR)o for a ran-
dom signal (i.e., a sample function of a discrete-time wide-sense stationary stochastic 
process) in additive white noise. A matched filter, on the other hand, maximizes (SNR)o  
for a known signal in additive white noise (North, 1963; Haykin, 2001).

E.5 EigEnvaluE ComPuTaTionS

The origin of almost all canned eigenroutines may be traced back to routines pub-
lished in Volume II, Linear Algebra, of the Handbook for Automatic Computation, 
coedited by Wilkinson and Reinsch (1971). This reference is the bible of eigenvalue 
computations.4

Some eigenroutines, for example, those written in C, can handle only real matrices. 
It is, however, a straightforward matter to extend the use of such eigenroutines to deal 
with Hermitian matrices. To this end, let A denote an M-by-M Hermitian matrix, written 
in terms of its real and imaginary parts as follows:

 A = Ar + jAi. (E.91)

Correspondingly, let an associated M-by-1 eigenvector q be written as

 q = qr + jqi. (E.92)

The M-by-M complex eigenvalue problem

 1Ar + jAi21qr + jqi2 = l1qr + jqi2 (E.93)

may then be reformulated as the 2M-by-2M real eigenvalue problem:

 cAr -Ai

Ai Ar
d cqr

qi
d = l cqr

qi
d , (E.94)

where the eigenvalue l is a real number. The Hermitian property

 AH = A 

4For books on eigenvalue computations, the reader is referred to Cullum and Willoughby (1985), Saad 
(2011), Chaitlin-Chatellin and Ahues (1993), Golub and Van Loan (1996), Parlett (1998), and Press et al. (1988).
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is equivalent to AT
r = Ar and AT

i = - Ai. Accordingly, the 2M-by-2M matrix in  
Eq. (E.94) is not only real but also symmetric. Note, however, that for a given eigenvalue 
l, the vector

c -qi

qr
d

is also an eigenvector. This means that if l1, l2, c, lM are the eigenvalues of the 
M-by-M Hermitian matrix A, then the eigenvalues of the 2M-by-2M symmetric matrix 
of Eq. (E.94) are l1, l1, l2, l2, c, lM, lM. We may therefore make two observations:

 1. Each eigenvalue of the matrix in Eq. (E.94) has a multiplicity of two.
 2. The associated eigenvectors consist of pairs, each of the form qr + jqi and 

j1qr + jqi2, differing merely by a rotation through 90°.

Thus, to solve the M-by-M complex eigenvalue problem of Eq. (E.93) with the aid of real 
eigenroutines, we choose one eigenvalue and one eigenvector from each pair associated 
with the augmented 2M-by-2M real eigenvalue problem of Eq. (E.94).

Strategies for matrix Eigenvalue Computations

There are two different “strategies” behind practically all modern eigenroutines: diago-
nalization and triangularization. Since not all matrices can be diagonalized through a 
sequence of unitary similarity transformations, the diagonalization strategy applies only 
to Hermitian matrices, such as a correlation matrix. On the other hand, the triangular-
ization strategy is general, in that it applies to any square matrix. These two strategies 
are described next.

Diagonalization. The idea behind this strategy is to nudge a Hermitian matrix 
A toward a diagonal form by the repeated application of unitary similarity transforma-
tions, such as

  A S QH
1 AQ1  

  S QH
2 QH

1 AQ1Q2  (E.95)

  S QH
3 QH

2 QH
1 AQ1Q2Q3, 

and so on. This sequence of unitary similarity transformations is, in theory, infinitely 
long. In practice, however, it is continued until we are close to a diagonal matrix. The 
elements of the diagonal matrix so obtained define the eigenvalues of the original 
Hermitian matrix A. The associated eigenvectors are the column vectors of the accu-
mulated sequence of transformations, as shown by

 Q = Q1Q2Q3 c. (E.96)

One method for implementing the diagonalization strategy of Eq. (E.95) is to use 
Givens rotations. This method is discussed in Appendix G.

Triangularization. The idea behind this second strategy is to reduce a Hermitian 
matrix A to a triangular form by a sequence of unitary similarity transformations. The 
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resulting iterative procedure is called the QL algorithm.5 Suppose that we are given an 
M-by-M Hermitian matrix An, where the subscript n refers to a particular adaptation 
cycle in the iterative procedure. Let the matrix An be factored into the form

 An = QnLn, (E.97)

where Qn is a unitary matrix and Ln is a lower triangular matrix (i.e., the elements of the 
matrix Ln located above the main diagonal are all zero). At adaptation cycle n + 1 in the 
iterative procedure, we use the known matrices Qn and Ln to compute a new M-by-M matrix

 An + 1 = LnQn. (E.98)

Note that the factorization in Eq. (E.98) is written in the opposite order to that in  
Eq. (E.97). Since Qn is a unitary matrix, we have Q-1

n = QH
n , so we may rewrite  

Eq. (E.97) as

  Ln = Q-1
n An 

  = QH
n An. (E.99)

Therefore, substituting Eq. (E.99) into Eq. (E.98), we get

 An + 1 = QH
n AnQn. (E.100)

Equation (E.100) shows that the Hermitian matrix An + 1 at adaptation cycle n + 1 is 
indeed unitarily similar to the Hermitian matrix An at adaptation cycle n.

The QL algorithm thus consists of a sequence of unitary similarity transformations, 
summarized by writing

An = QnLn
and
 An + 1 = LnQn, 

where n = 0, 1, 2, c. The algorithm is initialized by setting

A0 = A,

where A is the given M-by-M Hermitian matrix.
For a general matrix A, the following theorem is the basis of the QL algorithm6:

If the matrix A has eigenvalues of different absolute values, then the matrix 
An approaches a lower triangular form as the number of adaptation cycles, n, 
approaches infinity.

The eigenvalues of the original matrix A appear on the main diagonal of the lower tri-
angular matrix resulting from the QL algorithm, in increasing order of absolute value.

To implement the factorization in Eq. (E.98), we may use Givens rotations. (See 
Appendix G, in which we discuss computations for the singular-value decomposition of 
a general matrix, which includes eigendecomposition as a special case.)

5The QL algorithm uses a lower triangular matrix. A companion algorithm, called the QR algorithm, 
uses an upper triangular matrix. The QR algorithm is not to be confused with the QR decomposition, which 
is discussed in Appendix G and used in Chapters 15 and 16.

6For a proof of this theorem, see Stoer and Bulirsch (1980). See also Stewart (1973) and Golub and Van 
Loan (1996) for an improved version of the QL algorithm.
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A p p e n d i x  F

Langevin equation of 
nonequilibrium Thermodynamics

F.1 BrowniAn MoTion

Brownian motion, named in honor of the English botanist Robert Brown, refers to the 
erratic motion of little particles of plant pollens that jiggle around on a water surface due to 
continuous bombardment by water molecules. The physical description of Brownian motion 
presented here follows Reif (1965). Brownian motion is sometimes referred to as a Wiener 
process, so named in honor of Norbert Wiener for a mathematical description of it (Kloeden 
and Platen, 1995).

Consider a microscopic particle of mass m immersed in a viscous fluid at absolute 
temperature T. Suppose that the direction of the gravitational field points along the z-axis, 
and let vx(t) denote the x component of the center-of-mass velocity of that particle, measured 
at time t. By symmetry, the ensemble-average mean value of vx1t2 must be zero, as shown by

 �3vx1t24 = 0  for all t. (F.1)

However, for an ensemble of such particles, velocity fluctuations occur in the 
course of time t, with the result that, in accordance with the equipartition law of classi-
cal statistical mechanics, the ensemble-average variance of the velocity vx1t2 is inversely 
proportional to the mass m, as shown by

 �3v2
x1t24 =

kBt
m
 for all t, (F.2)

where kB is Baltzmann’s constant. Thus, when the particle is little, fluctuations in the 
velocity vx1t2 are large, which is  intuitively satisfying. Equations (F.l) and (F.2), viewed 
together, describe a random walk.

For a formal definition of Brownian motion, we may therefore make the statement:

Brownian motion is a random walk that is Gaussian distributed.

F.2 LAngevin equATion

With this brief description of Brownian motion at hand, we are now ready to formulate 
the Langevin equation. To proceed with the formulation, we first recognize that the 
total force exerted on the particle by the molecules in the viscous fluid is made up of 
two components (Reif, 1965):

 1. A continuous damping force, which is equal to –avx1t2, in accordance with Stoke’s 
law in fluid mechanics, where the constant a denotes the coefficient of friction.
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826   Appendix F  Langevin Equation of Nonequilibrium Thermodynamics

 2. A fluctuating force, denoted by Ff 1t2, which is stochastic in nature; in statistical 
terms, the properties of Ff 1t2 are specified on the average.

In the absence of any external force, the equation of motion of the particle is therefore 
defined by the sum of the damping and fluctuating forces:

m
dvx1t2

dt
= -avx1t2 + Ff1t2.

Dividing both sides of the equation by the mass m, we may equivalently write

 
dvx1t2

dt
= -gvx1t2 + Γ1t2, (F.3)

where

g =
a

m

denotes the normalized coefficient of friction and

Γ1t2 =
Ff 1t2

m

denotes a stochastic (fluctuating) force exerted on the particle, normalized with respect 
to the particle’s mass m.

The stochastic differential equation (F.3) is called the Langevin equation; cor-
respondingly, Γ1t2 is called the Langevin force, which is assumed to have a Gaussian 
distribution. In physical terms, the Langevin equation describes the stochastic motion 
of a little particle in a viscous fluid if its initial conditions are specified. It is important 
because it was the first mathematical equation describing nonequilibrium thermodynam-
ics (Langevin, 1908; Uhlenbeck & Ornstein, 1930; Reif, 1965).

It is the nonequilibrium characteristic that makes the Langevin equation befitting 
for the study of least-mean-square (LMS) learning theory, recognizing that the LMS 
algorithm is itself a nonlinear example of the method of stochastic gradients. The ratio-
nale for saying so is that when the LMS algorithm ultimately approaches the neighbor-
hood of the Wiener solution, it performs a Brownian-like motion, as illustrated by the 
computer experiments described in Sections 6.7 and 6.8 of Chapter 6.
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A p p e n d i x  G

Rotations and Reflections

In Chapter 9, we emphasized the importance of singular-value decomposition (SVD) 
as a tool for solving the linear least-squares problem. In this appendix, we discuss the 
practical issue of how to compute the SVD of a data matrix. With numerical stability as a 
primary design objective, the recommended procedure for SVD computation is to work 
directly with the data matrix. In this context, we may mention two different algorithms 
for computing the SVD:

	 •	 The QR algorithm, which proceeds by using a sequence of planar reflections 
known as Householder transformations.

	 •	 The cyclic Jacobi algorithm, which employs a sequence of 2-by-2 plane rotations 
known as Jacobi rotations or Givens rotations.

The cyclic Jacobi algorithm and the QR algorithm are both data adaptive and block-
processing oriented. They share a common goal, albeit in different ways:

The diagonalization of the data matrix in a step-by-step fashion, to within some 
prescribed numerical precision.

It is important to note that plane rotations and reflections are wide ranging in their 
applications. In particular, they play a key role in the design of square-root Kalman fil-
ters and related linear adaptive filters. We therefore have reason in some chapters of the 
book to refer to some of the fundamental concepts presented in this appendix. However, 
the main focus of attention in this appendix is on numerically stable algorithms for SVD 
computation, using rotations and reflections. We begin the discussion by considering 
plane rotations; planar reflections are examined later.

G.1 plAne RotAtions

An algebraic tool that is fundamental to the cyclic Jacobi algorithm is the 2-by-2 ortho-
gonal, but nonsymmetric, matrix

 𝚯 = c c s
-s c

d , (G.1)

where the cosine rotation parameter

 c = cos u (G.2)
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and the sine rotation parameter

 s = sin u (G.3)

are real parameters and where the matrix has the trigonometric constraint

 c2 + s2 = 1. (G.4)

[In SVD terminology (and eigenanalysis, for that matter), the term “orthogonal matrix” 
is used in the context of real data, whereas the term “unitary matrix” is used for complex 
data.] We refer to the transformation 𝚯 as a plane rotation, because multiplication of a 
2-by-1 data vector by 𝚯 amounts to a plane rotation of that vector. This property holds 
whether the data vector is premultiplied or postmultiplied by 𝚯.

The transformation of Eq. (G.1) is referred to as the Jacobi rotation in honor of 
Jacobi (1846), who proposed a method for reducing a symmetric matrix to diagonal 
form. Equation (G.1) is also referred to as the Givens rotation. In this book we will use 
the latter terminology, or simply “plane rotation.”

To illustrate the nature of this plane rotation, consider the case of a real 2-by-1 
vector:

 a = c ai

ak
d . 

Premultiplication of the vector a by 𝚯 yields

 x = 𝚯a

 = c c s
-s c

d c ai

ak
d

 = c cai + sak

-sai + cak
d .

We may readily show, in view of the definitions of the rotation parameters c and s, that 
the vector x has the same Euclidean length as the vector a. Moreover, given that the 
angle u is positive, the transformation 𝚯 rotates the vector a in a clockwise direction 
into the new position defined by x, as illustrated in Fig. G.1. Note that the vectors a and 
x remain in the same (i, k) plane—hence the name “plane rotation.”

FiGuRe G.1 Plane rotation of a real 2-by-1 vector.

Z08_HAYK4083_05_SE_APP7.indd   828 21/06/13   9:27 AM



Section G.2 Two-Sided Jacobi Algorithm   829

G.2 two-sided JAcobi AlGoRithm

To pave the way for a development of the cyclic Jacobi algorithm, consider the simple 
case of a real 2-by-2 data matrix:

 A = c aii aik

aki akk
d . (G.5)

We assume that A is nonsymmetric; that is, aki Z aik. The requirement is to diagonalize 
this matrix. We do so by means of two plane rotations 𝚯1 and 𝚯2, given by

 c c1 s1

-s1 c1
d

T

c aii aik

aki akk
d c c2 s2

-s2 c2
d = cd1 0

0 d2
d . (G.6)

 (+)+* (+)+* (+)+* (1)1*
 𝚯1 A  𝚯2  diagonal matrix

To design the two plane rotations indicated in Eq. (G.6), we proceed in two stages.  
Stage 1 transforms the data matrix A into a symmetric matrix; we refer to this stage as 
“symmetrization.” Stage 2 diagonalizes the symmetric matrix resulting from stage 1;  
we refer to this second stage as “diagonalization.” Of course, if the data matrix is 
 symmetric to begin with, we proceed to stage 2 directly.

Stage 1: Symmetrization. To transform the 2-by-2 data matrix A into a sym-
metric matrix, we premultiply it by the transpose of a plane rotation 𝚯 and thus write

 c c s
-s c

d
T

c aii aik

aki akk
d = c yii yik

yki ykk
d . (G.7)

 (1)1* (+)+* (+)+*
 𝚯T A Y 

Expanding the left-hand side of Eq. (G.7) and equating terms, we get

  yii = caii - saki,  (G.8)

  ykk = saik + cakk, (G.9)

  yik = caik - sakk, (G.10)

and

  yki = saii + caki.  (G.11)

The purpose of stage 1 is to compute the cosine–sine rotation pair (c, s) such that the 
2-by-2 matrix Y produced by the plane rotation 𝚯 is symmetric. In other words, the ele-
ments yik and yki are required to equal each other.

We define a parameter r as the ratio of c to s; that is,

 r =
c
s
. (G.12)

We may relate r to the elements of the data matrix by setting yik = yki. Thus, imposing 
this definition on Eqs. (G.10) and (G.11), we obtain

 r =
aii + akk

aik - aki
,     aki ≠ aik. (G.13)
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Next, we determine the value of s by eliminating c between Eqs. (G.4) and (G.12); hence,

 s =
sgn1r221 + r2

. (G.14)

The computation of c and s thus proceeds as follows:

	 •	 Use Eq. (G.13) to evaluate r.
	 •	 Use Eq. (G.14) to evaluate the sine parameter s.
	 •	 Use Eq. (G.12) to evaluate the cosine parameter c.

If A is symmetric to begin with, then aki = aik, in which case we have s = 0 and c = 1; that 
is, stage 1 is bypassed.

Stage 2: Diagonalization. The purpose of stage 2 is to diagonalize the symmetric 
matrix Y produced in stage 1. To do so, we premultiply and postmultiply it by 𝚯T

2  and 
𝚯2, respectively, where 𝚯2 is a second plane rotation to be determined. This operation 
is simply an orthogonal similarity transformation applied to a symmetric matrix. We 
may thus write

 c c2 s2

-s2 c2
d

T

c yii yik

yki ykk
d c c2 s2

-s2 c2
d = cd1 0

0 d2
d , (G.15)

 (+)+* (+)+* (+)+* (1)1*
 𝚯T

2  Y 𝚯2 D 

where yik = yki. Expanding the left-hand side of Eq. (G.15) and then equating the 
respective diagonal terms, we get

 d1 = c2
2 yii - 2c2s2 yki + s2

2 ykk (G.16)

and

 d2 = s2
2 yii - 2c2s2 yki + s2

2 ykk. (G.17)

Now, let o1 and o2 denote the off-diagonal terms of the 2-by-2 matrix formed by carry-
ing out the matrix multiplications indicated on the left-hand side of Eq. (G.15). From 
symmetry considerations, we have

 o1 = o2. (G.18)

Evaluating these off-diagonal terms and equating them to zero for diagonalization, we get

 0 = 1yii - ykk2 - a s2

c2
byki + ac2

s2
byki. (G.19)

Equation (G.19) suggests that we introduce the following two definitions:

 t =
s2

c2
 (G.20)

and

 z =
ykk - yii

2yki
. (G.21)
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Accordingly, we may rewrite Eq. (G.19) as

 t2 + 2zt - 1 = 0. (G.22)

Equation (G.22) is quadratic in the parameter t; it therefore has two possible solutions, 
yielding the following different plane rotations:

 1. Inner rotation, for which we have the solution

 t =
sign1z2

∙ z∙ + 21 + z2
. (G.23)

  Having computed t, we may use Eqs. (G.4) and (G.20) to solve for c2 and s2, obtaining

 c2 =
121 + t2

 (G.24)

  and

 s2 = tc2. (G.25)

  We note from Eqs. (G.2), (G.3), and (G.20) that the rotation angle u2 is related 
to t by

 u2 = arctan 1t2. (G.26)

Hence, adoption of the solution given in Eq. (G.23) produces a plane rotation 𝚯2 
for which ∙ u2 ∙  lies in the interval 30, p>44; this rotation is therefore called an inner 
rotation. The computation proceeds as follows:

 (a) Use Eq. (G.21) to compute z.
 (b) Use Eq. (G.23) to compute t.
 (c) Use Eqs. (G.24) and (G.25) to compute c2 and s2, respectively.

If the original matrix A is diagonal, then aik = aki = 0, in which case the angle  
u2 = 0, so the matrix remains unchanged.

 2. Outer rotation, for which we have the solution

 t = -sign1z21 ∙ z∙ + 21 + z22 . (G.27)

Having computed t, we may then evaluate c2 and s2 using Eqs. (G.24) and (G.25), 
respectively; we may do so because the derivations of these two equations are 
independent of the quadratic equation (G.22). In this second case, however, 
the use of Eq. (G.27) in Eq. (G.26) yields a plane rotation for which ∙ u2∙ lies in  
the interval 3p>4, p>24. The rotation associated with the second solution is there-
fore referred to as an outer rotation. Note that if the original matrix A is diagonal, 
then aik = aki = 0, in which case u2 = p/2. In this special case, the diagonal elements 
of the matrix are simply interchanged, as shown by

 c0 -1
1 0

d caii 0
0 akk

d c 0 1
-1 0

d = cakk 0
0 aii

d . (G.28)
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Fusion of Rotations 𝚯 and 𝚯2

Substituting the matrix Y of Eq. (G.7) into Eq. (G.15) and comparing the resulting equa-
tion with Eq. (G.6), we deduce the following definition for 𝚯1 in terms of 𝚯 (determined 
in the symmetrization stage) and 𝚯2 (determined in the diagonalization stage):

 𝚯T
1 = 𝚯T

2 𝚯T.

Equivalently,

  𝚯1 = 𝚯𝚯2.  (G.29)

In other words, in terms of the cosine–sine rotation parameters, we have

 c c1 s1

-s1 c1
d = c c s

-s c
d c c2 s2

-s2 c2
d . (G.30)

 (+)+* (1)1* (+)+*
 𝚯1 𝚯 𝚯2 

Expanding and equating terms, we thus obtain

 c1 = cc2 - ss2 (G.31)

and

 s1 = sc2 + cs2. (G.32)

For real data, from Eqs. (G.31) and (G.32), we find that the angles u and u2, associated 
with the plane rotations 𝚯 and 𝚯2, respectively, add to produce the angle u1 associated 
with 𝚯1.

two special cases

For reasons that will become apparent later in Section G.3, the Jacobi algorithm for 
computing the SVD has to be capable of handling two special cases:

Case 1: akk = aik = 0. In this case, we need to perform only the symmetrization 
of A, as in

 c c1 s1

-s1 c1
d

T

c aii 0
aki 0

d c1 0
0 1

d = cd1 0
0 0

d . (G.33)

Case 2: akk = aki = 0. In this case, we have

 c1 0
0 1

d c aii aik

0 0
d c c2 s2

-s2 c2
d = cd1 0

0 0
d . (G.34)

Additional operations for complex data

The plane rotation described in Eq. (G.6) applies to real data only, because (to begin 
with) the cosine and sine parameters defining the rotation were all chosen to be real. 
To extend the application of this rotation to the more general case of complex data, we 
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have to perform additional operations on the data. At first sight, it may appear that we 
merely have to modify stage 1 (symmetrization) of the two-sided Jacobi algorithm so as 
to accommodate a complex 2-by-2 matrix. In reality, however, the issue of dealing with 
complex data (in the context of the Jacobi algorithm) is not so simple. The approach 
taken here is first to reduce the complex 2-by-2 data matrix of Eq. (G.5) to a real form 
and then proceed with the application of the two-sided Jacobi algorithm in the usual way. 
The complex-to-real data reduction is performed by following a two-stage procedure, 
described next.

Stage 1: Triangularization. Consider a complex 2-by-2 data matrix A having the 
form given in Eq. (G.5). Without loss of generality, we assume that the leading element 
aii is a positive real number. This assumption may be justified (if need be) by factoring 
out the exponential term ejuii, where uii is the phase angle of aii. The factorization has 
the effect of leaving inside the matrix a positive real term equal to the magnitude of aii 
and subtracting uii from the phase angle of each of the remaining three complex terms 
in the matrix.

Let the matrix A so described be premultiplied by a 2-by-2 plane rotation for the 
purpose of triangularization, as shown by

 c c s*
-s c

d c aii aik

aki akk
d = cvii vik

0 vkk
d . (G.35)

The cosine parameter c is real, as before, but the sine parameter s is now complex. To 
emphasize this point, we write

 s = ∙ s∙eja, (G.36)

where |s| is the magnitude of s and a is the phase angle of s. In addition, the (c, s) pair is 
required to satisfy the constraint

 c2 + ∙ s∙2 = 1. (G.37)

The objective is to choose the (c, s) pair so as to annihilate the kith (off-diagonal) 
term. To do this, we must satisfy the condition

-saii + caki = 0,

or, equivalently,

 s =
aki

aii
 c. (G.38)

Substituting Eq. (G.38) into Eq. (G.37) and solving for the cosine parameter, we get

 c =
∙ aii∙2 ∙ aii∙2 + ∙ aki∙2

. (G.39)

Note that, in Eq. (G.39), we have chosen to work with the positive real root for the cosine 
parameter c. Also, if aki is zero (i.e., the data matrix is upper triangular to begin with), 
then c = 1 and s = 0, in which case we may bypass stage 1. If, by the same token, aik is 
zero, we apply transposition and proceed to stage 2.
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Having determined the values of c and s needed for the triangularization of the 
2-by-2 matrix A, we may now determine the elements of the resulting upper triangular 
matrix shown on the right-hand side of Eq. (G.35) as follows:

 vii = caii + s*aki,  (G.40)
 vik = caik + s*akk,  (G.41)

and
 vkk = -saik + cakk, (G.42)

where the asterisk denotes complex conjugation. Given that aii is positive real by design, 
the use of Eqs. (G.38) and (G.39) in Eq. (G.40) reveals that the diagonal element vii is real 
and nonnegative; that is,
 vii Ú 0. (G.43)

In general, however, the remaining two elements vik and vkk of the upper triangular 
matrix on the right-hand side of Eq. (G.35) are complex valued.

Stage 2: Phase Cancellation. To reduce the complex elements vik and vkk to real 
form, we premultiply and postmultiply the upper triangular matrix on the right-hand 
side of Eq. (G.35) by a pair of phase-cancelling diagonal matrices as follows:

 c e
-jb 0
0 e-jg d c

vii vik

0 vkk
d c e

jb 0
0 1

d = cvii ∙vik ∙
0 ∙vkk ∙

d . (G.44)

The rotation angles b and g of the premultiplying matrix are chosen so as to cancel the 
phase angles of vik and vkk, respectively, as shown by

  b = arg1vik2  (G.45)

and
  g = arg1vkk2. (G.46)

The postmultiplying matrix is included so as to correct for the phase change in the ele-
ment vii produced by the premultiplying matrix. In other words, the combined process 
of premultiplication and postmultiplication in Eq. (G.44) leaves the diagonal element 
vii unchanged.

Stage 2 thus yields an upper triangular matrix whose three nonzero elements 
are all real and nonnegative. Note that the procedure for reducing the complex 2-by-2 
matrix A to a real upper triangular form requires four degrees of freedom, namely, the 
(c, s) pair and the angles b and g. The way is now paved for us to proceed with the appli-
cation of the Jacobi method for a real 2-by-2 matrix, as described earlier in the section.

properties of the Givens Rotation

We conclude the section by summarizing the properties of the Givens (plane) rotation

𝚯 = c c s*
-s c

d .

Property 1. The cosine parameter c is always real, but the sine parameter s is com-
plex valued when dealing with complex data.
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Property 2. The parameters c and s are always constrained by the trigonometric 
relation

c2 + ∙ s∙2 = 1.

Property 3. The Givens rotation is non-Hermitian; that is,

𝚯H ≠ 𝚯.

where the superscript H denotes Hermitian transposition (i.e., transposition combined 
with complex conjugation).

Property 4. The Givens rotation is unitary; that is,

𝚯-1 = 𝚯H.

Property 5.  The Givens rotation is length preserving; that is,

7𝚯x 7 = 7x 7 ,
where x is an arbitrary 2-by-2 vector.

G.3 cyclic JAcobi AlGoRithm

We are now ready to describe the cyclic Jacobi algorithm, or generalized Jacobi algo-
rithm, for a square data matrix by solving an appropriate sequence of 2-by-2 singular-
value decomposition problems. The description will be presented for real data. To deal 
with complex data, we incorporate the complex-to-real data reduction developed in the 
latter part of the preceding section.

Let 𝚯1 1i, k2 denote a plane rotation in the (i, k) plane, where k 7 i. The matrix 
𝚯1 1i, k2 is the same as the M-by-M identity matrix, except for the four strategic elements 
located on rows i, k and columns i, k:

 𝚯1 1i, k2 = G 1 0 g 0 g 0
f f f f f f
0 c1 g s1 g 0
f f f f f f
0 -s1 g c1 g 0
f f f f f f
0 0 g 0 g 1

W  
d  row i

 
d  row k

 (G.47)

 
c

column i
  

c
column k

 

Let 𝚯2 1i, k2 denote a second plane rotation in the (i, k) plane that is similarly defined; 
the dimension of this second transformation is also M. The Jacobi transformation of the 
data matrix A is thus described by

 Tik : A d 𝚯T
 1  1i, k2A𝚯2 1i, k2. (G.48)
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The Jacobi rotations 𝚯1 1i, k2 and 𝚯2 1i, k2 are designed to annihilate the (i, k) and 
(k, i) elements of A. Accordingly, the transformation Tik produces a matrix X (equal 
to the updated value of A) that is more diagonal than the original A, in the sense that

 off1X2 = off1A2 - a2
ik - a2

ki, (G.49)

where off(A) is the norm of the off-diagonal elements:

 off1A2 = a
M

i = 1
 a

M

k = 1
k ≠ 1

a2
ik     for A = 5aik6. (G.50)

In the cyclic Jacobi algorithm, the transformation of Eq. (G.48) is applied for a 
total of m = M(M - 1)/2 different index pairs (“pivots”) that are selected in some fixed 
order. Such a sequence of m transformations is called a sweep. The construction of a 
sweep may be cyclic by rows or cyclic by columns, as illustrated shortly in Example 1. In 
either case, we obtain a new matrix A after each sweep, for which we compute off(A). 
If, on the one hand, off(A) … d, where d is some small machine-dependent number, we 
stop the computation. If, on the other hand, off(A) 7 d, we repeat the computation. For 
typical values of d [e.g., d = 10-12 off(A0), where A0 is the original matrix], the algorithm 
converges in about 4 to 10 sweeps for values of M in the range of 4 to 2000.

As far as we know, the row ordering or the column ordering is the only ordering that 
guarantees convergence of the Jacobi cyclic algorithm.1 By “convergence,” we mean that

 off1A1k22 S 0    as k S ∞ , (G.51)

where A(k) is the M-by-M matrix computed after sweep number k.

exAmple 1

Consider a 4-by-4 real matrix A. With the matrix dimension M = 4, we have a total of six orderings 
in each sweep. A sweep of orderings cyclic by rows is represented by

TR = T34T24T23T14T13T12.

A sweep of orderings cyclic by columns is represented by

TC = T34T24T14T23T13T12.

It is easily checked that the transformations Tik and Tpq commute if two conditions hold:

 1. The index i is neither p nor q.
 2. The index k is neither p nor q.

Accordingly, we find that the transformations TR and TC are indeed equivalent, so they should be.

1A proof of the convergence of the Jacobi cyclic algorithm, based on row ordering or column ordering, 
is given in Forsythe and Henrici (1960). Subsequently, Luk and Park (1989) proved that many of the orderings 
used in a parallel implementation of the algorithm are equivalent to the row ordering and thus guarantee 
convergence as well.
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Consider next the application of the transformation TR (obtained from the sweep 
of orderings cyclic by rows) to the data matrix A. In particular, using the rotation of  
Eq. (G.48), we may write the transformations

 T12∶A d 𝚯T
 1  11, 22A𝚯2 11, 22,

 T13T12∶A d 𝚯T
3  11, 32𝚯T

1  11, 22A𝚯2 11, 22𝚯4 11, 32,

 T14T13T12∶A d 𝚯T
5  11, 42𝚯T

3  11, 32𝚯T
1  11, 22A𝚯2 11, 22𝚯4 11, 32𝚯6 11, 42,

and so on. The final step in this sequence of transformations may be written as

TR∶A d UTAV,

which defines the singular-value decomposition of the real data matrix A. The ortho-
gonal matrices U and V are respectively defined by

U = 𝚯1 11, 22𝚯3 11, 32𝚯5 11, 42𝚯7 12, 32𝚯9 12, 42𝚯11 13, 42
and

V = 𝚯2 11, 22𝚯4 11, 32𝚯6 11, 42𝚯8 12, 32𝚯10 12, 42𝚯12 13, 42.

Rectangular data matrix

Thus far, we have focused attention on the cyclic Jacobi algorithm for computing the 
singular-value decomposition of a square matrix. To handle the more general case of a 
rectangular matrix, we may extend the use of this algorithm by proceeding as follows: 
Consider first the case of a K-by-M real data matrix A for which K is greater than M. We 
generate a square matrix by appending K - M columns of zeros to A. We may thus write

 A∼ = 3A, O4. (G.52)

We refer to A∼ as the augmented data matrix. We then proceed as before by applying 
the cyclic Jacobi algorithm to the K-by-K matrix A∼. In performing this computation, 
we require the use of special case 1 described in Eq. (G.33). In any event, we emerge 
with the factorization

 UT3A, O4 cV O
O I

d = diag1s1, c, sM, 0, c, 02. (G.53)

The desired factorization of the original data matrix A is obtained by writing

 UTAV = diag1s1, c, sM2. (G.54)

If the dimension M of matrix A is greater than K, we augment the matrix by adding 
M - K rows of zeros, we may thus write

 A∼ = cA
O
d . (G.55)

We then treat the square matrix A∼ in a similar way as before. In this second situation, 
we require the use of special case 2 described in Eq. (G.34).
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In the case of a complex rectangular data matrix A, we may proceed in a fashion 
similar to that just described, except for a change in the characterization of matrices U 
and V. For a real data matrix, the matrices U and V are both orthogonal, whereas for a 
complex data matrix, they are both unitary.

The strategy of matrix augmentation described herein represents a straight-
forward extension of the cyclic Jacobi algorithm for a square matrix. A drawback of 
this approach, however, is that the algorithm becomes too inefficient if the dimension 
K of matrix A is much greater than the dimension M or vice versa.2

G.4 householdeR tRAnsFoRmAtion

We turn next to the Householder transformation, or the Householder matrix, which is 
so named in recognition of its originator (Householder, 1958a, b, 1964). To simplify the 
discussion, we consider a real M-by-1 vector whose Euclidean norm is

7u 7 = 1uTu21>2.

Then, the Householder transformation is defined by the M-by-M matrix

 Q = I -
2uuT

7u 7 2 , (G.56)

where I is the M-by-M identity matrix.
For a geometric interpretation of the Householder transformation, consider an 

M-by-1 vector x premultiplied by the matrix Q:

  Qx = aI -
2uuT

7u 7 2 bx 

  = x -
2uTx
7u 7 2  u.  

(G.57)

By definition, the projection of x onto u is given by

 Pu 1x2 =
uTx
7u 7 2 u. (G.58)

This projection is illustrated in Fig. G.2. In this figure, we have also included the vec-
tor representation of the product Qx. We see that Qx is the mirror-image reflection of 
the vector x with respect to the hyperplane span 5u6# , which is perpendicular to the 

2An alternative approach that overcomes this difficulty is to proceed as follows (Luk, 1986):

1. Triangularize the K-by-M data matrix A by performing a QR decomposition, defined by

A = Q cR
O
d ,

 where Q is a K-by-K orthogonal matrix and R is an M-by-M upper triangular matrix.

2. Diagonalize the matrix R using the cyclic Jacobi algorithm.

3. Combine the results of steps 1 and 2.
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vector u. It is for this reason that the Householder transformation is also known as the 
Householder reflection.3

The Householder transformation, defined in Eq. (G.56) for real-valued data, has 
the following properties:

Property 1. The Householder transformation is symmetric; that is,

 QT = Q. (G.59)

Property 2. The Householder transformation is orthogonal; that is,

 Q-1 = QT. (G.60)

Property 3. The Householder transformation is length preserving; that is,

 7Qx 7 = 7x 7 . (G.61)

Property 3 is illustrated in Fig. G.2, where we see that the vector x and its reflection Qx 
have exactly the same length.

Property 4. If two vectors undergo the same Householder transformation, their 
inner product remains unchanged.

Consider any three vectors x, y, and u. Let the Householder matrix Q be defined 
in terms of the vector u, as in Eq. (G.56). Let the remaining two vectors x and y be 
transformed by Q, yielding Qx and Qy, respectively. Then, the inner product of these 
two transformed vectors is
  1Qx2T

 1Qy2 = xTQTQy 

  = xTy,  
(G.62)

where we have made use of Property 2. Hence, the transformed vectors Qx and Qy have 
the same inner product as the original vectors x and y.

FiGuRe G.2 Geometric  
interpretation of the Householder 
transformation.

3For a tutorial review of the Householder transformation and its use in adaptive signal processing, see 
Steinhardt (1988).
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Property 4 has important practical implications in the numerical solution of linear 
least-squares problems. Specifically, Householder transformations are used to reduce 
the given data matrix to a sparse matrix (i.e., one that consists mostly of zeros) that is 
“equivalent” to the original data matrix in some mathematical sense. Needless to say, 
the particular form of matrix sparseness used depends on the application of interest. 
Whatever the application, however, the form of data reduction described here is used 
to simplify the numerical computations involved in solving the problem. In this context, 
a popular form of data reduction is triangularization, referring to the reduction of a 
full data matrix to an upper triangular one. Given this form of data reduction, we may 
simply use Gaussian elimination to perform the matrix inversion and thereby compute 
the least-squares solution to the problem.

Property 5. Given the Householder transformation Q, the transformed vector Qx 
is a reflection of x above the hyperplane perpendicular to the vector u involved in the 
definition of Q.

This property is merely a restatement of Eq. (G.57). The following two limiting 
cases of Property 5 are especially noteworthy:

 1. The vector x is a scalar multiple of u. In this case, Eq. (G.57) simplifies to

Qx = -x.

 2. The vector x is orthogonal to u; that is, the inner product of x and u is zero. In this 
second case, Eq. (G.57) reduces to

Qx = x.

Property 6. Let x be any nonzero M-by-1 vector with Euclidean norm 7x 7 . Let 
the M-by-1 vector 1 denote the first coordinate vector

 1 = 31, 0, c, 04T. (G.63)

Then, there exists a Householder transformation Q, defined by the vector

 u = x - 7x 71 (G.64)

such that the transformed vector Qx corresponding to u is a linear multiple of the vector 1.
With the vector u assigned the value in Eq. (G.64), we have

  7u 7 2 = uTu  

  = 1x - 7x 712T
 1x - 7x 712 

(G.65)
  = 2 7x 7 2 - 2 7x 7x1  

  = 2 7x 7 1 7x 7 - x12,  

where x1 is the first element of the vector x. Similarly, we may write

  uTx = 1x - 7x 712T
 x  

  = 7x 7 2 - 7x 7x1  (G.66)

  = 7x 7 1 7x 7 - x12. 
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Accordingly, substituting Eqs. (G.65) and (G.66) into Eq. (G.57), we find that the 
 transformed vector Qx corresponding to the defining vector u of Eq. (G.64) is given by

  Qx = x - u  

  = x - 1x - 7x 712 (G.67)

  = 7x 71,  

which establishes Property 6 described in Eq. (G.64).
From Eq. (G.65), we observe that the Euclidean norm of x has to satisfy the 

condition

 7x 7 7 ∙ x1 ∙ . (G.68)

This condition merely says that not only the first element of x but also at least one 
other element must be nonzero. Then, the vector u defined by Eq. (G.64) is indeed 
effective.

Property 6 makes the Householder transformation a very powerful computational 
tool. Given a vector x, we may use Eq. (G.64) to define the vector u such that the cor-
responding Householder transformation Q annihilates all the M elements of the vector 
x, except for the first one. This result is equivalent to the application of M - 1 plane rota-
tions, with a minor difference: The determinant of the Householder matrix Q defined 
in Eq. (G.56) is

  det1Q2 = det aI -
2uuT

7u 7 2 b  

  = -1.  

(G.69)

Hence, the Householder transformation reverses the orientation of the configuration.
Note that it is through Properties 1, 5, and 6 that the Householder transformation 

distinguishes itself from the Givens rotation. The basic differences between these two 
unitary transformations are illustrated by comparing Fig. G.1 with Fig. G.2.

G.5 the QR AlGoRithm

The starting point in the development of the QR algorithm for computating the SVD is 
that of finding a class of orthogonal matrices that preserve the singular values of a data 
matrix A. In this context, assuming real-valued data, the matrix A is said to be orthogo-
nally equivalent to another matrix B if

 B = PAQ, (G.70)

where P and Q are orthogonal matrices; that is,

PTP = I

and

QTQ = I.
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Consequently,

  BTB = QTATPTPAQ 

  = QTATAQ.  
(G.71)

Postmultiplying the correlation matrix ATA by an orthogonal matrix Q and premulti-
plying it by the transpose of the matrix Q leaves the eigenvalues of ATA unchanged. 
Accordingly, the correlation matrices ATA and BTB, or, more simply, the matrices A and 
B themselves, are said to be eigenequivalent.

The purpose of using the transformation defined in Eq. (G.70) is to reduce the 
data matrix A to upper bidiagonal form, with eigenequivalence maintained, for which 
Householder transformations are well suited. The reduced data matrix B is said to be 
upper bidiagonal if all of its elements, except those on the main diagonal and the super-
diagonal, are zero; that is, the ijth element of B is

 bij = 0     whenever   i 7 j or j 7 i + 1. (G.72)

With the data matrix A reduced to upper bidiagonal form, the next step is to apply 
Householder bidiagonalization, as described next.

householder bidiagonalization

Consider a K-by-M data matrix A, where K Ú M. Let Q1, Q2, c, QM denote a set of 
K-by-K Householder matrices, and let P1, P2, c, PM - 2 denote another set of M-by-M 
Householder matrices. To reduce the data matrix A to upper bidiagonal form, we deter-
mine the products of Householder matrices

 QB = eQ1 Q2 c QM - 1, K = M
Q1 Q2 c QM, K 7 M

 (G.73)

and

 PB = P1 P2 c PM - 2 (G.74)

such that

 QT
BAPB = B = Ed1 f2 O

d2 f
f fM

O dM

O

U  
 
 
 

61K - M2@by@M null matrix.

 (G.75)

For K 7 M, premultiplication of the data matrix A by the Householder matrices 
Q1, Q2, c, QM corresponds to reflecting the respective columns of A, whereas 
 postmultiplication by the Householder matrices P1, P2, c, PM - 2 corresponds to reflect-
ing the respective rows of A. The desired upper bidiagonal form is attained by “ping- 
ponging” column and row reflections. Note that for K 7 M, the number of House holder 
matrices constituting QB is M, whereas those constituting PB number M - 2. Note also 
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that, by construction, the matrix product P1, P2,  c, PM - 2 does not alter the first column 
of any matrix that it postmultiplies.

We illustrate this idea of data reduction by way of an example.

exAmple 2 

Consider a 5-by-4 data matrix A written in expanded form as

A = Ex x x x
x x x x
x x x x
x x x x
x x x x

U ,

where the x’s denote nonzero matrix entries. The upper bidiagonalization of A proceeds as follows: 
First, Q1 is chosen so that QT

1 A has zeros in the positions shown:E x x x x
z x x x
z x x x
z x x x
z x x x

U .

Thus,

 QT
1 A = Ex x z z

0 x x x
0 x x x
0 x x x
0 x x x

U . (G.76)

Next, P1 is chosen so that QT
1 AP1 has zeros in the positions distinguished in the first row of QT

1 A, 
as in Eq. (G.76). Hence,

 QT
1 AP1 = Ex x 0 0

0 x x x
0 x x x
0 x x x
0 x x x

U . (G.77)

Note that P1 does not affect the first column of the matrix QT
1 A.

The data reduction is continued by operating on the trailing 4-by-3 submatrix of QTAP1 
that has nonzero entries. Specifically, we choose Q2 and P2 such that

 QT
2 QT

1 AP1P2 = Ex x 0 0
0 x x 0
0 0 x x
0 0 x x
0 0 x x

U . (G.78)

Next, we operate on the trailing 3-by-2 submatrix of QT
2 QT

1 AP1P2 that has nonzero entries. 

Z08_HAYK4083_05_SE_APP7.indd   843 21/06/13   9:27 AM



844   Appendix G  Rotations and Reflections

Specifically, we choose Q3 such that

 QT
3 QT

2 QT
1 AP1 P2 = Ex x 0 0

0 x x 0
0 0 x x
0 0 0 x
0 0 0 x

U . (G.79)

Finally, we choose Q4 to operate on the trailing 2-by-1 submatrix of QT
3 QT

2 QT
1 AP1 P2 such that 

we may write

 B = QT
4 QT

3 QT
2 QT

1 AP1 P2 = Ex x 0 0
0 x x 0
0 0 x x
0 0 0 x
0 0 0 0

U . (G.80)

This completes the upper bidiagonalization of the data matrix A.

the Golub–Kahan step

The bidiagonalization of the data matrix A is followed by an iterative process that 
reduces the matrix further to diagonal form. Referring to Eq. (G.75), we see that the 
matrix B resulting from the bidiagonalization of A is zero below the Mth row. Evidently, 
the last K - M rows of zeros in the matrix B do not contribute to the singular values of 
the original data matrix A. Accordingly, it is convenient to delete the last K - M rows of 
matrix B and thus treat it as a square matrix with dimension M. The basis of the diago-
nalization of matrix B is the Golub–Kahan algorithm (Golub & Kahan, 1965), which 
is an adaptation of the QR algorithm developed originally for solving the symmetric 
eigenvalue problem.4

Let B denote an M-by-M upper bidiagonal matrix having no zeros on its main 
diagonal or superdiagonal. The first adaptation cycle of the Golub–Kahan algorithm 
proceeds as follows (Golub & Kahan, 1965; Golub & Van Loan, 1996):

 1. Identify the trailing 2-by-2 submatrix of the product T = BHB, which has the form

 cd
2
M - 1 + f 2

M - 1 dM - 1fM

fMdM - 1 d2
M + f 2

M
d , (G.81)

  where dM-1 and dM are the trailing diagonal elements of matrix B and fM-1 and fM 
are the trailing superdiagonal elements. [See the right-hand side of Eq. (G.75).] 
Let l be the eigenvalue of this submatrix that is closer to d2

M + f 2
M; this particular 

eigenvalue l is known as the Wilkinson shift.
 2. Compute the Givens rotation parameters c1 and s1 such that

 c c1 s1

-s1 c1
d

T

cd
2
 1 - l

f2d1
d = c☆

0
d , (G.82)

4The explicit form of the QR algorithm is a variant of the QL algorithm discussed in Appendix E.
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  where d1 and f2 are, respectively, the leading main diagonal and superdiagonal 
elements of matrix B. [See again the right-hand side of Eq. (G.75).] The element 
marked ☆ on the right-hand side of Eq. (G.82) indicates a nonzero element. Set

 𝚯T
1 = C c1 s1 

O-s1 c1 
O  I

S . (G.83)

 3. Apply the Givens rotation 𝚯1 to matrix B directly. Since B is upper bidiagonal and 
𝚯1 is a rotation in the (2, 1)-plane, it follows that the matrix product B𝚯1 has the 
form (illustrated for the case of M = 4)

B𝚯1 = D x x 0 0
z112 x x 0
0 0 x x
0 0 0 x

T ,

  where z(1) is a new element produced by the Givens rotation 𝚯1.
 4. Determine the sequence of Givens rotations U1, V2, U2, c, VM - 1, and UM - 1 oper-

ating on B𝚯1 in a “ping-pong” fashion so as to chase the unwanted nonzero element 
z(1) down the bidiagonal. This sequence of operations is illustrated, again for the case 
of M = 4, as follows:

UT
1 B𝚯1 = Dx x z122 0

0 x x 0
0 0 x x
0 0 0 x

T ;

UT
1 B𝚯1V2 = Dx x 0 0

0 x x 0
0 z132 x x
0 0 0 x

T ;

UT
2 UT

1 B𝚯1 V2 = Dx x 0 0
0 x x z142

0 0 x x
0 0 0 x

T ;

UT
2 UT

1 B𝚯1V2V3 = Dx x 0 0
0 x x 0
0 0 x x
0 0 z152 x

T ;

UT
3 UT

2 UT
1 B𝚯1 V2V3 = Dx x 0 0

0 x x 0
0 0 x x
0 0 0 x

T .
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The adaptation cycle thus terminates with a new bidiagonal matrix B that is related to 
the original bidiagonal matrix B by

 B d 1UT
M - 1 c UT

2 UT
12B1𝚯1 V2 c VM - 12 = UTBV, (G.84)

where
 U = U1U2 c UM - 1 (G.85)

and
 V = 𝚯1V2 c VM - 1. (G.86)

Steps 1 through 4 constitute one adaptation cycle of the Golub–Kahan algorithm. 
Typically, after a few adaptation cycles, the superdiagonal entry fM becomes negligible. 
When fM becomes sufficiently small, we can deflate the matrix and apply the algorithm to 
the smaller matrix. The criterion for the smallness of fM is usually of the following form:

∙ fM∙ … e1 ∙ dM - 1∙ + ∙dM∙2  where e is a small multiple of the machine precision. (G.87)

The description just presented leaves much unsaid about the Golub–Kahan algo-
rithm for the diagonalization of a square data matrix. For a more detailed treatment of 
the algorithm, the reader is referred to the original paper of Golub and Kahan (1965) 
or the book by Golub and Van Loan (1996).

There is a significant improvement to be had in the Golub–Kahan algorithm. The 
algorithm has the property that it computes every singular value of a bidiagonal matrix 
B with an absolute error bound of about e 7B 7 , where e is the machine precision. Thus, 
large singular values (those near ||B||) are computed with high relative accuracy, but small 
ones (those near e ||B|| or smaller) may be relatively inaccurate. The improved version of 
the algorithm computes every singular value to high relative accuracy, independently of 
its size. It also computes the singular vectors much more accurately. Approximately as 
fast as the old algorithm (and occasionally much faster), the new algorithm is a hybrid 
of the Golub–Kahan algorithm and a simplified version that corresponds to taking l = 0 
in Eq. (G.82). When l = 0, the remainder of the algorithm can be stabilized so as to 
compute every matrix entry to high relative accuracy, whence the final accuracy of the 
singular values. [Analyses of this algorithm can be found in Demmel and Kahan (1990) 
and Deift et al. (1989).]

summary of the QR Algorithm

The QR algorithm not only is mathematically elegant but also is a computationally 
powe rful and highly versatile algorithm for SVD computation. Given a K-by-M data 
matrix A, the QR algorithm used to compute the SVD of A proceeds as follows:

 1. Compute a sequence of Householder transformations that reduce the matrix A to 
upper bidiagonal form.

 2. Apply the Golub–Kahan algorithm to the M-by-M nonzero submatrix resulting 
from step 1, and iterate this application until the superdiagonal elements become 
negligible in accordance with the criterion defined in Eq. (G.87).

 3. Determine the SVD of the data matrix A as follows:
	 •	 The diagonal elements of the matrix resulting from step 2 are the singular values 

of matrix A.
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	 •	 The product of the Householder transformations of step 1 and the Givens rota-
tions of step 2 involved in premultiplication defines the left singular vectors of 
A. The product of the Householder transformations and the Givens rotations 
involved in postmultiplication defines the right-singular vectors of A.

exAmple 3 

Consider the real-valued bidiagonal matrix

B = C1 1 0
0 2 1
0 0 3

S .

Iteratively applying the Golub–Kahan algorithm to this matrix yields the sequence of results 
shown in Table G.1 for e = 10-4 in the stopping rule defined in Eq. (G.87). After two adaptation 
cycles of the algorithm, the (2, 3)-entry of the matrix B becomes small, at which point it is deflated. 
Accordingly, we now work on the 2-by-2 leading principal submatrix:

c 0.8817 0.4323
0.0000 2.0791

d .

This submatrix is finally diagonalized in one step, yielding

c 0.8596 0.0000
0.0000 2.1326

d .
The singular values of the bidiagonal matrix are thus computed to be

 s1 = 0.8596,
 s2 = 2.1326,

and
 s3 = 3.2731.

The validity of this computation may be checked by comparing the trace of the matrix product BBT 

with the sum of its eigenvalues, namely, a
3

i = 1
s2

i , which is left as an exercise for the reader.

TAble G.1 First Two Adaptation Cycles of the Golub–Kahan  
Algorithm

Adaptation cycle number Matrix B

0 1.0000
0.0000
0.0000

1.0000
2.0000
0.0000

0.0000
1.0000
3.0000

1 0.9155
0.0000
0.0000

0.6627
2.0024
0.0000

0.0000
0.0021
3.2731

2 0.8817
0.0000
0.0000

0.4323
2.0791
0.0000

0.0000
0.0000
3.2731
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The Wishart distribution plays an important role in statistical signal processing. In this 
appendix, we present a summary of some important properties of the distribution for 
complex-valued data. In particular, we derive a result that is pivotal to analyzing the con-
vergence behavior of the traditional recursive least-squares (RLS) algorithm, presented 
in Problem 7 of Chapter 10. We begin the discussion with a definition of the complex 
Wishart distribution.

H.1 Definition

Consider an M-by-M time-average (sample) correlation matrix

 𝚽1n2 = a
n

i = 1
u1i2uH

 1i2, (H.1)

where the superscript H denotes Hermitan transposition (i.e., transposition combined 
with complex conjugation) and

u1i2 = 3u11i2, u21i2, c, uM1i24T,

where the superscript T denotes transposition. In what follows, we assume that u(1), 
u(2), c, u(n) (n 7 M) are independently and identically distributed (i.i.d.). We may then 
formally define the complex Wishart distribution as follows (Muirhead, 1982):

If 5u1 1i2, u2 1i2, c, uM 1i2 ∙ i = 1, 2, c, n6, n Ú M, is a sample from the 
M-dimensional Gaussian distribution N (0, R), and if 𝚽(n) is the time-average 
correlation matrix defined in Eq. (H.1), then the elements of 𝚽(n) have the com-
plex Wishart distribution wM(n, R), which is characterized by the parameters M, 
n, and R.

In specific terms, we may say that if matrix 𝚽 is wM(n, R), then the probability 
density function of 𝚽 is

 f1𝚽2 =
1

2Mn>2ΓM a1
2

 nb1det1R22n>2
 etr a-  

1
2

 R-1𝚽 b1det1𝚽221n - M - 12>2
 , (H.2)

A p p e n D i x  H

Complex Wishart Distribution
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where det denotes the determinant of the matrix in question, etr denotes the exponen-
tial raised to the trace of the pertinent matrix, and ΓM(a) is the multivariate gamma 
function defined by

 ΓM 1a2 = L
 

A
etr1-A21det1A22a - 1M + 12>2dA, (H.3)

where A is a positive definite matrix.

H.2 tHe CHi-SquAre DiStribution AS A SpeCiAl CASe

For the special case of a univariate distribution (i.e., M = 1), Eq. (H.1) reduces to the 
scalar form

 w1n2 = a
n

i = 1
∙ u1i2∙2. (H.4)

Correspondingly, the correlation matrix R of u(n) reduces to the variance s2. Let

 x2
 1n2 =

w1n2
s2 . (H.5)

Then, using Eq. (H.2), we may define the normalized probability density function of the 
normalized random variable x2(n) as

 f1x22 =
ax

2

2
b

n>2 - 1

e-x2>2

2n>2Γ a1
2

 nb
, (H.6)

where Γ(1/2n) is the (scalar) gamma function.1 The variable x2(n) is said to have a 
 chi-square distribution with n degrees of freedom. We may thus view the complex Wishart 
distribution as a generalization of the univariate chi-square distribution.

1For the general case of a complex number g whose real part is positive, the gamma function Γ(g) is 
defined by the definite integral (Wilks, 1962)

Γ1g2 = L
∞

0
xg - 1 e-x dx.

Integrating by parts, we readily find that

Γ1g2 = 1g - 12Γ1g - 12.

For the case when g is a positive integer, we may express the gamma function as the factorial

Γ1g2 = 1g - 12!.
For the case of g 7 0, but not an integer, we have

Γ1g2 = 1g - 12Γ1d2,

where 0 6 d 6 1.

For the particular case of d = 1/2, we have Γ1d21p.
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A useful property of a chi-square distribution with n degrees of freedom is that 
it is reproductive with respect to 1/2n (Wilks, 1962). That is, the rth moment of x2(n) is

 𝔼3x2r
 1n24 =

2r
 Γ an

2
+ rb

Γ an
2
b

. (H.7)

Thus, the mean, the mean square, and the variance of x2(n) are, respectively, as follows:

  𝔼3x21n24 = n;  (H.8)

  𝔼3x4
 1n24 = n1n + 22;  (H.9)

  var3x2
 1n24 = n1n + 22 - n2 = 2n. (H.10)

Moreover, putting r = -1 in Eq. (H.7), we find that the mean of the reciprocal of x2(n) is

  𝔼 c 1
x2

 1n2 d =
1
2

 
Γ an

2
- 1b

Γ an
2
b

 

  =
1
2
 

Γ an
2

- 1b

an
2

- 1bΓ an
2

- 1b
=

1
n - 2

. 

(H.11)

H.3 propertieS of tHe Complex WiSHArt DiStribution

The complex Wishart distribution has the following important properties (Muirhead, 
1982; Anderson, 1984):

 1. If 𝚽 is wM(n, R) and a is any M-by-1 random vector distributed independently 
of 𝚽 with ℙ(a = 0) = 0 (i.e., the probability that a = 0 is zero), then aH𝚽a/aHRa is 
chi-square distributed with n degrees of freedom and is independent of a.

 2. If 𝚽 is wM(n, R) and Q is a matrix of dimensions M-by-k and rank k, then QH𝚽Q 
is wk(n, QHRQ).

 3. If 𝚽 is wM(n, R) and Q is a matrix of dimensions M-by-k and rank k, then  
(QH𝚽-1Q)-1 is wk(n - M + k, (QHR-1Q)-1).

 4. If 𝚽 is wM(n, R) and a is any M-by-1 random vector distributed independently  
of 𝚽 with ℙ(a = 0) = 0, then aHR-1a/aH𝚽-1a is chi-square distributed with  
n - M + 1 degrees of freedom.

 5. Let 𝚽 and R be partitioned into p and M - p rows and columns, as illustrated by

𝚽 = c 𝚽11 𝚽12

𝚽21 𝚽22
d
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and

R = cR11 R12

R21 R22
d .

  If 𝚽 is distributed according to wM(n, R), then 𝚽1 1 is distributed according to  
wp(n, R11).

H.4 expeCtAtion of tHe inverSe CorrelAtion mAtrix 𝚽−1(n)

Property 4 of the complex Wishart distribution may be used to find the expectation of 
the inverse correlation matrix 𝚽-1(n), which, in certain situations, is associated with 
the convergence of the RLS algorithm in the mean square. Specifically, for any fixed 
and nonzero A in ℝM, we know from Property 4 that AHR-1A/AH𝚽-1A is chi-square dis-
tributed with n - M + 1 degrees of freedom. Let x2(n - M + 1) denote this ratio. Then, 
using the result described in Eq. (H.11), we may write

 𝔼3AH𝚽-1
 1n2A4 = AHR-1A𝔼 c 1

x2
 1n - M + 12 d

 =
1

n - M - 1
 AHR-1A,    n 7 M + 1,

which, in turn, implies that

 𝔼3𝚽-1
 1n24 =

1
n - M - 1

 R-1,    n 7 M + 1. (H.12)
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Glossary

TexT ConvenTions

 1. Boldfaced lowercase letters are used to denote column vectors. Boldfaced upper-
case letters are used to denote matrices.

 2. The estimate of a scalar, vector, or matrix is designated by the use of a hat 1n2 
placed over the pertinent symbol.

 3. The symbol | | denotes the magnitude or absolute value of a complex scalar en-
closed within. The symbol ang[ ] or arg[ ] denotes the phase angle of the scalar 
enclosed within.

 4. The symbol 7  7  denotes the Euclidean norm of the vector or matrix enclosed within.

 5. The symbol det( ) denotes the determinant of the square matrix enclosed within.

 6. The open interval (a, b) of the variable x signifies that a 6 x 6 b. The closed interval 
[a, b] signifies that a … x … b, and (a, b] signifies that a 6 x … b.

 7. The inverse of nonsingular (square) matrix A is denoted by A-1.

 8. The pseudoinverse of matrix A (not necessarily square) is denoted by A+.

 9. Complex conjugation of a scalar, vector, or matrix is denoted by the use of a  superscript 
asterisk. Transposition of a vector or matrix is denoted by superscript T. Hermitian 
transposition (i.e., complex conjugation and transposition combined) of a vector or 
matrix is denoted by superscript H. Backward rearrangement of the  elements of a 
vector is denoted by superscript B.

 10. The symbol A-H denotes the Hermitian transpose of the inverse of a nonsingular 
(square) matrix A.

 11. The square root of a square matrix A is denoted by A1/2.

 12. The symbol diag(l1, l2, c, lM) denotes a diagonal matrix whose elements on the 
main diagonal are l1, l2, c, lM.

 13. The order of a linear predictor or the order of an autoregressive model is signified 
by a subscript added to the pertinent scalar or vector parameter.

 14. The statistical expectation operator is denoted by �3 #4, where the quantity  enclosed 
is the random variable or random vector of interest. The variance of a random vari-
able is denoted by var[ #], where the quantity enclosed is the random variable.
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 15. The conditional probability density function of random variable U, given that 
 hypothesis Hi is true, is denoted by fU (u | Hi), where u is a sample value of the 
 random variable U.

 16. The inner product of two vectors x and y is defined as xHy = yTx*. Another possible 
inner product is yHx = xTy*. These two inner products are the complex conjugate 
of each other. The outer product of the vectors x and y is defined as xyH. The inner 
product is a scalar, whereas the outer product is a matrix.

 17. The trace of a square matrix R is denoted by tr[R] and is defined as the sum of the 
diagonal elements of R. The exponential raised to the trace of matrix R is denoted 
by etr[R].

 18. The autocorrelation function of stationary discrete-time stochastic process u(n) is 
defined by

 r1k2 = �3u1n2u*1n - k24. 
  The cross-correlation function between two jointly stationary discrete-time  stochastic 

processes u(n) and d(n) is defined by

 p1-k2 = �3u1n - k2d*1n24. 
 19. The ensemble-average correlation matrix of a random vector u(n) is defined by

 R = �3u1n2uH1n24. 
  The use of subscripts assigned to the correlation matrix R is avoided in the book, 

except in Chapter 13 on adaptation in nonstationary environments, where we have

 Ru = �3u1n2uH1n24 
  and
 Rv = �3V1n2VH1n24. 
 20. The ensemble-average cross-correlation vector between a random vector u(n) and 

a random variable d(n) is defined by

 p = �3u1n2d*1n24. 
 21. The time-average (sample) correlation matrix of a vector u(i) over the observation 

interval 1 … i … n is defined by

 �1n2 = a
n

i = 1
u1i2uH

 1i2. 

  The exponentially weighted version of �(n) is

 �1n2 = a
n

i = 1
ln - iu1i2uH

 1i2, 

  where l is the exponential weighting factor that lies in the interval 0 6 l … 1.

 22. The time-average cross-correlation vector between a vector u(i) and scalar d(i) 
over the observation interval 1 … i … n is defined by

 z1n2 = a
n

i = 1
u1i2d*1i2. 

Z10_HAYK4083_05_SE_GLOS.indd   853 21/06/13   9:29 AM



854   Glossary

  Its exponentially weighted version is

 z1n2 = a
n

i = 1
ln - iu1i2d*1i2. 

 23. The discrete-time Fourier transform of a time function u(n) is denoted by F [u(n)]. 
The inverse discrete-time Fourier transform of a frequency function U(v) is  denoted 
by F-1[U(v)].

 24. In constructing block diagrams (signal-flow graphs) involving matrix quantities, the 
following symbols are used: The symbol

  depicts an adder with c = a + b. The same symbol with algebraic signs added, viz.,

  depicts a subtractor with c = a − b. The symbol

  denotes a multiplier with y = hx. This multiplication is also represented as

  The unit-sample (delay) operator is depicted by
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 25. In constructing block diagrams (signal-flow graphs) involving matrix quantities, the 
following symbols are used: The symbol

  depicts the summation c = a + b. The symbol

  depicts multiplication, with product C = AB. The symbol

  depicts a branch having transmittance H, with y = Hx. The unit-sample operator is 
denoted by the symbol

AbbreviATions

ADE Algorithm-dependent equilibria
AGC Automatic gain control
AIC An information-theoretic criterion (due to Akaike)
ALE Adaptive line enhancer
AR Autoregressive (process)
ARMA Autoregressive moving average (process)
BEFAP Block exact fast affine projection
BIBO Bounded input, bounded output
BLP Backward linear prediction
BLUE Best linear unbiased estimate
CDE Channel-dependent equilibria
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CMA Constant-modulus algorithm
CRLB Cramér-Rao lower bound
dB Decibel
DCT Discrete cosine transform
DFT Discrete Fourier transform
DPCM Differential pulse-code modulation
DSE-CMA Dithered signed-error constant modulus algorithm
DTE Data terminal equipment
EC Echo canceller
FAP Fast affine projection
FBLP Forward and backward linear prediction
FDAF Frequency-domain adaptive filter
FFT Fast Fourier transform
FIR Finite-duration impulse response
FLM Fourth-least-mean
FLP Forward linear prediction
FM Frequency modulated (signal)
FSE Fractionally spaced equalizer
FTF Fast transversal (finite-duration impulse response) filtering algorithm
GAL Gradient-adaptive lattice
GSC Generalized sidelobe canceller
HOS Higher-order statistics
Hz Hertz
IDBD Incremental delta-bar-delta (algorithm)
IF Intermediate frequency
IFFT Inverse fast Fourier transform
i.i.d. Independent and identically distributed
IIR Infinite-duration impulse response
INR Interference-to-noise ratio
ISI Intersymbol interference
KaGE Kalman gain estimator
kb/s Kilobits per second
KLMS Kernel least mean square (algorithm)
KLT Karhunen-Loève transform
LCMV Linearly constrained minimum variance (algorithm)
LEM Loudspeaker-enclosure-microphone
LMS Least-mean-square (algorithm)
LPC Linear predictive coding
LSB Least significant bit
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LSL Least-squares lattice
LTI Linear time invariant
M-ary PAM Multilevel phase-amplitude modulation
MA Moving average
MAIC Minimum Akaike information-theoretic criterion
MAP Maximum a posteriori probability
MaxEnt Maximum entropy
MDL Minimum description length (criterion)
MEM Maximum-entropy method
MISO Multiple input, single output
MLM Maximum-likelihood method
MSD Mean-square deviation
MSE Mean-square error 
MUSIC Multiple signal classification (algorithm)
MVDR Minimum-variance distortionless response
MVUE Minimum-variance unbiased estimate
PARCOR Partial correlation
PCM Pulse-code modulation
pdf probability density function
PEF Prediction error filter
PN Pseudonoise
PSK Phase-shift keying
QAM Quadrature amplitude modulation
QPSK Quadrature phase-shift keying
QRD QR-decomposition
QRD-LSL QR-decomposition-based least-squares lattice (algorithm)
QRD-RLS QR-decomposition-based recursive least squares (algorithm)
RBF Radial basis function
RKHS Reproduction Kernel Hilbert space
RLS Recursive least squares (algorithm)
rms Root mean square
RMSE Root mean-square-error
s Second
SIMO Single input, multiple output
SISO Single input, single output
SNR Signal-to-noise ratio
SOS Second-order statistics
SVD Singular-value decomposition
VLSI Very large-scale integration
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PrinCiPAl symbols

aM, k(n)  kth tap weight of forward prediction-error filter of order M 
(at adaptation cycle n), with k = 0, 1, c, M; note that am, 0(n) 
= 1 for all n

aM(n)  Tap-weight vector of forward prediction-error filter of order M 
(at adaptation cycle n)

A Data matrix in the covariance method
A(n)  Data matrix in the prewindowing method
bm(n)  Backward (a posteriori) prediction error produced at adapta-

tion cycle n by prediction-error filter of order m = 0, 1, c
b(n)  Backward (a posteriori) prediction-error vector representing 

sequence of errors produced by backward prediction-error 
 filters of orders 0, 1, c, M

bM 1n2  Sum of weighted backward prediction-error squares produced 
by backward prediction-error filter of order M

c Cosine parameter in Givens rotation
cM, k(n)  kth tap weight of backward prediction-error filter of order M 

(at adaptation cycle n), with k = 0, 1, c, M; note that cM, M(n) 
= 1 for all n

cM(n)  Tap-weight vector of backward prediction-error filter of   
order M (at adaptation cycle n)

c(n) Weight-error vector in steepest-descent algorithm
ck (t1, t2, c, tk) kth-order cumulant
Ck (v1, v2, c, vk) kth-order polyspectrum
c Contour in complex variable theory
ℂM Complex vector space of dimension M
c1n2 Convergence ratio
d Differential operator
det( ) Determinant of the enclosed matrix
diag( ) Diagonal matrix
d(n) Desired response
d Desired response vector in the covariance method
d(n) Desired response vector in the prewindowing method
D Unit-delay operator (same as z−1)
Dm+1(n) Correlation matrix of backward prediction errors
d Mean-square deviation
dec( )  Function describing the decision performed by a threshold 

device
e(n) A posteriori estimation error, or error signal
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em(n)  A posteriori estimation error at the output of stage m in the 
joint-process estimator, using the recursive LSL algorithm or 
QRD-LSL algorithm

e Base of natural logarithm
etr( ) Exponential raised to the trace of the enclosed matrix
exp Exponential
� Expectation operator
E Perturbation matrix
e(w, n)  Cost function defined as the sum of weighted error squares, ex-

pressed as a function of adaptation cycle n and weight  vector w
e1w2  Cost function defined as the sum of error squares, expressed 

as a function of the tap-weight vector w
emin Minimum value of e(w)
e1n2  Cost function defined as the sum of weighted error squares, 

expressed as a function of adaptation cycle n
fM(n)  Forward (a posteriori) prediction error produced at adapta-

tion cycle n by  forward prediction-error filter of order M
f(n)  Forward (a posteriori) prediction error vector representing 

sequence of errors produced by forward prediction-error 
 filters of orders 0, 1, c, M

fU(u)  Probability density function of random variable U whose 
 sample value equals u

fU(u)  Joint probability density function of the elements of random 
vector U whose sample value equals u

FM(z)  z-transform of sequence of forward prediction errors  produced 
by forward prediction-error filter of order M

F(n + 1, n) Transition matrix (of the process model)
fM 1n2  Weighted sum of forward prediction-error squares produced 

by forward prediction-error filter of order M
F [ ] Fourier transform operator
F -1[ ] Inverse Fourier transform operator
g1 # 2 Nonlinear function used in blind equalization
G(n) Kalman gain
hk  kth regression coefficient of joint-process estimation based 

on lattice predictor
Hi ith hypothesis
H(z) Transfer function of discrete-time linear filter
I  Subscript for signifying the in-phase (real) component of a 

complex baseband signal
I Identity matrix
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I Inverse of Fisher’s information matrix J
j Square root of -1
J(w)  Cost function used to formulate the Wiener filtering problem, 

expressed as a function of the tap-weight vector w
J Fisher’s information matrix
k(n) Gain vector in the RLS algorithm
K(n) Correlation matrix of weight-error vector E(n)
ln Natural logarithm
l(�) Log-likelihood function of parameter vector �
L(n) Transformation matrix in the form of lower triangular matrix
l Linear time-invariant system
�p Normed linear space
m Variable order of linear predictor or autoregressive model
M Final order of linear predictor or autoregressive model
M, K Final order of autoregressive moving-average model
m Misadjustment (in the LMS algorithm)
n  Discrete-time, or number of adaptation cycles, applied to 

 recursive algorithm
N Data length
n Symbol signifying the Gaussian (normal) distribution
n Noise subspace
O (Mk) Order of Mk

p(-k) Element of cross-correlation vector p for lag k
p  Cross-correlation vector between tap-input vector u(n) and 

desired response d(n)
PM  Average value of (forward or backward) prediction-error 

power for prediction order M for stationary inputs
P(n)  Matrix equal to the inverse of the time-average correlation 

matrix �(n) used in formulating the RLS algorithm
qki ith element of kth eigenvector
qk kth eigenvector
Q  Subscript for signifying the quadrature (imaginary) compo-

nent of a complex baseband signal
Q  Unitary matrix that consists of normalized eigenvectors in 

the set {qk} used as columns
Q(y)  Probability distribution function of standardized Gaussian 

random variable of zero mean and unit variance
r(k)  Element of (ensemble-average) correlation matrix R for 

lag k
r -1

 1n2 Conversion factor (of zero mean and unit variance
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R  Ensemble-average correlation matrix of stationary discrete-
time process u(n)

ℝM Real vector space of dimension M
s Signal vector; steering vector
sgn( ) Signum function
S(v) Power spectral density
SAR(v) Autoregressive (power) spectrum
SMEM(v) MEM (maximum-entropy-method) spectrum
SMVDR(v) Minimum-variance distortionless response spectrum
s System
sd Decreasingly excited subspace
so Otherwise excited subspace
sp Persistently excited subspace
su Unexcited subspace
t Time
t  Vector arising in joint-process estimation for nonstationary inputs
t  Distance measure in the subspace decomposition procedure 

for blind deconvolution
u(n) Sample value of tap input in FIR filter at time n
u(n)  Tap-input vector consisting of u(n), u(n − 1), c, as elements
u1(n) In-phase component of complex u(n)
uQ(n) Quadrature component of complex u(n)
uk kth left-singular vector of data matrix A
U Matrix of left-singular vectors of data matrix A
un Space spanned by tap inputs u(n), u(n - 1), c
u1n2  Sum of weighted squared values of tap inputs u(i), i = 1, 2, c, n
v(n)  Transformed weight-error vector in steepest-descent and 

LMS algorithms
vk(n) kth right-singular vector of data matrix A
V Matrix of right singular vectors of data matrix A
wk(n) kth tap weight of FIR filter at time n
wb, m, k(n)  kth tap weight of backward predictor of order m at adaptation 

cycle n
wf, m, k(n)  kth tap weight of forward predictor of order m at adaptation 

cycle n
w(n) Tap-weight vector of FIR filter at time n
wb, m(n)  Tap-weight vector of backward predictor of order m at 

 adaptation cycle n
wf, m(n)  Tap-weight vector of forward predictor of order m at adapta-

tion cycle n
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w Symbol signifying the Wishart distribution
x(n) State used in formulating Kalman filter theory
y(n) Observation used in formulating Kalman filter theory
yn Vector space spanned by observations y(n), y(n - 1), c
y′(n)  Modified output signal in the equation error method of 

 designing IIR adaptive filters
z-1  Unit-sample (delay) operator used in defining the z-transform 

of a sequence
z  Time-average cross-correlation vector between tap-input 

vector u(i) and desired response d(i)
Z(y) Standardized Gaussian probability density function
a(n) Innovations vector at time n
b Constant used in the DCT-LMS algorithm
b Constant used in the GAL algorithm
bm(n) Backward prediction error of order m at time n
g(n)  Conversion factor used in the recursive LSL algorithm, and 

recursive QRD-LSL algorithm
Γ(g) Gamma function of g
g1 Skewness of a random variable
g2 Kurtosis of a random variable
d Regularization parameter
D First coordinator vector (also denoted by 1)
dl Kronecker delta, equal to unity for l = 0 and zero for l Z 0
∆m(n)  Cross-correlation between forward prediction error fm(n) 

and delayed backward prediction error bm(n - 1)
em(n)  Angle-normalized joint-process estimation error for  prediction 

order m
eb, m(n)  Angle-normalized backward prediction error for prediction 

order m
ef, m(n)  Angle-normalized forward prediction error for prediction 

 order m
E(n) Weight-error vector
h(n) Forward (a priori) prediction error
� Parameter vector
� Unitary rotation
km  mth reflection of a lattice predictor for stationary environment
kb, m(n)  mth backward-reflection coefficient of a least-squares lattice 

for a nonstationary environment
kf, m(n)  mth forward-reflection coefficient of a least squares lattice for 

a nonstationary environment
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k4(t1, t2, t3) Tricepstrum
l  Exponential weighting vector in RLS, LSL, QR-RLS, and 

QRD-LSL algorithms
lk  kth eigenvalue of correlation matrix R
lmax Maximum eigenvalue of correlation matrix R
lmin Minimum eigenvalue of correlation matrix R
�(n) Diagonal matrix of exponential weighting factors
m Mean value
m  Step-size parameter in steepest-descent algorithm or LMS 

 algorithm
n(n) Sample value of white-noise process of zero mean
n(n) Convolutional noise in Bussgang algorithm
N1(n) Process noise vector in process equation
N2(n) Measurement noise vector in measurement equation
N(n) Process noise vector in random-walk state model
P Vector in RLS algorithm
pm(n) mth parameter in QRD-LSL algorithm
j(n) A priori estimation error
ju(n) Undisturbed estimation error
f(t, k)  t, kth element of time-average correlation matrix �
W(n, n0)  Transition matrix arising in finite-precision analysis of RLS 

algorithms
�  Time-average correlation matrix
�(n)  Time-average correlation matrix expressed as a function of 

the observation interval n
x2(n)  Chi-square distributed random variable with n degrees of 

freedom
x(R)  Eigenvalue spread (i.e., ratio of maximum eigenvalue to 

 minimum eigenvalue) of correlation matrix R
v Normalized angular frequency; 0 6 v … 2p, or - p 6 v … p
V(n) Process noise vector in Markov model
rm  Correlation coefficient or normalized value of autocorrelation 

function for lag m
s2 Variance
tk  Time constant of kth natural mode of steepest-descent  algorithm
tmse, av  Time constant of a single decaying exponential that approxi-

mates the learning curve of LMS algorithm
∇(n) Residual impulse response of a channel in blind equalization
� Gradient vector
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A
Acoustic cancellation, principle of, 341
Acoustic canceller, operation of, 342
Adaline, 40
Adaptation cycle, 267
Adaptive backward linear prediction, 

630–33, 636
Adaptive beamforming, 31–35, 46–47, 

609–16
computer experiment, 613–16
systolic MVDR beamformer, 611–13

Adaptive echo canceller, 46, 341
Adaptive equalization, 42–43

of a linear dispersive communication 
channel, 468–71, 667–69

of transient behavior of DCT-LMS 
algorithm, 379–84

Adaptive filter, 22–23
with finite memory, 24–25
linear, 24–25, 30–31

Adaptive filtering algorithms, 30–31, 246, 
518

See also Covariance filtering algorithm; 
Information filtering algorithm

Adaptive filtering applications, basic 
classes of, 35–38

identification, 35, 37
interference cancellation, 37, 38
inverse modeling, 35, 37
prediction, 37

Adaptive finite-duration impulse response 
(FIR) filters, 248–51, 334, 449

Adaptive forward linear prediction, 
627–30, 636

Adaptive linear (threshold logic)  
element, 40

Adaptive line enhancer (ALE), 46
and LMS algorithm, 285–89
model of, 287
power spectral density of, 287
as a self-tuning filter, 287
sinusoid of angular frequency, 287–88
wideband noise of zero mean and 

variance, 287–88

Adaptive noise cancelling, 46
least-mean-square (LMS) algorithm 

in, 278–84
Adaptive prediction

coding of speech, 45
using LMS algorithm, 306–11

Adaptive signal-processing applications
adaptive beamforming, 46–47
adaptive equalization, 42–43
adaptive noise cancellation, 46
coding of speech, 43–45
spectrum analysis, 45

Adaptive weight-control mechanism, 249
Additive noise, 57
Adjustable center frequency, 89
Affine projection adaptive filter

constrained optimization criterion, 348
operator, 349–50
stability analysis of, 350–52
summary of remarks, 352

Affine projection filter, 346
Affine subspace, 346
Akaike’s information-theoretic criterion 

(AIC), 80, 294, 709
Algorithms

adaptive filtering, 30–31, 246
block LMS, 360–62
computational requirements, 23–24
cyclic Jacobi, 827, 835–38
fast Fourier transform (FFT), 363
fast RLS, 41
Godard, 41, 733–35
Golub–Kahan, 844–46
gradient adaptive lattice (GAL), 41
Gram–Schmidt orthogonalization, 

186–87, 189
kernel least-mean-square (KLMS), 

762–64
least-mean-square (LMS), 31, see 

also Least-mean-square (LMS) 
algorithm

Levinson–Durbin, 41
linear adaptive filtering, 30–31
maximum-SNR, 47

minimum-variance distortionless 
response (MVDR)  
beamforming, 35

misadjustment in, 23
multiple signal classification (MUSIC), 

700
numerical properties, 24
QR, 841–46
rate of convergence in, 23
recursive least-squares (RLS), 31, 41
robustness in, 23
Sato, 732–33
self-orthogonalizing adaptive filtering, 

369
stochastic gradient, 40–41
structure of information flow, 24
subband-LMS adaptive filtering, 392–93
tracking performance of, 23
two-sided Jacobi, 829–35
zero-forcing, 42

All-pole, all-pass lattice filter, 193–95
All-pole AR process generator, 62
All-pole filter, 62, 64, 66, 182
All-pole model for speech, 201–2
All-pole predictor coefficients, 206
All-zero filter, 62, 66, 182
Angle-normalized backward prediction 

error, 648
Angle-normalized estimation error, 

646–49
Angle-normalized forward prediction 

error, 648
Angle-normalized joint-process 

estimation error, 648
Applebaum’s theory, 46
Array signal processing, 32
Asymptotic stationarity of an 

autoregressive process, 67–69
Augmented data matrix, 837
Augmented Wiener–Hopf equations

of a backward prediction-error filter, 
161–62

of a forward linear prediction-error 
filter, 155
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Autocorrelation function of stochastic 
process, 49, 83

calculation of, 57
for a lag k, 57
reflection coefficients, relation between, 

171–72
Autocorrelation method of linear 

prediction, 43
Autocovariance function of process, 49
Autogressive-moving-average models, 64

AR coefficients, 64
ARMA parameters, 64
computational viewpoint, 64
transfer function of ARMA process 

generator, 64
Automatic gain control (AGC), 715
Autonne–Eckart–Young theorem, 429
Autoregressive model, 45

modeling of a stationary stochastic 
process, 182–84

Autoregressive models, 59–62
all-pole AR process generator, 62
AR parameters, 59
process analyzer, 60–61
process generator, 62

Autoregressive power spectrum, 184
Autoregressive process of order two, 

experiment, 70–78
Autoregressive spectrum analysis, 45
Autostep method, 544–48

high-step detection, 546
meta-step-size-parameter, 548
modification of normalizer, 546
normalization step, 545–46
parameterization of, 551
rules governing, 545–46
scaling of M-by-1 step-size vector, 546
summary of, 547

Average power meter, 89

B
Backward a posteriori prediction error, 

631
Backward a priori prediction error, 

631–32
Backward linear prediction (BLP), 150, 

157–62
augmented Wiener–Hopf equations 

for, 161–62
backward prediction-error filter, 160–61
ensemble-average backward 

prediction-error power, 157
maximum phase response of, 176–77
M-by-1 cross-correlation vector, 159
M-by-1 optimum tap-weight vector 

of, 157
M-by-1 tap-input vector in, 159
minimum mean-square prediction 

error, 157
orthogonality of, 186–87

prediction-error filter coefficients of 
orders 0 to M, 186

relations between forward predictors 
and, 159–60

tap-weight vector of, 163
Wiener–Hopf equations for, 157–60

Backward prediction error, 27, 636
Backward prediction-error energy, 633
Backward prediction-error filter, 633
Backward reflection coefficient, 641
Bank of decimators, 386
Bank of expanders, 387–88
Bartlett window, 84
Batch-processing approach, 398
Bayes’ estimation theory, 798
Bayesian estimation paradigm, 577
Beamformers, 32, 131, 794

Capon’s, 47
linearly constrained minimum-variance 

(LCMV), 133
minimum mean-square value of 

optimum, 133
minimum-variance distortionless 

response, 133–34
MVDR solution to weight  

vector of, 423
regularized adaptive, with controlled 

sidelobes, 424–27
Beamforming

adaptive, 609–16
cancellation of interference, 32
defined, 32
minimum-variance distortionless 

response (MVDR)  
beamforming, 35

optimal solution of, 132–33
regularized MVDR, 422–27
requirements, 32
steering capability, 32

Beam-steering vector, 422
Benveniste–Goursat–Ruget  

theorem, 728
Bernoulli sequence, 312
Best linear unbiased estimate  

(BLUE), 417
Bispectrum, 98
Blind channel equalization, 744–45

in digital communications, 696
Blind deconvolution, 95, 275

approaches to, 696–99
Bussgang algorithm for blind 

equalization, 714–31
cyclostationary statistics, channel 

identifiability using, 699–700
implicit HOS-based, 698
linear, 697
minimum mean-square-error criterion, 

696
nonlinear, 698
overview of, 694–99

in reflection seismology, 696
subspace decomposition for 

fractionally spaced blind 
identification, 700–14

Blind equalization in digital 
communications, 696

Block-adaptive filters
basic ideas, 358–62
block LMS algorithms, 360–62
L-point blocks, 358–59
matrix form, 358
step-size parameter, 360
tap-weight vector of, 358–59

Block LMS algorithms, 360–62
block size, choice of, 362
computational burden of, 363
convergence properties of, 361–62
fast, 362–68
feature of, 360
linear convolution of, 363
linear correlation of, 363
misadjustment, 362
tap-weight vector of, 360
time constants, 361

Block-processing approach, 44
Bootstrap technique, 43
Brownian motion, 825
Burg estimate, 257, 258
Burg formula, 257
Bussgang algorithm for blind 

equalization, 714–31
annealing process, 730–31
complex, 735
convergence considerations, 726–28
convolutional noise, statistical 

properties of, 720–22
decision-directed algorithm, 728–30
extension of, 731–32
fractionally spaced equalizers, 736–40
Godard algorithm, 733–35
iterative deconvolution, 716–19
nonconvexity of cost function, 719–20
probabilistic model of signal source, 

741–45
Sato algorithm, 732–33
zero-memory nonlinear estimation of 

data sequence, 722–26
Butterweck’s iterative procedure,  

292–93, 295

C
Cauchy–Riemann equations, 770–72, 785
Cauchy–Schwarz inequality, 167, 479–80
Cauchy sequence, 755
Cauchy’s inequality, 774
Cauchy’s integral theorem, 772–74
Cauchy’s residue theorem, 777–78
Chi-square distribution, 849–50
Cholesky factorization, 185–88, 198, 585

of the inverse matrix, 188
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Circularly complex Gaussian process, 82
Closed-loop feedback system, 284
Coding of speech, 43–45
Communication system, diagram of a, 19
Complex conjugation, 49, 83, 110, 151, 253, 

266, 560, 629
Complex Euclidean space, 755
Complex Gaussian processes, 81–82
Complex-valued Lagrange multiplier, 

335, 420
Complex Wishart distribution

chi-square distribution, 849–50
definition, 848–49
of inverse correlation matrix, 851
properties, 850–51

Conditional mean estimator, 578, 798–99
Consistent model-order estimator, 80
Constrained cost function, 420
Constrained optimization problem,  

129, 268
Constraint matrix, 135
Continuous damping force, 825
Convergence criterion of LMS algorithm, 

301–4
Conversion factor, 573–74, 635–36
Convolutional noise, 718
Correlation ergodic, 51
Correlation function of asymptotically 

stationary AR process, 68–69
Correlation matrix, 52–56

in backward rearrangement of a  
vector, 55

Hermitian property of, 52–54
of M and M + 1 observations of the 

process, 55–56
properties of, 52–56
of sine wave plus noise, 57–58
in spatial context, 57
of stochastic force vector, 296
Toeplitz property of, 53

Covariance filtering algorithm
divergence phenomenon, 584–85
square-root filtering, 585–86

Cramér–Rao inequality, 796–97
Cramér–Rao lower bound, 417, 419
Cramér spectral representation for a 

stationary process, 90–92, 99
fundamental equation, 91–92

Cumulant-generating function, 97
Customer loop, 340
Cyclic autocorrelation function, 100
Cyclic Jacobi algorithm, 827, 835–38
Cycloergodic process, 101
Cyclostationarity, 43, 96, 99–100

channel identifiability using, 699–700

D
Damped exponential, 69
Damped sine wave, 69
Data terminal equipment (DTE), 695

Data windowing, 401–2
autocorrelation method, 401
covariance method, 401
postwindowing method, 401–2
prewindowing method, 401

DCT-LMS algorithm, 373, 377, 379–84,  
394

comparison with other adaptive 
filtering algorithms, 382–84

transient behavior of, 381
Decision-feedback equalizer, 43
Decorrelation delay, 285
Delay-and-sum beamformer, 47
Delayed backward prediction error,  

166, 190, 638
Delta function, 90
Desired-response quantization error, 500
Deterministic positive-definite matrix, 458
Deterministic RLS estimation theory, 601
Deterministic search method, 239
Diagonalization, 830–31
“Differential” log-likelihood function, 205
Differential pulse-code modulation 

(DPCM), 44–45
Digital communication system, 19
Digital residual error, 506
Digital signal-processing theory, 363
Dirac delta function, 20, 95
Dirichlet kernel, 91
Discrete all-pole model, 205–6
Discrete-time bandpass filter, 89
Discrete-time Fourier transform, 83
Discrete-time stochastic processes,  

39, 48, 67
correlation matrix of, 52
mean-value function of, 49
partial characterization of, 48–50
second-order characterization, 49
strictly stationary process, 50
wide-sense stationary, 50

Discrete transfer function, 87
Dither, 506
Divergence phenomenon, 585
Dolph–Chebyshev antenna pattern, 427
Doubly infinite filter (equalizer), 718
Dual-input adaptive noise canceller, 278

E
Echo cancellers, 46
Efficiency, trade-offs between robustness 

and, 490–92, 751–53
Eigenanalysis, 433–34

of complex sinusoid, 802
defective matrix, 801
eigenfilters, 820–22
eigenvalue computations, 822–24
eigenvalue problem, 800–1
low rank modeling, 816–20
properties of eigenvalues and 

eigenvectors, 802–16

unitary similarity transformation,  
805–6

of white-noise process, 801–2
Eigendecomposition, 122, 222, 303
Eigenvalues, estimation of, 377–79
Eigenvalue spread, 227
Einstein–Wiener–Khintchine relations,  

85, 98, 100, 810
Ensemble-average autocorrelation 

function, 100
Ensemble-average forward prediction 

error power, 152
Error energy, 400
Error-performance surface, 30

canonical form of, 121–22, 128–29
of finite-duration impulse response 

(FIR), 119
Wiener filters, 118–22

Error-propagation model
of recursive least-squares (RLS) 

algorithm, 510–14
Error signal, defined, 22
“Estimate and plug” procedure, 22
Estimation, basic forms of, 21
Estimation error, 35, 108, 260, 634, 638, 719

least-mean-square (LMS) algorithm, 
268

statistical LMS theory, 299
Estimation (filtering) theory, 19, 38–40
Excess mean-square error, 300
Excited subspace, 508
Expected Fisher information matrix, 589
Exploration seismology, 273–74
Exponentially weighted cross-correlation, 

640
Exponentially weighted RLS algorithm, 

454–57
Exponential weighting factor, 450

F
Fast Fourier transform (FFT) algorithm, 

363
complexity ratio for, 366
computational complexity of, 365
convergence properties, 366–68

Filtered estimation error, 573–74
Filtered state-error correlation matrix, 

574–75
Filtered state-error vector, 574
Filtering, 21

problem stating, 108–10
Filtering matrix, 702
Filtering-matrix rank theorem, 704, 706
Filters

adaptive, 22–24
adaptive, linear, 24–28, 30–31
adaptive, with finite memory, 24–25
adaptive finite-duration impulse 

response (FIR), 249–51, 334, 449
affine projection, 346
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Filters (continued)
affine projection adaptive, 348–52
all-pole, 62, 64, 66, 182
all-pole, all-pass lattice, 193–95
all-zero, 62, 66, 182
backward prediction-error, 160–62
block-adaptive, 358–62
discrete-time bandpass, 89
eigenvector representation of, 178–79
finite-duration impulse response (FIR), 

333, 341–42, 400
forward linear prediction-error, 155
forward prediction-error, 154–55
infinite-duration impulse response 

(IIR), 24, 29–30, 109
Kalman, 22
Kalman–Bucy, 40
linear, 22, 24–30
linear discrete-time, 108
linear least-squares, 401
multiple regression, 197
one-tap least-squares, 638
subband adaptive, see Subband 

adaptive filters
unconstrained frequency-domain 

adaptive, 368–69
white-noise process of, 177–78
Wiener, see Wiener filters

Finite-duration impulse response (FIR), 
24, 109, 150

cost function for, 119
error-performance surface of, 119
M-by-1 optimum tap-weight vector of, 118
Wiener–Hopf equations, 116–17

Finite-duration impulse response (FIR) 
filter, 333, 400, 601, 717

in acoustic echo cancellation, 341–42
time-varying tap weights, 450

Finitely parameterized filter (equalizer), 718
Finite parameter model for a stationary 

stochastic process, 45
Finite-precision effects

least-mean-square (LMS) algorithm, 
500–9

quantization errors, 498–500
recursive least-squares (RLS) 

algorithm, 509–15
Finite-precision LMS algorithm, 500–4

deviations during convergence period, 
504–5

statistical analysis of, 502
tap-weight misadjustment in, 504–5
total output error, 502–4

First coordinate vector, 633
First-order Markov process, 519
First-order predictor, 787
First-order state-space models for lattice 

filtering, 650–55
Fisher’s information matrix, 417–19,  

589, 797

Fixed-interval smoother, 588
Fluctuating force, 826
Forgetting factor, 367, 379, 450, 546
Forward a priori prediction error, 627
Forward linear prediction (FLP), 150–55

augmented Wiener–Hopf equations 
for, 155

eigenvector representation of filters, 
178–79

forward prediction-error filter, 154–55
M-by-1 optimum tap-weight vector, 152
minimum phase response of, 173–76
partial correlation (PARCOR) 

coefficient, 167
relation between linear prediction and 

autoregressive modeling, 154
tap-weight vector of, 163
transfer function of, 173, 181
white-noise process of filter, 177–78

Forward prediction error, 27, 559, 636, 638
Forward prediction-error filter, 559,  

561, 629
Forward reflection coefficient, 641
Fourth-order cumulant, 97
Fractionally spaced equalizer (FSE), 

42–43, 700
Fredholm integral equation, 92, 94
“Freezing” phenomenon, 345
Frequency-domain adaptive filtering 

(FDAF), 357
motivations for seeking adaptation, 357

Frequency scanning vector, 134, 422

G
Gain vector, 454, 629, 632
Galilei, Galileo, 38
Gaussian distribution of convolutional 

noise, 743
Gaussian kernel, 759
Gaussian moment-factoring theorem, 

82, 296
Gaussian stochastic processes, 81
Gauss problem, 38–40
Generalized sidelobe canceller (GSC), 

134–40, 289
block diagram of, 289
vector of weights, 289–90

Generalized spectral density, 90
Gentleman–Kung (systolic) array, 41, 47
Givens rotation, 604–5, 834–35
Godard algorithm, 41, 733–35
Golub–Kahan algorithm, 844–46
Gradient adaptive lattice (GAL) 

algorithm, 40–41
algorithmic formulation of, 259
as approximate in nature, 261
consecutive stages in, 255
desired-response estimator, 259–60
estimation error, 260
multistage lattice predictor, 255–57

properties of, 261
summary of, 261–62

Gradient adaptive lattice (GAL)  
filtering algorithm, 626

Gradient constraint, 368
Gradient operator, 111
Gradient quantization error  

vector, 504
Gradient vector, 112
Gram matrix, 759
Gram–Schmidt orthogonalization 

procedure, 186–87, 189, 560–62
Grating lobes, 34

H
Hands-free telephone, 340
Hermitian form of correlation matrix, 54
Hermitian property of correlation matrix, 

52–56
Hermitian-symmetric matrix, 759
Hermitian transposition, 52, 133, 152, 

190–91, 218, 253, 266, 334, 348, 364, 
430, 450, 510, 705

of data matrix, 434
N-by-1 desired response vector, 348
N-by-1 Lagrange vector, 348
N-by-M data matrix, 348
square-root Kalman filters, 594

High-order statistics (HOS), 96, 100
H∞ norm

Cauchy–Schwarz inequality for 
computing, 479–80

robustness and, 475–78
Homogeneous equation, 67
H∞ optimal estimation problem, 478
H∞ optimal estimator, 478
Householder bidiagonalization, 842–43
Householder transformation, 838–41
H∞-robustness theory, 41–42
Hyperellipsoid equation, 436

I
Ideal inverse filter, 716
Ideal transmission medium, 20
Ill-posed inverse estimation problem, 424
Implicit HOS-based blind deconvolution 

algorithms, 698–99
Incremental delta-bar-delta (IDBD) 

algorithm, 538–43, 552
adaptable memory parameters of, 

539–41
chain rule of calculus, 541
correlation, notion of, 540
IDBD addendum, 539–43
LMS part of, 539
meta-learning rate (step-size) 

parameter of, 540, 544–45
parameterization of, 551
step-size parameter, role of, 539, 544
summary of, 543
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Incremental meta-learning algorithm, 
see Incremental delta-bar-delta 
(IDBD) algorithm

Independence theory of LMS algorithm, 
325–26

Infinite-duration impulse response (IIR) 
filters, 24, 29–30, 109

Infinite-precision LMS algorithm,  
500–1, 503

Information filtering algorithm
derivation of, 586–87
Fisher information matrix in, 589
startup procedure for state estimation, 

587–88
unique characteristics of, 588

Information-theoretic criterion (AIC), 
An, 79

Initial predicted estimate, 575
Innovations process, 40, 559

correlation matrix of, 566–67
properties, 560, 565

Input quantization error vector, 500
Instantaneous frequency, defined, 276
Instantaneous-squared error, 314
Intermediate frequency (IF) sidelobe 

canceller, 46
Intersymbol interference, 19–20, 715
Inverse Levinson–Durbin algorithm, 

169–70
Inverse QR-decomposition-based RLS 

(QRD-RLS) algorithm
finite-precision effects, 620

Inverse QR-decomposition-based RLS 
(QRD-RLS) algorithm, 600–1

block diagram of, 618
prearray-to-postarray transformation, 

617
a priori estimation error, 617
summary of, 617
systolic processing in, 618

Itakura–Saito distance measure,  
44, 201–5

J
Jacobi rotations, 836
Joint probability density function, 81
Joint-process estimation, 27, 195–99, 646

K
Kalman–Bucy filter, 40
Kalman filtering, 510

conditional mean estimator, 578
correspondences between Kalman 

variables and RLS variables, 
582–83

least-squares-error (LSE) criterion, 578
mathematical terms, 563–64
measurement equation, 564
minimum-mean-square-error (MMSE) 

criterion, 578

notion of state, 558, 563
optimality criteria for, 577–78
system equation, 563–64

Kalman filters, 22
block diagram representation of, 

577–78
conversion factor, 573–74
equations, 40
estimation of state using innovations 

process, 567–73
filtered estimation error, 573–74
filtered state-error correlation matrix, 

574–75
initial conditions, 575–76
innovations process, 565–67
Kalman gain, 568–69
one-step state predictor, 570, 578
recursive minimum mean-square 

estimation for scalar random 
variables, 559–62

Riccati equation, 571–73
square-root, 594–600
statement of problem, 562–64
summary of, 576–77
as the unifying basis for RLS 

algorithms, 579–84
Kalman filter theory, 41–42, 637
Kalman gain, 568–69
Kalman gain estimator (KaGE), 625
Karhunen-Loève expansion, 814–16
K-by-M data matrix, 434, 436–37
K-by-W matrix, 431
Kernel adaptive filters, 754
Kernel-based nonlinear adaptive filtering, 

754–69
kernel Hilbert spaces, 754–56
nonlinearity, reason for, 754–55
notion of a kernel, 756–57
representer theorem, 761–62
reproducing kernel Hilbert space 

(RKHS), 755
Kernel Hilbert spaces, 755–56

properties, 756
Kernel least-mean-square (KLMS) 

algorithm, 754, 762–64
in the complex domain, 766
formulation of, 765
learning curve for, 766–67
limitations, 768–69
misadjustment, 767
properties, 765–68
radial-based function (RBF) network 

and, 764–65
rate of convergence, 767
regularization of, 765
robustness of, 767–68
topological diagram of, 764
vs LMS algorithm, 768

Kernel least-mean-square (KLMS) 
filtering algorithm, 755

Kernel trick, 760–61
Kronecker delta, 90, 716
Kullback–Leibler divergence, 79
Kushner’s direct-averaging method, 

291–92, 370, 467

L
Lagrange multipliers, 742
Lagrange multipliers, method of, 132, 

268–69, 334, 348, 425
for beamformer, 794
complex-valued, 335
involving a single equality constraint, 

optimization of, 792–93
involving multiple equality constraint, 

optimization of, 793–94
Lagrangian function, 268–69
Langevin equation, 825–906
Langevin force, 826
Laplace’s method, 744
Lattice predictors, 25–27, 188–93, 197
Laurent expansion of f(z), 776–77
Laurent’s series, 774–75
Leaky LMS algorithm, 505–6
Learning curves, 226

of LMS algorithm, 307–9
Learning-rate parameter, 31
Least-mean-square (LMS) algorithm,  

31, 474, 518
adaptation process, 267
for adaptive beamforming, 289–90
adaptive equalization, computer 

experiment on, 271, 311–20
for adaptive line enhancement, 285–89
for adaptive noise cancelling applied to 

a sinusoidal interference, 278–84
adaptive prediction, computer 

experiments on, 306–11
based adaptive seismic deconvolution 

algorithm, 275
built-in feedback mechanism, 254
canonical model of the complex, 270–73
components of, 249
current estimation error, 268
data transmission and, 271–72
deviations during convergence period, 

504–5
efficiency, 304–6
in exploration seismology, 273–74
features of, 248–49
filtering functions of, 254–55
filtering processes in, 267
gradient noise and, 249
of incremental delta-bar-delta (IDBD) 

algorithm, 539
independence theory of, 325–26
for instantaneous frequency 

measurement, 276–78
leaky, 505–6
learning curves of, 307–9
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Least-mean-square (LMS) algorithm 
(continued)

localized optimality of, 268–69
method of deriving, 253–54
minimum-variance distortionless-

response (MVDR) beamformer, 
computer experiment on, 320–24

misadjustment of, 303–4
parameter drift, 507–9
parameterization of, 551
posterior estimation error, 268
prediction error, 277
for processing of time-varying seismic 

data, 273–75
rate of convergence of, 304
relationship between misadjustment 

and rate of convergence, 306
signal-flow graph representation of, 

266–67, 280–81
small step-size theory of, 324–25
stalling of, 506
statistical analysis of, 502
statistical LMS theory, 290–301
structural description of, 249–53
suboptimality of, 269–70
summary of, 254–55
tap-weight misadjustment in, 504–5
tap-weights, 279
time constants, 304–6
total output error, 502–4
tracking of, 525–28
transient behavior and convergence 

considerations, 301–4
on Wiener solution, 252
in z-transform of system, 282–84

Least significant bit (LSB) of tap weight, 
506

Least squares, method of, 31, 38
data windowing, 401–2
interpretation of singular values/

singular vectors, 436–37
least-squares estimates, properties of, 

415–19
linear least-squares estimation 

problem, statement of, 398–401
matrix form of normal equations,  

407–8
M-by-M time-average correlation 

matrix, 407
M-by-1 time-average cross-correlation 

vector, 407
minimum-norm solution to the linear 

least-squares problem, 437–40
minimum sum of error squares, 405–6, 

408–9
MVDR spectrum estimation, 419–22
normal equations and linear least-

squares filters, 406–9
normalized LMS algorithm viewed as 

minimum-norm solution, 440–42

principle of orthogonality, 402–5
pseudoinverse, 434–35
reformulation of normal equations in 

terms of data matrices, 411–15
regularized MVDR beamforming, 

422–27
time-average correlation matrix, 

409–11
Least-squares estimates, 404–5

properties, 415–19
Least squares joint-process estimation, 646
Least-squares lattice (LSL) predictor, 

636–46
exact decoupling property, 644–46
Levinson–Durbin recursion, 641–43
time-update recursion, 643–44

Left singular vectors, 433
Levinson–Durbin algorithm, 41, 162–71

application of, 168–69
interpretations of parameters, 166–67
inverse, 169–70
relationship between reflection 

coefficients and partial correlation 
coefficients, 167–68

Levinson–Durbin recursion, 39, 163
LSL version of, 641–43

Levinson’s recursive procedure, 39
Likelihood function, 204
Linear adaptive filtering algorithms, 24, 

30–31, 719
computational complexity, 753–54

Linear blind deconvolution, 697
Linear discrete-time filter, 108
Linear estimation (filter) theory, 38–40
Linear filter, transmission of a stationary 

process through, 87–89
amplitude response of, 88
autocorrelation function of, 87–88
frequency response of, 87

Linear filtering problem, 22
Linear filters

with finite memory, 24–28
with infinite memory, 29–30
theory, 22

Linear least-squares estimation problem, 
statement of, 398–401

measurement error, 398–99
variables, 398

Linear least-squares filters, 401–2
Linear least-squares problem, minimum-

norm solution to, 436–40
Linearly constrained minimum-variance 

(LCMV) beamformer, 133
Linear optimum filtering, 108–10
Linear optimum filters, 22
Linear prediction

all-pole, all-pass lattice filter, 193–95
autoregressive modeling of a  

stationary stochastic process, 
182–83

backward linear prediction (BLP), 150, 
157–62

Cholesky factorization, 185–88
forward linear prediction (FLP), 

150–55
joint-process estimation, 195–99
lattice predictors, 188–93
Levinson–Durbin algorithm, 162–71
prediction-error filters, properties of, 

171–79
predictive modeling of speech, 199–206
Schur–Cohn test, 180–81

Linear predictive coding (LPC), 44
of speech, 199–201

Linear stochastic process, defined, 59
Linear synchronous receivers, 42
Linear transmission medium, impulse 

response of, 19
Linear unbiased estimator, 416
Line enhancer, 46
Liouville’s theorem, 775–76
LN-by-LN correlation matrix, 706
LN-by-LN identity matrix, 705
LN-by-1 multichannel noise vector, 703
LN-by-1 multichannel received signal 

vector, 703
Local iterative descent, 217
Logarithmic-PCM encoding, 45
Log-likelihood function, 205, 418, 635, 

789–90, 796
Loudspeaker–enclosure–microphone 

(LEM), 341
Lower triangular transformation matrix, 

561

M
MAIC (minimum AIC), 79
M-ary quadrature amplitude modulation 

(QAM), 271
Mathematical model, 35
Matrix factorization lemma, 595–96
Matrix inversion lemma, 449, 453
Maximum-entropy method (MEM), 45, 

184
Maximum entropy principle (MaxEnt 

principle), 741–42
Maximum likelihood, method of, 795–96
Maximum-likelihood estimators, 797
Maximum-SNR algorithm, 47
M-by-1 cross-correlation vector, 118
M-by-1 desired response vector, 364
M-by-1 error signal vector, 364
(M +1)-by-1 fixed frequency vector, 421
M-by-M augmented correlated matrix, 

426
M-by-M correlation matrix, 800–1,  

804–5, 807, 809, 811–12
M-by-M identity matrix, 564
M-by-M partitioned matrix, 135
M-by-M unitary matrix, 430
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M-by-1 null vector, 162, 363
M-by-1 optimum tap-weight vector, 152
M-by-1 steering vector, 32
M-by-1 tap-input vector, 333–34
M-by-1 tap-weight vector, 249
M-by-1 vector, 55, 134
McWhirter (systolic) array, 47
M-dimensional operator, 275
M-dimensional signal space, 135
M-dimensional weight space, 346
Mean ergodic theorem, 50–52

in the mean-square-error sense, 50–51
Mean of stochastic force vector, 295
Mean-square deviation, 465
Mean-square error, 22, 111–12, 114, 151, 

157, 475, 798
as a function of the number of 

adaptation cycles, 491
RLS algorithm and, 489

Measurement noise, 564
Mercer kernel, 757

properties of, 758–59
reproducing property of, 760

Mercer’s theorem, 806
Method of back substitution, 600
Method of least squares, 31, 40

batch-processing approach, 398
data windowing, 401–2
ill-posed nature of, 450–51
interpretation of singular values/

singular vectors, 436–37
least-squares estimates, properties of, 

415–19
linear least-squares estimation 

problem, statement of, 398–401
matrix form of normal equations,  

407–8
M-by-M time-average correlation 

matrix, 407
M-by-1 time-average cross-correlation 

vector, 407
minimum-norm solution to the linear 

least-squares problem, 437–40
minimum sum of error squares, 405–6, 

408–9
MVDR spectrum estimation, 419–22
normal equations and linear least-

squares filters, 406–9
normalized LMS algorithm viewed as 

minimum-norm solution, 440–42
principle of orthogonality, 402–5
pseudoinverse, 434–35
reformulation of normal equations in 

terms of data matrices, 411–15
regularized MVDR beamforming, 

422–27
time-average correlation matrix, 

409–11
Method of maximum likelihood, 795–96
Minimal disturbance, principle of, 334

Minimax theorem, 811–14
Minimum mean-square error, 114–15, 

120–21, 203
Minimum mean-square-error estimator, 

38, 799
Minimum mean-square prediction error, 

152
Minimum-norm solution, 437–40

normalized LMS algorithm as, 440–42
Minimum sum of error squares, 405–6, 

408–9
Minimum-variance distortionless 

response (MVDR), 47
beamformer, 133–34, 609
beamforming algorithm, 35, 320–24
computer experiment, 613–16
problem, 609–11
regularized beamforming, 422–27
spectrum, 134
spectrum estimation, 419–22
systolic beamformer, 611–13

Minimum-variance unbiased estimate 
(MVUE), 419

Misadjustment of LMS algorithm,  
303–4

block LMS algorithms, 362
Model order, selecting, 78–81
Monte Carlo integration theorem, 768
Monte Carlo simulations, 248
Moore–Penrose generalized inverse, 428
Moving-average (MA) models, 62–64

MA parameters, 62
order of MA process, 62
process generator, 63

Multidimensional discrete-time Fourier 
transform, 98

Multilevel pulse-amplitude modulation 
(M-ary PAM), 715

Multiple linear constraints, 134, 136
Multiple linear regression model, 122–24, 

399
critically fitted model, 124
overfitted model, 124
underfitted model, 123

Multiple regression filter, 197
Multiple signal classification (MUSIC) 

algorithm, 700
Multiple windows, method of, 45
Multistage lattice predictor, 255–57
Multivariate Gaussian model, 31

N
Natural modes of LMS algorithm, 295–97
N-by-1 desired response vector, 348
N-by-1 error vector, 349
N-by-1 Lagrange vector, 348
N-by-M data matrix, 348
N-by-M measurement matrix, 564
N-by-(M + N) matrix, 702
N-by-N diagonal matrix, 363

N-by-N Hermitian-symmetric moment 
matrix of process, 81

N-by-N identity matrix, 705
N-by-1 noise vector, 702
N-by-N positive semidefinite matrix, 759
N-by-1 received signal vector, 702
Newton method of optimization theory, 

240–41
Nonlinear blind deconvolution, 698
Nonstationary environments, adaptation in

adaptation parameters, tuning of, 
536–38

autostep method, 544–48
causes and consequences of 

nonstationarity, 518–19
criteria for tracking assessment, 523–25
degree of nonstationarity, 522–23
incremental delta-bar-delta (IDBD) 

algorithm, 538–43
system identification problem, 519–21
system-identification problem, 

computer experiment on, 548–52
tracking of LMS algorithm, study of, 

525–28
tracking of RLS algorithm, study of, 

528–32
Normalized coefficient of friction, 826
Normalized LMS algorithm

case of real-valued data, 338–40
convergence process, 345–47
defined, 333
low-pass filtering action of, 340
M-by-1 tap-weight vector in, 336, 344
as minimum-norm solution, 440–42
principle of minimal disturbance, 334
in solving constrained optimization 

problem, 333–37, 348–52
stability of, 337–40
for step-size control for acoustic echo 

cancellation, 340–45
summary of, 337
tap-weight vector, 336–38
telecommunications environments, 

application in, 340–42
vs recursive least-squares (RLS) 

algorithm, 461–62
Normalized mean-square error, 115
Notch filter, 278
N-point fast Fourier transform (FFT) 

algorithm, 363, 366
Nullity of data matrix, 414–15
Numerical accuracy, 24
Numerical stability, 24

O
One-step state predictor, 569, 570
One-tap least-squares filter, 638
Open-loop transfer function, 283
Optimum filtering theory, illustration of, 

124–29
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Order-recursive adaptive filters
adaptive backward linear prediction, 

630–33
adaptive forward linear prediction, 

627–30
angle-normalized estimation errors, 

646–49
backward prediction error, 636
conversion factor, 633–36
design of, 625
first-order state-space models for 

lattice filtering, 650–55
forward prediction error, 636
least-squares approach, 625
least-squares approach to design, 

626–27
least-squares lattice predictor, 636–46
ordinary estimation error, 635
QR-decomposition-based least-squares 

lattice (QRD-LSL) filters, 655–62
stochastic gradient approach, 625–26

Order-update recursions for prediction 
errors, 189–93

Ordinary estimation error, 635
Orthogonal complement, 135
Orthogonality, principle of, 110–14, 296, 

370, 402–5, 559, 640
for backward linear prediction, 632
of backward linear prediction (BLP), 

186–87
corollary, 113–14

Otherwise excited subspace, 509
Overdetermined system, 430–31, 435
Overlap-save method, 363–65

P
Parametric power spectrum estimation, 

184
Parseval’s theorem, 783–84
Partial correlation (PARCOR) coefficient, 

167
Peak distortion, 42
Periodogram, 45, 84
Persistently excited subspace, 508
Perturbation theory, 807
Phase-cancelling diagonal matrices, 834
Plane rotations, 827–28
Plant’s transfer function, 35
Polyphase decomposition, 390
Polyspectra, 96–99
Positive semidefinite matrix, 759
Postwindowing method, 401–2
Power spectral density, 83–87

of adaptive line enhancer (ALE), 287
autoregressive–moving-average 

(ARMA) model, 93
Eigendecomposition-based methods, 93
estimation of, 92–95
expected power and mean-square 

value, 86

minimum-variance distortionless 
response (MVDR) model, 93, 134

model-identification procedures, 92–93
multitaper (multiple-window)  

method, 94
nonparametric approaches to, 94–95
parametric approaches to, 92–93
periodogram, 94
properties of, 85–87
real-part operator, 85–86
of a real-valued stationary discrete-

time stochastic process, 86
of a stationary discrete-time stochastic 

process, 85–87
of wide-sense stationary stochastic 

process, 85
Predictable process, 64
Predicted state-error correlation matrix, 

567
Predicted state-error vector, 567
Prediction, 21
Prediction depth, 285
Prediction-error filters, properties of, 

171–79
of order M, 184

Prediction-error power, 165–66
Predictive deconvolution, 275
Predictive modeling of speech, 199–206
Prewindowing method, 451
Principle of the argument, 778–80
Probability density function, 716
Probability density function of process, 82
Process analyzer, 60–61
Projection operator, defined, 349
Projection theory, 641
Pseudoinverse, 434–35
Pseudonoise (PN) sequence, 272

Q
QR algorithm, 841–47
QR-decomposition, 41

of a matrix, 601
QR-decomposition-based LSL  

(QRD-LSL) filters, 655–62
array for adaptive backward prediction, 

657–59
array for joint-process estimation, 

659–60
arrays for adaptive forward prediction, 

655–57
finite precision effects, 682–84
fundamental properties of, 662–66
operational and implementational 

characteristics, 662
summary of, 660–62

QR-decomposition-based RLS  
(QRD-RLS) algorithm, 600–9

bounded-input, bounded-output 
(BIBO) sense, 619

correlation matrix of input data, 602

exponential weighting factor, 602
exponential weighting matrix, 602
finite-precision effects, 619–20
prearray-to-postarray transformation 

for, 603
summary of, 603
systolic array implementation of,  

604–9
use of prewindowing, 601

Quadrature amplitude modulation 
(QAM) systems, 731

Quadrature phase-shift keying (QPSK), 
271

Quantization, 769
Quantization errors, 24
Quiescent weight vector, 139, 425

R
Random process, see Stochastic processes
Random walk behavior, 309
Rate of convergence of LMS algorithm, 

304
Real-time operations, 21
Real-valued data, convergence process 

for, 345–47
Recursive algorithms, 23
Recursive least-squares lattice (LSL) 

algorithms
comparison of, 677
finite precision effects, 682–84
a posteriori estimation errors, 669–75
a priori estimation errors with error 

feedback, 675–78
relation between recursive RLS 

algorithm, 678–82
Recursive least-squares (RLS) algorithm, 

31, 41, 350, 474, 509–15, 518
application of, 461–62, 468–71
block-diagram representation, 456
computationally efficient symmetry-

preserving version of, 511
convergence behavior of, 462–67
conversion factor, 460–61
energy gain produced by, 484–88
error-propagation model of, 510–14
estimation errors, computation of, 

460–61
exponentially weighted, 454–57
initialization of, 458
matrix inversion lemma, 449, 453
M-by-M time-average correlation 

matrix, reformulation of, 452
parameterization of, 551
preliminaries, 449–53
a priori estimation error, 455
properties of, 467–68
quantization errors, 511
reformulation of normal equations, 452
regularization parameter selection of, 

450–52, 457–59
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Riccati equation for, 454
robustness in, 483–88
signal-flow graph representation of, 456
signal-to-noise ratio (SNR) of tap-input 

data, 457, 459
single-weight adaptive noise canceller, 

461–62
stalling of, 514–15
statistical efficiency of, 467–68
sum of weighted error squares, update 

recursion for, 459–61
tap-weight vector, recursive 

computation of, 452–63
time update for tap-weight vector, 

455–57
tracking of, 528–32
upper and lower bounds in, 487–88
vs normalized LMS algorithm, 461–62

Recursive minimum mean-square 
estimation for scalar random 
variables, 559–62

Recursive normalizer, 545–46
Reduced processing delay, 362
Reference sensor, 46
Reflection coefficients, 44, 166
Regression-coefficient vector, 198–99
Regression model, 60
Regularization parameter, 424
Regularized MVDR beamforming, 

422–27
Reproducing kernel Hilbert space 

(RKHS), 755, 760
Residues, 776–77
Reverberation, 340
Riccati equation, 571–73, 584, 594
Riccati equation solver, 573
Right singular vectors, 433
Risk-sensitive optimality, 488–90
Rissanen’s minimum description length 

(MDL) criterion, 80–81, 294, 709
Robustness, 41–42

in adaptive filtering, 476–77
in H∞ optimization, 475–78
of LMS algorithm, 42, 478–83
of RLS algorithm, 483–88
trade-offs between efficiency and, 

490–92, 751–53
Rouché’s theorem, 174–75, 780–81

S
Sample correlation matrix, 377
Sampling theorem, 22
Sato algorithm, 732–33
Schur–Cohn test, 180–81
Schur–Cohn theorem, 181
Second central moment, 95
Second-order AR process

autocorrelation function, 71–74
characteristic equation, 70
complex-conjugate roots, 74

conditions for asymptotic stationarity, 
70–71

parameter values characterizing, 229
real roots, 73–74
time-domain description, 70
variance of the white noise, 77–78
Yule–Walker equations for, 74–77

Second-order cumulant, 97
Second-order Taylor series expansion of 

the cost function, 240
Seismic deconvolution, 274
Self-orthogonalizing adaptive filtering, 

357
algorithm, 369

Self-orthogonalizing adaptive filters, 
369–79

eigenvalue estimation, 377–79
sliding window, 373–77
two-stage adaptive filter, 371–73

Sensor noise, 57
Serial weight flushing, 608
Shannon’s information theory, 589, 741
Shocks, 58
Short-term autocorrelation function, 402
Signal-blocking matrix, 140
Sine rotation parameter, 828
Single-order linear combiner, 646
Single-stage lattice predictor, 255–56
Singularity, 776–77
Singular-value decomposition, 427–34
Singular values of matrix, 433–34
Sinusoid plus noise, 57–58
Slepian sequences, 94
Sliding DCT, 373–77
Small step-size theory, 295

of LMS algorithm, 324–25
Smoothing, 21
Sparisification, 769
Spatial analog of the sampling  

theorem, 33
Spatial scanning vector, 134
Spectral-correlation density, 99–101
Spectral density of expected power, see 

Power spectral density
Squared Euclidean norm, 335, 439
Square-root adaptive filtering algorithm

in a finite-precision environment, 620
Square-root adaptive filters

adaptive beamforming, 609–16
building on Kalman filter counterparts, 

600–1
finite-precision effects, 619–20
inverse QR-RLS algorithm, 616–18
QR-RLS algorithm, 601–9
square-root Kalman filters, 594–600

Square-root covariance filter, 596–98
Square-root covariance (Kalman) filtering 

algorithm, 617
Square-root filtering, 585–86
Square-root information filter, 598–600

Square-root Kalman filters, 594–600
conversion factor, 600
Hermitian transposition, 594
innovation, 600
matrix factorization lemma, 595–96
relation between upper triangular 

matrix and lower triangular 
matrix, 594

square-root covariance filter, 596–98
square-root information filter, 598–600

Stalling
of least-mean-square (LMS)  

algorithm, 506
of RLS algorithm, 514–15

State-space model of RLS algorithms, 579
Stationary discrete-time stochastic 

process, 83
Statistical efficiency of LMS algorithm, 

304–6
Statistical expectation operator, 49
Statistical learning theory, 317–20

convergence behavior of the RLS 
algorithm, 462–67

Statistical LMS theory, 290–301
assumptions in, 293–95
Butterweck’s iterative procedure, 

292–93
direct-averaging method, 291–92
estimation error, 299
Langevin equation of nonequilibrium 

thermodynamics, 297–98
learning curves, 298–301
mean-square deviation of decays, 301
mean-square error, 300
natural modes of, 295–97
nonlinear stochastic difference 

equation, 291
zero-order weight-error vector of, 299

Statistician’s Pythagorean theorem, 114
Steady-state phenomenon, 518
Steepest-descent algorithm

basic idea, 217–18
convergence of, 224, 226
as deterministic search method, 239
example, 227–39
kth natural mode of, 223
limitation of, 240–41
stability aspect, 222–27
step-size parameter, 236–39
transient behavior of, 230
transient behavior of the mean-square 

error, 226–27
virtues of, 240–41
for Wiener filtering, 218–21

Steering vector, 32
Step-size parameter, 218, 225, 236–39,  

249, 253, 259, 260, 316–17,  
320, 339

Stochastic approximation, 40
Stochastic cost function, 30
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Stochastic gradient, method of, 30–31
applications, 248–63
assumptions, 246
curse of dimensionality problem, 248
efficiency, 247
in gradient-adaptive lattice (GAL) 

algorithm, 255–62
in LMS algorithm, 248–55
Monte Carlo simulations, 248
optimization and complexity, 247
principles of gradient descent, 246–48
robustness, 247
time-varying problems, 248

Stochastic gradient algorithm, 40–41
Stochastic Kalman filter theory, 601
Stochastic models

autogressive-moving-average  
models, 64

autoregressive models, 59–62
input–output relation for, 59
moving-average (MA) models, 62–64

Stochastic processes
asymptotic stationarity of an 

autoregressive process, 67–69
autoregressive process of order two, 

experiment, 70–78
complex Gaussian processes, 81–82
correlation matrix, 52–56
correlation matrix of sine wave plus 

noise, 57–58
Cramér spectral representation for a 

stationary process, 90–92
cyclostationarity, 96
defined, 48
discrete-time, 48
discrete-time stochastic process partial 

characterization of, 48–50
ensemble averages of, 50
high-order statistics (HOS), 96
kth-order cumulant of, 97–98
linear operations on, 49–50
mean ergodic theorem, 50–52
notation, 48
polyspectra, 96–99
power specrum estimation, 92–95
power spectral density, 83–87
selecting model order, 78–81
spectral-correlation density, 99–101
statistical properties of, 95–96
strictly stationary process, 50
transmission of a stationary process 

through a linear filter, 87–89
Wold decomposition, 64–66
Yule–Walker equations, 69–70
zero mean of, 52

Stoke’s law, 825
Subband adaptive filters, 357, 385–93

analysis filter bank, 385–86
bank of decimators, 386
bank of expanders, 387–88

calculations of error signals, 388
high-frequency component and  

lower-frequency component, 388
kth L-fold decimator, 386
multirate digital filter, 386
polynomial decomposition and noble 

identity, 391
polyphase decomposition, 390
processing delay in processing, 388
process of interpolation, 387
scaling factor, 388
synthesis filter bank, 388
synthesis section of, 387

Subband-LMS adaptive filtering 
algorithm, 392–93

Subspace decomposition procedure for 
blind channel identification, 
700–14

AIC and MDL criteria, 709–10
blind identification, 705–7
channel disparity condition, 704
estimation of the channel coefficients, 

708
filtering-matrix rank theorem, 704–5
formulation of orthogonality condition, 

alternative, 707–8
practical considerations, 708–9
rank-detection criterion, 710–12
single-input, multiple-output (SIMO) 

model, 701–3
summary of, 713–14
Sylvester matrix representation, 703–4

Subspace of decreasing excitation, 508–9
Sum of weighted error squares, 31
Sylvester resultant matrix, 704
Symmetrization, 829–30
System-identification problem, computer 

experiment on, 548–52
Systolic array implementation of  

QRD-RLS algorithm, 604–9
boundary cells, 606
final processing cell, 606
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kth boundary cell, 607
M-by-1 weight vector, 609
a priori estimation error, 607–8
sine and cosine parameters, 605
use of Givens rotations, 604–5

T
Tap-weight error vector, 501, 504
Telephone circuits, 340
Third-order cumulant, 97
Time-average autocorrelation function, 

420
Time-average correlation matrix, 409–11
Time-dependent Lagrangian multiplier, 

269
Time-domain constraint, 368
Time series, 48, 58

Time-varying AR (power) spectrum of 
narrowband process, 276

Time-varying frequency function, 277
Time-varying step-size parameter, 336
Toeplitz matrix, 39, 402
Toeplitz property of the correlation 

matrix, 53
Trace operator, 767
Transfer function, 695
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discrete, 87
of forward linear prediction (FLP), 

173, 181
of forward prediction-error filter, 173
open-loop, 283
plant’s, 35

Transient behavior
of LMS algorithm, 301–4
of mean-square error, 226–27

Transient phenomenon, 518
Transmission-line theory, 166
Triangularization, 823–24, 833–34
Trispectrum, 98
Two-sided Jacobi algorithm, 829–35
Two-stage control principle, 343

U
Unbiased estimator of an ensemble 

average, 50
Unconstrained frequency-domain 

adaptive filters, 368–69
Underdetermined system, 431–33, 435
Undisturbed error signal, 338, 339, 478
Undisturbed error vector, 350–51
Undisturbed estimation error, 478
Unexcited subspace, 507–8
Uniqueness theorem, 414–15
Unitary matrix of transformation, 222
Unit-delay operator, 67
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V
Vandermonde matrix, 803
Variance of white noise, 70, 77–78
Very large-scale integration (VLSI), 24
Voiced speech sound, 199–200

W
Weight-error correlation matrix, 464
Weight-error vector, 222, 337, 339
White Gaussian noise, 58
White noise, 57, 59, 370–71

power spectral density and, 89–90
variance of, 70, 77–78

Wide-sense stationary discrete-time 
stochastic process, 50, 83

correlation matrix of, 53
Wiener filters, 22, 296, 398, 402, 788–89

computations for varying filter length, 
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error-performance surface, 118–22
filtering problem in discrete time, 39
filtering structures under, 142
generalized sidelobe cancellers, 134–40
linearly constrained minimum-variance 

filter, 129–34
linear optimum filtering, 108–10
minimum mean-square error, 114–15
multiple linear regression model, 122–24
orhogonality, principle of, 110–14
properties from a practical perspective, 

140
recursive computation of, 246
steepest-descent algorithm and, 218–21
steepest-descent algorithm for, 297
tap-input vector of, 124
variables, 153
Wiener–Hopf equations, 116–18

Wiener–Hopf equations, 39, 116–18, 198, 
217, 402

for backward linear prediction (BLP), 
157–60

for FIR filters, 116–17
for forward linear prediction (FLP) 

problem, 152–53
matrix formulation of, 118
M-by-M correlation matrix, 118
for a prediction-error filter of order  

m –1, 162, 164–65
Wiener–Kolmogorov filter theory, 39
Wiener solution, 22–23, 269–70, 302, 308, 

370, 518
least-mean-square (LMS) algorithm 

on, 252
optimum regression-coefficient vector, 

relation with, 198–99

Wirtinger calculus, 335, 348
generalized, 788
gradient vectors, 790
scalar gradients, 785–87

Wold decomposition, 64–66
Woodbury’s identity, 453

Y
Yule–Walker equations, 64, 69–70, 168

for second-order AR process, 74–77

Z
Zero-forcing algorithm, 42
Zero-mean complex Gaussian process, 82
Zero-mean orthogonal process, 90
Zero-memory nonlinear estimator, 718
Z-transform, inversion integral for, 781–83
Z-transforms of two sequences, 60

Z13_HAYK4083_05_SE_IDX.indd   907 21/06/13   9:30 AM



Z13_HAYK4083_05_SE_IDX.indd   908 21/06/13   9:30 AM



Z13_HAYK4083_05_SE_IDX.indd   909 21/06/13   9:30 AM



Z13_HAYK4083_05_SE_IDX.indd   910 21/06/13   9:30 AM



Z13_HAYK4083_05_SE_IDX.indd   911 21/06/13   9:30 AM



Z13_HAYK4083_05_SE_IDX.indd   912 21/06/13   9:30 AM


	Cover
	Title
	Contents
	Preface
	Acknowledgments
	Background and Preview
	1. The Filtering Problem
	2. Linear Optimum Filters
	3. Adaptive Filters
	4. Linear Filter Structures
	5. Approaches to the Development of Linear Adaptive Filters
	6. Adaptive Beamforming
	7. Four Classes of Applications
	8. Historical Notes

	Chapter 1 Stochastic Processes and Models
	1.1 Partial Characterization of a Discrete-Time Stochastic Process
	1.2 Mean Ergodic Theorem
	1.3 Correlation Matrix
	1.4 Correlation Matrix of Sine Wave Plus Noise
	1.5 Stochastic Models
	1.6 Wold Decomposition
	1.7 Asymptotic Stationarity of an Autoregressive Process
	1.8 Yule–Walker Equations
	1.9 Computer Experiment: Autoregressive Process of Order Two
	1.10 Selecting the Model Order
	1.11 Complex Gaussian Proceses
	1.12 Power Spectral Density
	1.13 Propert ies of Power Spectral Density
	1.14 Transmission of a Stationary Process Through a Linear Filter
	1.15 Cramér Spectral Representation for a Stationary Process
	1.16 Power Spectrum Estimation
	1.17 Other Statistical Characteristics of a Stochastic Process
	1.18 Polyspectra
	1.19 Spectral-Correlation Density
	1.20 Summary and Discussion
	Problems

	Chapter 2 Wiener Filters
	2.1 Linear Optimum Filtering: Statement of the Problem
	2.2 Principle of Orthogonality
	2.3 Minimum Mean-Square Error
	2.4 Wiener–Hopf Equations
	2.5 Error-Performance Surface
	2.6 Multiple Linear Regression Model
	2.7 Example
	2.8 Linearly Constrained Minimum-Variance Filter
	2.9 Generalized Sidelobe Cancellers
	2.10 Summary and Discussion
	Problems

	Chapter 3 Linear Prediction
	3.1 Forward Linear Prediction
	3.2 Backward Linear Prediction
	3.3 Levinson–Durbin Algorithm
	3.4 Properties of Prediction-Error Filters
	3.5 Schur–Cohn Test
	3.6 Autoregressive Modeling of a Stationary Stochastic Process
	3.7 Cholesky Factorization
	3.8 Lattice Predictors
	3.9 All-Pole, All-Pass Lattice Filter
	3.10 Joint-Process Estimation
	3.11 Predictive Modeling of Speech
	3.12 Summary and Discussion
	Problems

	Chapter 4 Method of Steepest Descent
	4.1 Basic Idea of the Steepest-Descent Algorithm
	4.2 The Steepest-Descent Algorithm Applied to the Wiener Filter
	4.3 Stability of the Steepest-Descent Algorithm
	4.4 Example
	4.5 The Steepest-Descent Algorithm Viewed as a Deterministic Search Method
	4.6 Virtue and Limitation of the Steepest-Descent Algorithm
	4.7 Summary and Discussion
	Problems

	Chapter 5 Method of Stochastic Gradient Descent
	5.1 Principles of Stochastic Gradient Descent
	5.2 Application 1: Least-Mean-Square (LMS) Algorithm
	5.3 Application 2: Gradient-Adaptive Lattice Filtering Algorithm
	5.4 Other Applications of Stochastic Gradient Descent
	5.5 Summary and Discussion
	Problems

	Chapter 6 The Least-Mean-Square (LMS) Algorithm
	6.1 Signal-Flow Graph
	6.2 Optimality Considerations
	6.3 Applications
	6.4 Statistical Learning Theory
	6.5 Transient Behavior and Convergence Considerations
	6.6 Efficiency
	6.7 Computer Experiment on Adaptive Prediction
	6.8 Computer Experiment on Adaptive Equalization
	6.9 Computer Experiment on a Minimum-Variance Distortionless-Response Beamformer
	6.10 Summary and Discussion
	Problems

	Chapter 7 Normalized Least-Mean-Square (LMS) Algorithm and Its Generalization
	7.1 Normalized LMS Algorithm: The Solution to a Constrained Optimization Problem
	7.2 Stability of the Normalized LMS Algorithm
	7.3 Step-Size Control for Acoustic Echo Cancellation
	7.4 Geometric Considerations Pertaining to the Convergence Process for Real-Valued Data
	7.5 Affine Projection Adaptive Filters
	7.6 Summary and Discussion
	Problems

	Chapter 8 Block-Adaptive Filters
	8.1 Block-Adaptive Filters: Basic Ideas
	8.2 Fast Block LMS Algorithm
	8.3 Unconstrained Frequency-Domain Adaptive Filters
	8.4 Self-Orthogonalizing Adaptive Filters
	8.5 Computer Experiment on Adaptive Equalization
	8.6 Subband Adaptive Filters
	8.7 Summary and Discussion
	Problems

	Chapter 9 Method of Least-Squares
	9.1 Statement of the Linear Least-Squares Estimation Problem
	9.2 Data Windowing
	9.3 Principle of Orthogonality Revisited
	9.4 Minimum Sum of Error Squares
	9.5 Normal Equations and Linear Least-Squares Filters
	9.6 Time-Average Correlation Matrix Φ
	9.7 Reformulation of the Normal Equations in Terms of Data Matrices
	9.8 Properties of Least-Squares Estimates
	9.9 Minimum-Variance Distortionless Response (MVDR) Spectrum Estimation
	9.10 Regularized MVDR Beamforming
	9.11 Singular-Value Decomposition
	9.12 Pseudoinverse
	9.13 Interpretation of Singular Values and Singular Vectors
	9.14 Minimum-Norm Solution to the Linear Least-Squares Problem
	9.15 Normalized LMS Algorithm Viewed as the Minimum-Norm Solution to an Underdetermined Least-Squares Estimation Problem
	9.16 Summary and Discussion
	Problems

	Chapter 10 The Recursive Least-Squares (RLS) Algorithm
	10.1 Some Preliminaries
	10.2 The Matrix Inversion Lemma
	10.3 The Exponentially Weighted RLS Algorithm
	10.4 Selection of the Regularization Parameter
	10.5 Updated Recursion for the Sum of Weighted Error Squares
	10.6 Example: Single-Weight Adaptive Noise Canceller
	10.7 Statistical Learning Theory
	10.8 Efficiency
	10.9 Computer Experiment on Adaptive Equalization
	10.10 Summary and Discussion
	Problems

	Chapter 11 Robustness
	11.1 Robustness, Adaptation, and Disturbances
	11.2 Robustness: Preliminary Considerations Rooted in H∞ Optimization
	11.3 Robustness of the LMS Algorithm
	11.4 Robustness of the RLS Algorithm
	11.5 Comparative Evaluations of the LMS and RLS Algorithms from the Perspective of Robustness
	11.6 Risk-Sensitive Optimality
	11.7 Trade-Offs Between Robustness and Efficiency
	11.8 Summary and Discussion
	Problems

	Chapter 12 Finite-Precision Effects
	12.1 Quantization Errors
	12.2 Least-Mean-Square (LMS) Algorithm
	12.3 Recursive Least-Squares (RLS) Algorithm
	12.4 Summary and Discussion
	Problems

	Chapter 13 Adaptation in Nonstationary Environments
	13.1 Causes and Consequences of Nonstationarity
	13.2 The System Identification Problem
	13.3 Degree of Nonstationarity
	13.4 Criteria for Tracking Assessment
	13.5 Tracking Performance of the LMS Algorithm
	13.6 Tracking Performance of the RLS Algorithm
	13.7 Comparison of the Tracking Performance of LMS and RLS Algorithms
	13.8 Tuning of Adaptation Parameters
	13.9 Incremental Delta-Bar-Delta (IDBD) Algorithm
	13.10 Autostep Method
	13.11 Computer Experiment: Mixture of Stationary and Nonstationary Environmental Data
	13.12 Summary and Discussion
	Problems

	Chapter 14 Kalman Filters
	14.1 Recursive Minimum Mean-Square Estimation for Scalar Random Variables
	14.2 Statement of the Kalman Filtering Problem
	14.3 The Innovations Process
	14.4 Estimation of the State Using the Innovations Process
	14.5 Filtering
	14.6 Initial Conditions
	14.7 Summary of the Kalman Filter
	14.8 Optimality Criteria for Kalman Filtering
	14.9 Kalman Filter as the Unifying Basis for RLS Algorithms
	14.10 Covariance Filtering Algorithm
	14.11 Information Filtering Algorithm
	14.12 Summary and Discussion
	Problems

	Chapter 15 Square-Root Adaptive Filtering Algorithms
	15.1 Square-Root Kalman Filters
	15.2 Building Square-Root Adaptive Filters on the Two Kalman Filter Variants
	15.3 QRD-RLS Algorithm
	15.4 Adaptive Beamforming
	15.5 Inverse QRD-RLS Algorithm
	15.6 Finite-Precision Effects
	15.7 Summary and Discussion
	Problems

	Chapter 16 Order-Recursive Adaptive Filtering Algorithm
	16.1 Order-Recursive Adaptive Filters Using Least-Squares Estimation: An Overview
	16.2 Adaptive Forward Linear Prediction
	16.3 Adaptive Backward Linear Prediction
	16.4 Conversion Factor
	16.5 Least-Squares Lattice (LSL) Predictor
	16.6 Angle-Normalized Estimation Errors
	16.7 First-Order State-Space Models for Lattice Filtering
	16.8 QR-Decomposition-Based Least-Squares Lattice (QRD-LSL) Filters
	16.9 Fundamental Properties of the QRD-LSL Filter
	16.10 Computer Experiment on Adaptive Equalization
	16.11 Recursive (LSL) Filters Using A Posteriori Estimation Errors
	16.12 Recursive LSL Filters Using A Priori Estimation Errors with Error Feedback
	16.13 Relation Between Recursive LSL and RLS Algorithms
	16.14 Finite-Precision Effects
	16.15 Summary and Discussion
	Problems

	Chapter 17 Blind Deconvolution
	17.1 Overview of Blind Deconvolution
	17.2 Channel Identifiability Using Cyclostationary Statistics
	17.3 Subspace Decomposition for Fractionally Spaced Blind Identification
	17.4 Bussgang Algorithm for Blind Equalization
	17.5 Extension of the Bussgang Algorithm to Complex Baseband Channels
	17.6 Special Cases of the Bussgang Algorithm
	17.7 Fractionally Spaced Bussgang Equalizers
	17.8 Estimation of Unknown Probability Distribution Function of Signal Source
	17.9 Summary and Discussion
	Problems

	Epilogue
	1. Robustness, Efficiency, and Complexity
	2. Kernel-Based Nonlinear Adaptive Filtering

	Appendix A Theory of Complex Variables
	A.1 Cauchy–Riemann Equations
	A.2 Cauchy’s Integral Formula
	A.3 Laurent’s Series
	A.4 Singularities and Residues
	A.5 Cauchy’s Residue Theorem
	A.6 Principle of the Argument
	A.7 Inversion Integral for the z-Transform
	A.8 Parseval’s Theorem

	Appendix B Wirtinger Calculus for Computing Complex Gradients
	B.1 Wirtinger Calculus: Scalar Gradients
	B.2 Generalized Wirtinger Calculus: Gradient Vectors
	B.3 Another Approach to Compute Gradient Vectors
	B.4 Expressions for the Partial Derivatives

	Appendix C Method of Lagrange Multipliers
	C.1 Optimization Involving a Single Equality Constraint
	C.2 Optimization Involving Multiple Equality Constraints
	C.3 Optimum Beamformer

	Appendix D Estimation Theory
	D.1 Likelihood Function
	D.2 Cramér–Rao Inequality
	D.3 Properties of Maximum-Likelihood Estimators
	D.4 Conditional Mean Estimator

	Appendix E Eigenanalysis
	E.1 The Eigenvalue Problem
	E.2 Properties of Eigenvalues and Eigenvectors
	E.3 Low-Rank Modeling
	E.4 Eigenfilters
	E.5 Eigenvalue Computations

	Appendix F Langevin Equation of Nonequilibrium Thermodynamics
	F.1 Brownian Motion
	F.2 Langevin Equation

	Appendix G Rotations and Reflections
	G.1 Plane Rotations
	G.2 Two-Sided Jacobi Algorithm
	G.3 Cyclic Jacobi Algorithm
	G.4 Householder Transformation
	G.5 The QR Algorithm

	Appendix H Complex Wishart Distribution
	H.1 Definition
	H.2 The Chi-Square Distribution as a Special Case
	H.3 Properties of the Complex Wishart Distribution
	H.4 Expectation of the Inverse Correlation Matrix Φ-1(n)

	Glossary
	Text Conventions
	Abbreviations
	Principal Symbols

	Bibliography
	Suggested Reading
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z


		2015-05-22T23:44:17+0000
	Preflight Ticket Signature




